
Towards Hybrid Array Types in SAC ∗

Clemens Grelck, Fangyong Tang
Informatics Institute

University of Amsterdam
Science Park 904

1098XH Amsterdam, Netherlands
c.grelck@uva.nl
f.tang@uva.nl

Abstract: Array programming is characterised by a formal calculus of (regular, dense)
multidimensional arrays that defines the relationships between structural properties
like rank and shape as well as data set sizes. Operations in the array calculus often
impose certain constraints on the relationships of values or structural properties of ar-
gument arrays and guarantee certain relationships of values or structural properties of
argument and result arrays. However, in all existing array programming languages
these relationships are rather implicit and are neither used for static correctness guar-
antees nor for compiler optimisations.

We propose hybrid array types to make implicit relationships between array values,
both value-wise and structural, explicit. We exploit the dual nature of such relations,
being requirements as well as evidence at the same time, to insert them either way
into intermediate code. Aggressive partial evaluation, code optimisation and auxiliary
transformations are used to prove as many explicit constraints as possible at compile
time. In particular in the presence of separate compilation, however, it is unrealistic
to prove all constraints. To avoid the pitfall of dependent types, where it may be hard
to have any program accepted by the type system, we use hybrid types and compile
unverified constraints to dynamic checks.

1 Introduction

The calculus of multi-dimensional arrays[MJ91] is the common denominator of inter-
preted array programming languages like APL [Int93], J [Hui92], Nial [Jen89] as well
as the compiled functional array language SAC [GS06] (Single Assignment C). The cal-
culus defines the relationships between the rank of an array, a scalar natural number that
defines the number of axes or dimensions of an array, the shape of an array, a vector of
natural numbers whose length equals the rank of the array and whose elements define the
extent of the array alongside each axis, and last not least the actual data stored in a flat
vector, the ravel whose length equals the product of the elements of the shape vector.

Many, if not all, operations in the context of this array calculus impose certain constraints
∗ c© 2014 for the individual papers by the papers’ authors. Copying permitted for private and academic

purposes. This volume is published and copyrighted by its editors.

129

on argument arrays, both structural and value-wise, and guarantee certain relations be-
tween arguments and results or in the case of multiple results also between result val-
ues, again both structural and value-wise. For example, element-wise extensions of unary
scalar operators guarantee that the shape of the result array is the same as the shape of the
argument array. Element-wise extensions of binary scalar operators often require the two
argument arrays to have equal (or somewhat compatible) shapes and guarantee that the
shape of the result array again is the same as that of the argument arrays (or is computed in
a certain way from the argument arrays’ shapes). Rotation and shifting operations usually
preserve the shape of the argument array to be rotated or shifted. Structural operations like
take, drop or tile come with rules that determine the shape of the result array based on the
shape of one of the arguments (the array) as well as the value of another argument (the
take/drop/tile vector), etc, etc.

In interpreted array languages constraints on argument values are checked at runtime prior
to each application of one of the built-in array operations. Knowledge about the structural
relationships of argument and result values is not used beyond the actual construction of
the result array itself. Such relationships are explicit in the documentation of the built-
in language primitives and are implicitly derived from these when defining procedures,
but there is no opportunity to make such relationships explicit in the code other than as a
comment for documentation purposes.

SAC (Single Assignment C)[GS06] is a compiled array programming language that sup-
ports shape- and even rank-generic programming. Functions in SAC may accept argument
arrays of statically unknown size in a statically unknown number of dimensions. This
generic array programming style brings many software engineering benefits, from ease of
program development to ample code reuse opportunities.

SAC sets itself apart from interpreted array languages in a variety of aspects. One impor-
tant aspect is that all basic array operations as sketched out before are not built-in operators
with fixed, hard-wired semantics, but rather are defined functions, implemented by means
of a powerful and versatile array comprehension construct and provided as part of the
SAC standard library. This design has many advantages in terms of maintainability and
extendibility, but brings with it that the shapely relationships of argument and result val-
ues of these basic operations are just as implicit as they are in the case of any higher level
user-defined function.

Our approach consists of four steps:

1. We extend the array type system of SAC by means to express a fairly wide range
of relationships between structural properties of argument and result values. These
fall into two categories: constraints on the domain of functions and evidence on
properties between multiple result values (as supported by SAC) or between result
values and argument values.

