
Towards Creating Flexible Tool Chains for the Design and
Analysis of Multi-Core Systems∗†

Philipp Reinkemeier1, Heinz Hille2, and Stefan Henkler1

1philipp.reinkemeier,stefan.henkler@offis.de
2heinz.h.hille@daimler.com

Abstract: With the ever increasing complexity of today’s embedded systems, also
the complexity of the design and development processes tends to grow. Experts from
different domains and/or organizations work on different aspects of a product. Tool
support is necessary for these activities, like design of hardware and software, require-
ments engineering and verification. While an increasing number of tools is available,
these tools are usually not integrated. Hence, it is difficult to establish a traceability
between data created by these tools and to access data created by a particular tool
from within another tool that needs this data. As a consequence, the same information
is manually created multiple times in different tools, or ad hoc tool integrations are
created, which often work only for a particular use case and specific tools.

In this paper we propose a strategy for flexible tool integration, which is to a large
extent independent from concrete tools to be integrated. This strategy is based upon a
metamodel defining common semantics of data, which is created and shared between
the different tools involved in a development process. The metamodel is an extension
of a framework developed in the SPES2020 project with added concepts necessary for
the design and analysis of multi-core systems.

1 Introduction

Due to the complexity of today’s embedded systems, their development heavily relies on
tool support. While an increasing number of tools is available, these tools are usually
not integrated. Hence, it is difficult to establish a tool chain, where data created by a
particular tool is accessed from within another tool that needs this data. As a consequence,
the same information is manually created multiple times in different tools, or ad hoc tool
integrations are created, which often only work for a particular use case and specific tools.
The unsynchronized tools cause gaps in the needed workflow and the project specific tool
integration is error prone. This increases the development time and costs of the product.

An important requirement for managing complex system development with potentially
participating engineers from different disciplines is the support of traceability between ar-
∗This work was supported by the Federal Ministry for Education and Research (BMBF) under support code

01IS11035M, ’Automotive, Railway and Avionics Multicore Systems (ARAMiS)’.
†Copyright c© 2014 for the individual papers by the papers’ authors. Copying permitted for private and

academic purposes. This volume is published and copyrighted by its editors.

99

tifacts. This is not given per se as the integration is typically done only on the activity
(process) level. The ISO 26262 [Int] defines traceability for each source of a safety re-
quirement at the higher hierarchical level or for a lower level if the safety requirement is
derived. SPICE [Gro07] defines in ENG.6.BP9 that the consistency and (bilateral) trace-
ability of software requirements should be guaranteed to software units.

Use Cases
Conceptual
Metamodel

Conceptual
Tool chain scenarios

Tool integration implementations

OSLC CORBA
File based

data exchange

C
o
n
ce

p
t

Im
p

le
m

e
n
ta

ti
o
n

Figure 1: Overview of the tool chain definition and implementation strategy

To overcome these limitations, we propose a layered strategy for the creation of flexible
tool chains. Figure 1 shows an overview of this strategy consisting of three layers. The
top most layer forms the conceptual basis for every tool chain. Based on the steps of
the targeted development process, use cases are derived describing the needed methods
supporting the development steps. These use cases also define necessary input and output
information for the methods. In turn these information and relationships between them, are
captured by means of a metamodel. The goal of the metamodel is to describe a common
vocabulary for the use cases and their described methods. In the middle layer we define
tool chain scenarios coupling multiple methods from the use cases identified before. This
layer still ignores particular tool instances or the way data exchange between tools is im-
plemented. Instead the chains refer to classes of tools, like a requirements management
tool. The exchanged information are described in terms of concepts of the metamodel.
Manifestations of the conceptual tool chains are located at the bottom layer. Here tool
classes are replaced with a particular tool candidate, e.g. requirements management tool
becomes Rational DOORS. Further, a particular integration strategy is selected for each
connected pair of tools. For example tools can be integrated by means of webservices as
suggested by OSLC [JS11] or a simple XML format can be defined or reused that can be
imported and exported by the considered pair of tools. This strategy allows us to replace a
particular tool instance without changing our conceptual tool chain we had in mind and it
is technology independent.