2. We weave both categories of relationships, constraints and evidence, into the inter-
mediate SAC code such that they are exposed to code optimisation.

3. We apply aggressive partial evaluation, code optimisation and some tailor-made
transformations to statically prove as many constraints as possible.

130

4. At last, we compile all remaining constraints into dynamic checks and remove any
evidence from intermediate code without trace.

Whether or not all shape constraints in a program are met is generally undecidable at
compile time. Therefore, we name our approach hybrid array types following [FFT06]
and, like Flanagan, Freund and Tomb, compile unresolved constraints are into runtime
checks.

In many examples our approach is surprisingly effective due to the dual nature of our
hybrid types. Even if some relationship cannot be proven at compile time, it immediately
becomes evidence which often allows us to indeed prove subsequent constraints. Ideally,
we end up with some fundamental constraints on the arguments of the functions exposed
by some compilation unit and, based on the evidence provided by these constraints, are
able to prove all subsequent constraints within the compilation unit.

Our choice to employ compiler code transformations as a technique to resolve constraints
has a twofold motivation. Firstly, the SAC compiler is a highly optimising compiler that
implements a plethora of different code transformations, which we now reuse for a differ-
ent purpose. Secondly, we expect a high degree of cross-fertilisation between constraint
resolution and code optimisation for the future.

The remainder of the paper is structured as follows. We start with a brief introduction to
the array calculus and the type system of SAC in Section 2. In Section 3 we introduce
our hybrid types and discuss how they can be inserted into intermediate code in Section 5.
Static constraint resolution is demonstrated by means of some examples in Section 6. We
discuss some related work in Section 7 and draw conclusions in Section 8.

2 SAC — Single Assignment C

As the name suggests, SAC is a functional language with a C-like syntax. We interpret
sequences of assignment statements as cascading let-expressions while branches and loops
are nothing but syntactic sugar for conditional expressions and tail-end recursion, respec-
tively. Details can be found in [GS06, Gre12]. The main contribution of SAC, however, is
the array support, which we elaborate on in the remainder of this section.

2.1 Array calculus

SAC implements a formal calculus of multidimensional arrays. As illustrated in Fig. 1,
an array is represented by a natural number, named the rank, a vector of natural numbers,
named the shape vector, and a vector of whatever data type is stored in the array, named
the data vector. The rank of an array is another word for the number of dimensions or axes.
The elements of the shape vector determine the extent of the array along each of the array’s
dimensions. Hence, the rank of an array equals the length of that array’s shape vector, and
the product of the shape vector elements equals the length of the data vector and, thus,

131

j

k

i

10

7 8 9

1211

4 5

2 3

6

1

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

 1 2 3
4 5 6
7 8 9

 rank: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

[1, 2, 3, 4, 5, 6]
rank: 1
shape: [6]
data: [1,2,3,4,5,6]

42
rank: 0
shape: []
data: [42]

Figure 1: Calculus of multidimensional arrays

the number of elements of an array. The data vector contains the array’s elements in a flat
contiguous representation along ascending axes and indices. As shown in Fig. 1, the array
calculus nicely extends to “scalars” as rank-zero arrays.

2.2 Array types

The type system of SAC is polymorphic in the structure of arrays, as illustrated in Fig.
2. For each base type (int in the example), there is a hierarchy of array types with three
levels of varying static information on the shape: on the first level, named AKS, we have
complete compile time shape information. On the intermediate AKD level we still know
the rank of an array but not its concrete shape. Last not least, the AUD level supports
entirely generic arrays for which not even the number of axes is determined at compile
time. SAC supports overloading on this subtyping hierarchy, i.e. generic and concrete
definitions of the same function may exist side-by-side.

2.3 Array operations

SAC only provides a small set of built-in array operations, essentially to retrieve the rank
(dim(array)) or shape (shape(array)) of an array and to select elements or subarrays
(array[idxvec]). All aggregate array operations are specified using with-loop expressions,

132

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

AUD Class:

shape: static

shape: dynamic

AKD Class:

rank: static

shape: dynamic

AKS Class:

rank: static

*

Figure 2: Type hierarchy of SAC

a SAC-specific array comprehension:

with {
(lower bound <= idxvec < upper bound) : expr;

...
(lower bound <= idxvec < upper bound) : expr;

}: genarray(shape, default)

This with-loop defines an array of shape shape whose elements are by default set to the
value of the default expression. The body consists of multiple (disjoint) partitions.
Here, lower bound and upper bound denote expressions that must evaluate to integer vec-
tors of equal length. They define a rectangular (generally multidimensional) index set. The
identifier idxvec represents elements of this set, similar to induction variables in for-loops.
We call the specification of such an index set a generator and associate it with some poten-
tially complex SAC expression that is evaluated for each element of the generator-defined
index set.