In the German ARAMiS (Automotive, Railway and Avionics Multicore Systems) research
project we are currently following this strategy in order to build tool chains for the design

100

and analysis of multi-core systems. The goal of the ARAMiS project is to enable the usage
of multi-core technologies in embedded systems, focussing on the automotive, avionics
and railway domains. The challenges include, but are not limited to, efficient utilization of
the cores, and coping with undesired interferences between functions due to the increased
parallelism of an underlying multi-core platform. So in the project methods and tools
are being developed and/or extended, addressing these challenges. As a starting point for
the top most layer of the strategy, we investigated a modeling framework that has been
developed during the SPES2020 project (see [BDH+12]).

This framework is refined by a metamodel with a well defined syntax and semantics and
which already covers a broad set of use cases as described in [DHH+11]. That metamodel
has its roots in the metamodel for Heterogeneous Rich Components (HRC) [Par09], devel-
oped in the SPEEDS project. While we analyzed the SPES2020 metamodel, it turned out
that its provided concepts are not detailed enough to capture the use cases considered in
the ARAMiS project. Thus, we developed an extension of the metamodel that we present
in this paper. Further, we present a particular use case and tool chain scenario and discuss
how this scenario can be realized based on the extended metamodel. The implementation
of the tool integration, which is the bottom layer, is out of scope of this paper and subject
to future work.

The rest of this paper is structued as follows: In Section 2, we briefly describe the ba-
sic concepts of the SPES2020 framework, as it is the basis of our proposed extension.
Section 3 elaborates the proposed metamodel extensions. In Section 4 we discuss a tool
integration scenario backed by the metamodel. Section 5 concludes the paper and high-
lights future work.

2 Basic Concepts

The metamodel we propose is an extension of the modeling framework developed in
the SPES2020 project [BDH+12] with its refined syntax and semantics as defined in
[DHH+11]. We especially focus on extensions necessary for the design and analysis of
multi-core systems. The SPES2020 metamodel for architectures of embedded systems
provides syntax and formally defined semantics of its artifacts and requirements. Us-
ing the metamodel, architecture models and requirements of embedded systems can be
captured, and its semantics provide means to reason about such architecture models in a
compositional way based on the requirements.

A key concept of the modeling framework is to structure models establishing different
views of the developed system according to a two-dimensional schema like shown in Fig-
ure 2. This schema identifies a class of viewpoints in the architecture metamodel as shown
at the bottom of the figure. These viewpoints are typically found in the design processes
of complex embedded systems like in the avionics or automotive domain. The viewpoints
are complemented by abstraction levels as often systems are modeled with an increasing
level of detail and refined towards an implementation.

Alongside the two-dimensional design-space, the metamodel is based on a component con-

101

Requirements
Viewpoint

Functional
Viewpoint

Logical
Viewpoint

Technical
Viewpoint

System Development Viewpoints

coarser

finer

L
e
v
e
ls

 o
f A

b
s
tra

c
tio

n

...

...

...

...

Aircraft
System

Cockpit
System

Tail
System

ECU

ECU

ECUECU

IP

Unit

Board

Computer

...

Figure 2: Matrix of abstraction levels and perspectives

cept similar to those found in e.g. SysML [Obj08], EAST-ADL [ATE08] and AUTOSAR
[AUT09]. A component has a well defined syntactical interface in terms of its ports. Com-
ponents can be assembled forming so called compositions, which are again regarded as
components. A specialty of this component notion is its strict separation of specification
of different behavioral aspects and a realization of these aspects. Aspects specifications
are assumed to be formulated using contracts promoting an assume/guarantee style. That
means a contract explicates assumptions about the environmental context of a component
under which its it behaves as guaranteed by the contract. Figure 3 depicts these main
features of the component notion.

Component

aspect

realization

Port

aspect

specification

conforms

to
C1

Figure 3: Component concept, aspect specification and realization

102

3 Multi-Core aware Technical Architecture Model

Complexity of safety-critical systems is ever increasing as the number of functions real-
ized by these systems keeps growing. Moreover, an increasing number of functions is
realized in software, which are then integrated on the same target platform in order to save
costs. Hence we observe a paradigm shift from rather loosely coupled federated archi-
tectures, where each subsystem is deployed on a dedicated hardware node, to integrated
architectures with different subsystems sharing hardware nodes.

This leads to a decrease in the number of hardware nodes in an architecture, and such
systems are inherently more complex and difficult to design for a couple of reasons: In
federated architectures the different subsystems are independent to a large degree (only
the communication infrastructure between hardware nodes is shared). Thus, realizing and
verifying a segregation of different functions in the time and space domain is relatively
easy for such architectures, which is a prerequisite for enabling certification or qualifica-
tion according to respective safety standards (e.g. ISO26262).

In contrast, in integrated architectures with multiple subsystems sharing hardware nodes,
this independence is compromised. On the one hand, this leads to safety related impli-
cations as the potential of error propagation from one subsystem to another subsystem
increases. On the other hand, the compromised independence increases complexity of ver-
ification and validation activities, as subsystems now influence each other in a potentially
undesired way due to their resource sharing. Using multi-core target platforms, the de-
sign and verification of such systems becomes even more challenging. This is due to an
increased interference between functions resulting from more shared resources like e.g.
on-chip-buses and memory shared by the different cores and hence the functions execut-
ing on these cores. Thus, a verification of the timing behavior of multi-core systems is of
paramount importance in order to analyse the interference due to resource sharing.

To support the exchange of data provided and consumed by timing analysis tools, we de-
veloped an extension of the SPES2020 framework [BDH+12, DHH+11], adding concepts
to represent a task network deployed on a multi-core architecture. These concepts are
embedded in the already existing component notion described in Section 2.

����������	
��������

��������

��	���
��

��������

��	���
�

���������

��������

���� ���� ���� ����

�������� ��������

�����������

(a) Symmetric Multiprocessing

����������	
��������

��������

��	���
��

��������

��	���
�

���������

��������

���� ���� ���� ����

��������� ���������

�����������

(b) Hierarchical scheduling with core affinity

Figure 4: Scheduling model of a technical architecture

103

Basically this extension consists of three fundamental concepts:

• Functions define the atomic functional units to be executed on a target platform.

• Schedulers own a set of tasks, each of which executes some of the functions or a
child scheduler.

• Resources represent the communication or computation resources provided by a
component. The number of resources owned by a component denotes the available
degree of parallelism when multiple functions are deployed on the same component.

Invocations of functions (execution requests) are modelled by events occurring at particu-
lar ports, and the same holds for completions of functions. Dependencies between func-
tions are modelled by connecting input/output pairs of ports, unifying behavior observable
at these connected ports. Functions without dependencies are connected to event sources
that represent assumptions about the evironment. For each event source, we define an ac-
tivation pattern that characterizes event occurrences. Activation patterns can be described
that conform to the formalism of event streams, which is well-known in the scheduling
analysis community (cf. [Ric05]).

The resources provided by a component are shared by all functions deployed on the com-
ponent, and therefore access to these resources must be scheduled. This scheduling is
modelled by a Scheduler entity that has important attributes such as the choosen schedul-
ing strategy (e.g. fixed priority based). As suggest by Figure 4, a scheduler controls a
set of resources, which might be the different cores of a multi-core ECU. The set of tasks
owned by a scheduler indirectly represent the functions that are executed on the compo-
nent, using its resources. Each task has scheduling-specific attributes, like the order of
Functions executed in its context or a priority assigned to it.

With regard to scheduling execution of functions on multiple cores, the model allows to
describe symmetric multiprocessing scenarios like depicted in Figure 4a and also scenarios
with fixed assignment of functions to cores by means of a hierarchical scheduling like
depicted in Figure 4b. In the former case it is assumed that it does not matter on which
core a function is executed. The activated functions are simply dispatched on the available
resources/cores. In the latter case a child scheduler can be modelled, which is executed
within the context of a task of the top-level scheduler. A relation (labelled controls in
Figure 4b) allows to specify a subset of the resources/cores used by the tasks of the child
scheduler.

In [BDH+12] and [DHH+11] concepts have been proposed to capture a model of such a
technical view of a system. However, these concepts neither allow expressing symmetric
multiprocessing scenarios, nor a binding of a child scheduler to a subset of resources/cores.