Based on these with-loops and the support for rank- and shape-invariant programming
SAC comes with a comprehensive array library that provides similar functionality as built-
in operations in other array languages and beyond. For the SAC programmer these oper-
ations are hardly distinguishable from built-ins, but from the language implementor per-
spective the library approach offers better maintainability and extensibility.

3 Hybrid array types

We introduce a concrete syntax for hybrid array types as shown in Fig. 3. In the long run
we envision syntactic sugar to integrate many common hybrid array types directly into the
type syntax of SAC as described in the previous section, but as a starting point as well as
most general form we introduce hybrid array types in the form of assertions following the
C-style function prototype. These assertions make use of a restricted expression syntax as
defined in Fig. 3. The existing type inference mechanism is used to ensure that expressions

133

in assertions are of type bool.

Expressions in assertions may contain (integer) constants and variables bound in the (con-
ventional) prototype of the function. Here, we extend the existing SAC (as well as C)
syntax and allow names to be given to return values. This is needed to phrase relationships
between multiple result values or between arguments and result values.

We deliberately restrict the syntax of constraints as compared to general expressions in
SAC. Firstly, we syntactically distinguish between scalar and vector expressions and com-
pletely rule out higher dimensional arrays in constraint expression. As usual, one can
query for the rank and shape of arrays using the dim and shape functions, respectively.
Furthermore, the usual arithmetic and relational operators are supported both in scalar and
vector (1d-array) versions. In addition we make use of a few more functions, well known
from the SAC array library (as well as from other array languages):

• drop(n, vec) drops the first n elements from vec;

• take(n, vec) takes the first n elements from vec;

• vec1 ++ vec2 concatenates two vectors;

• tile(n, o, vec) yields an n-element section of vec starting at offset o.

The restriction of constraint expressions in one way or another is needed to avoid recursive
constraint definitions. Consequently, the above functions are technically distinguished
from the rank-generic definitions in the SAC standard library that bear the same names.

4 Examples

We illustrate the use of constraints (assertions) to define hybrid array types by means of
an example. The original definition of rank-generic element-wise addition (and likewise
many other element-wise extensions of scalar operators to arrays) looks as follows:

1 float[*] + (float[*] a, float[*] b)
2 {
3 shp = min(shape(a), shape(b));
4 res = with {
5 (0*shp <= iv < shp) : a[iv] + b[iv];
6 }: genarray(shp);
7 return res;
8 }

In the presence of a rank- and shape-generic specification, the existing SAC type system
has no means to guarantee shape equality or compatibility. To avoid out-of-bound array
indexing into either argument array we define the result array to have a shape that is the
minimum of the shapes of the two argument arrays, more precisely to have a rank equal

134

fundef ⇒ rets funid ([params]) [constraint]* body

rets ⇒ ret [, ret]*
| void

params ⇒ param [, param]*

ret ⇒ type [id]
param ⇒ type id

constraint ⇒ assert (exprs)

exprs ⇒ expr [, expr]*

expr ⇒ expr scalar relation expr scalar
| expr vector relation expr vector

expr scalar ⇒ expr scalar op scalar expr scalar
| num
| id
| dim (id)
| expr vector [expr scalar]

expr vector ⇒ expr vector op vector expr vector
| vector
| id
| shape (id)
| take (expr scalar, expr vector)
| drop (expr scalar, expr vector)
| tile (expr scalar, expr scalar, expr vector)

vector ⇒ [expr scalar [, expr scalar]*]
relation ⇒ ==

| !=
| >=
| <=
| >
| <

op scalar ⇒ + | - | *
op vector ⇒ + | - | * | ++

Figure 3: Syntax of user-defined constraints of SAC

to the lesser rank of the argument arrays and for each axis within this rank the minimum
number of elements of either argument array. This is save, but has a few drawbacks.