4 Tool Integration Use Case

As data races may destroy needed data or introduce non-determinism in the execution
of a program, they should be detected and avoided. However, it is known that statically

104

detecting race conditions in programs using multiple semaphores is NP-hard [NM90]. So
exhaustively detecting all data races is infeasible. Still heuristic algorithms can be used to
find potential race conditions. For example the Bauhaus tool suite employs this strategy.
Unfortunately, data races detected that way may not necessarily occur in the program
when it is deployed on a target platform. That is because execution orderings of some
instructions assumed in the data race analysis, potentially leading to a race condition,
cannot happen in the deployed program. This is because data race analysis does usually
not consider the time needed to execute a Function, nor the strategy used to schedule them.
Consequently, the analysis must assume that functions can be executed concurrently, while
in reality they cannot.

To reduce the number of false positives of detected data races, the analysis can be extended
by considering additional information whether two accesses to a shared resource can be
executed concurrently. With regard to the task network model presented in Section 3, this
question reduces to the simpler question whether two Functions can be executed concur-
rently. Assuming for example a single core platform and a non-preemptive scheduling
strategy, accesses to a shared resource can never be executed concurrently as the task ex-
ecuting the function must relinquish the CPU. Of course this is not necessarily true for a
multi-core platform, where multiple task may be executed in parallel.

While for example Bauhaus supports the manual definition of the timing behavior of the
analyzed program, this process is error prone. In addition the very same information is
already computed and available in timing and scheduling analysis tools. For example the
tool SymTA/S can calculate response time intervals for all functions of a task network.
Combined with information about activation dependencies between functions (and there-
fore tasks), one can deduct whether functions can be executed concurrently.

Thus a timing and scheduling analysis tool can provide valuable information to a data race
analysis tool in order to reduce the number of false positives in the detected data races. In
the easiest case, this provided information is a binary relation on the set of functions of
a program. For every pair of functions in that relation, it is must be guaranteed that they
cannot be executed concurrently.

These findings led us to augment the concepts in the metamodel extension, as presented
in Section 3, with a relation expressing whether a set of functions can be executed concur-
rently. The class diagram in Figure 5 shows the relevant excerpt of the metamodel, with
the meta class NonConcurrentExecution representing this relation. Based on these
metamodel concepts, we can now address the dicussed use case and derive a tool chain
scenario. Figure 6 gives a graphical overview of this tool chain. First a timing model
must be created as input for a timing and scheduling analysis tool, for example SymTA/S.
Conceptually, the information contained in this timing model is covered by the metamodel
concepts discussed in Section 3. That means the entry point of the tool chain can be linked
with other tools providing this data. For example SymTA/S is able to import AUTOSAR
models. Based on this timing model, charateristics like response time intervals for the
individual functions are computed by the timing analysis tool.

In addition the information about concurrent execution of functions is provided (the box
labelled Concurrency Information in Figure 6). This information correlates with the Non-

105

TNElement

Scheduler

- schedulerType :SchedulerType

TechnicalComponent

technicalPerspectiv e::

Hardw areComponent

Identi fiable

technicalPerspectiv e::

ProcessingUnit
Identi fiable

Task

- priori ty :Natural

- slotLength :Natural

- timeUni t :T imeUnit

TNElement

Function

- bcet :Natural

- wcet :Natural

- timeUni t :T imeUnit

TNElement

NonConcurrentExecution

+executes 0..*

{ordered}

+hardwareComponent 1

+procUnit *

+scheduler 1

+slot *

+control ledProcUni t

1..*

+function

*

Figure 5: Excerpt of the metamodel extension showing NonConcurrentExecution
relation

Timing/Scheduling
Analysis Tool

Concurrency
Information

Race condition
Analysis Tool

Data race
WarningsC source code

Timing Model
Convered by
metamodel excerpt

Supported by the
metamodel extension

Figure 6: Conceptual tool chain

ConcurrentExecution relation between Functions as depicted in the metamodel
excerpt in Figure 5. The race condition analysis tool (for example the Bauhaus toolsuite)
picks up this data, excluding some potential data races in its analysis. Note that in order
to ease exposition, we simplified the class diagram. Actually, besides the functions and
concurrency relation, also paths to the C source code files and the signatures of the methods
implementing the functions, are handed over to the race condition analysis tool. This is
necessary in order to map the concurrency information to the source code implementation
level.

Finally, we like to point out that though we stressed SymTA/S and Bauhaus as examples
supporting the use case, the tool chain shown in Figure 6 can also be setup with different
tool candidates. The definition of the tool chain on a conceptual level based on the vocab-
ulary defined by the metamodel, allows us to assess whether another tool can fill in either
of the two roles.

For example the timing analysis based on model checking proposed in [SRGB13], is a

106

viable alternative. In contrast to potential over-approximations in analyses based on an-
alytical methods like SymTA/S, this approach delivers exact results. This is due to the
abstraction of analytical approaches because of the inevitable limited accuracy of the un-
derlying formalisms to capture complex dependencies between different events. On the
other hand analysis approaches based on model-checking are able to capture those event
dependencies while constructing the state-space of the system. Consequently, more poten-
tial data races can be excluded. However, there is no free lunch as model-checking suffers
from potential state-space explosion.

With regard to race condition analysis, the tool Gropius from the University of Kiel can be
used as a replacement. These tools have their own strengths and weaknesses. For example
a trade-off exists between analysis time and minimizing the number of false positives with
regard to detected data races.

5 Conclusion

We presented a strategy for creating tool chains for the design and analysis of multi-core
systems. Thanks to a layered approach, where tool chains are first designed on a concep-
tual level backed by a metamodel, a chain is independent from a particular tool integration
technology. This allows us to choose a technology that fits best for each pair of tools
in a tool chain. Focusing on the conceptual layer, we presented parts of the metamodel.
Further, we presented a particular use case for tool integration from the ARAMiS project,
where a race condition analysis tool makes use of the analysis results of a timing and
scheduling analysis tool. Based on this use case, we classified the information exchange
in this tool chain according to the concepts of the metamodel.

Currently, we are working on the transition to the implementation level. The tools SymTA/S
and Bauhaus are used as candidates for this manifestation of the tool chain. A text file with
a simple format contains the exchanged information in this prototype implementation.

References

[ATE08] The ATESST Consortium. EAST ADL 2.0 Specification, February 2008.

[AUT09] AUTOSAR GbR. Software Component Template, November 2009. Version 4.0.0.

[BDH+12] Manfred Broy, Werner Damm, Stefan Henkler, Klaus Pohl, Andreas Vogelsang, and
Thorsten Weyer. Introduction to the SPES Modeling Framework. In Klaus Pohl, Harald
Hönninger, Reinhold Achatz, and Manfred Broy, editors, Model-Based Engineering of
Embedded Systems, pages 31–49. Springer, 2012.

[DHH+11] Werner Damm, Hardi Hungar, Stefan Henkler, Thomas Peikenkamp, Ingo Stierand,
Bernhard Josko, Philipp Reinkemeier, Andreas Baumgart, Matthias Büker, Tayfun Gez-
gin, Günter Ehmen, Raphael Weber, Markus Oertel, and Eckard Böde. Architecture
Modeling. Technical report, OFFIS, March 2011.

107

[Gro07] The SPICE User Group. Automotive SPICE Process Assessment Model. Technical
report, 2007.

[Int] International Organization for Standardization (ISO). ISO 26262: Road vehicles –
Functional Safety.

[JS11] Dave Johnson and Steve Speicher. Open Services for Lifecycle Collaboration Core
Specification Version 2.0. Technical report, 2011.

[NM90] Robert H.B. Netzer and Barton P. Miller. On the Complexity of Event Ordering for
Shared-Memory Parallel Program Executions. In In Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, pages 93–97, 1990.

[Obj08] Object Management Group. OMG Systems Modeling Language (OMG SysML TM),
november 2008. Version 1.1.

[Par09] Project SPEEDS: WP.2.1 Partners. D.2.1.5 SPEEDS L-1 Meta-Model. Technical report,
The SPEEDS consortium, 2009.

[Ric05] Kai Richter. Compositional Scheduling Analysis Using Standard Event Models. PhD
thesis, Technical University of Braunschweig, Germany, 2005.

[SRGB13] Ingo Stierand, Philipp Reinkemeier, Tayfun Gezgin, and Purandar Bhaduri. Real-Time
Scheduling Interfaces and Contracts for the Design of Distributed Embedded Systems.
In Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on,
2013.

108

	1 Introduction
	2 Basic Concepts
	3 Multi-Core aware Technical Architecture Model
	4 Tool Integration Use Case
	5 Conclusion