In many cases adding two arrays of different shape must rather be considered a program-
ming error. The above definition disguises this programming error until it hits back at a
different location. Also from a compilation point of view the above solution is subopti-
mal. If we knew at compile time that both argument arrays were of the same shape and thus
likewise the produced result, we could immediately reuse either argument array’s storage
space (if no longer needed outside the current context) to store the result array and thus
significantly reduce the memory footprint of the operation [GT04]. With the new hybrid
array types we have the opportunity to exactly express this:

135

1 float[*] c + (float[*] a, float[*] b)
2 assert(shape(a) == shape(b))
3 assert(shape(c) == shape(a))
4 {
5 shp = shape(a);
6 res = with {
7 (0*shp <= iv < shp) : a[iv] + b[iv];
8 }: genarray(shp);
9 return res;

10 }

Note that the name of the return value in the function prototype can well be different from
the name of the variable in the return-statement in the function body.

Note further that we use the same key word assert to define different kinds of type
restrictions. Assertions that exclusively refer to argument identifiers define constraints on
the function’s domain. They are similar to preconditions. In contrast, any assertion that
includes to identifiers denoting result values defines additional static knowledge on result
values. They resemble postconditions.

5 Turning type assertions into guards and evidence

In order to use existing optimisation capabilities for the static resolution of hybrid array
types we must represent the assertions within the intermediate SAC code in the right way.
We illustrate this by means of an example:

1 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
2 assert(shape(a) == shape(b))
3 assert(shape(c) == shape(d))
4 assert(shape(c) == shape(a))
5 {
6 return (a+b, a-b);
7 }

The function plusminus yields the element-wise sum and the element-wise difference
of two arbitrarily shaped arguments; its definition makes use of the element-wise sum
function introduced in the previous section and a similarly defined difference function. The
shapes of all four arrays involved must be equal as is expressed by three assertions. The
first assertion exclusively refers to arguments. Thus, it defines a precondition or domain
restriction. The other two assertions involve either exclusively or partially result values
and hence define postconditions.

Our goal is to represent the various constraints in such a way that their dual nature as
guards as well as knowledge is properly exposed. If successful, we expect to statically
prove the preconditions of the sum and difference functions based on the precondition

136

of the plusminus function. Moreover, we expect to statically prove the postconditions of
the plusminus function based on the postconditions of the sum and difference functions
and last not least to prove their postconditions based on their definitions and the shapely
properties of the with-loops involved.

We use 3 internal primitives to represent constraints in the intermediate SSA-based repre-
sentation of SAC code: guard, evidence and collect as illustrated by means of the
plusminus function:

1 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
2 {
3 g1 = evidence(shape(a) == shape(b));
4 t1 = a+b;
5 t2 = a-b;
6 g2 = guard(shape(t1) == shape(t2);
7 g3 = guard(shape(t1) == shape(a);
8 t3, t4 = collect(t1, t2, g1, g2, g3);
9 return (t3, t4);

10 }

The guard primitive, if not resolved statically, represents a classical assertion: it checks
the condition and terminates program execution if the predicate is not met. As the flip
side of the coin, a guard also ensures that condition holds; this additional knowledge can
be exploited by the compiler. The evidence primitive merely represents the second
aspect: representation of knowledge. Last not least, in a functional, purely dataflow-
oriented context (despite the C-like syntax used), we must weave all occurrences of either
primitive into the dataflow. In order to do so without imposing barriers for conventional
optimisation we add the collect primitive that always presides the return-statement and
collects the various results of constraints and evidence primitives in order to make the
needed in the function’s data flow.

For the sum function the corresponding transformation yields the following intermediate
representation:

1 float[*] c + (float[*] a, float[*] b)
2 {
3 g1 = evidence(shape(a) == shape(b));
4 shp = shape(a);
5 res = with {
6 (0*shp <= iv < shp) : a[iv] + b[iv];
7 }: genarray(shp);
8 g2 = guard(shape(res) == shape(a));
9 res2 = collect(res, g1, g2);

10 return res2;
11 }

Why do we represent the precondition of the plusminus function with evidence and
not with guard? Assuming plusminus is an exported symbol of some compilation

137

unit, where would the necessary dynamic check come from?

This is exactly why we lift the whole issue on the type level rather than adding explicit as-
sertions to the language. There is no way to prove a precondition in the function body. As
a consequence any precondition inflicts a guard in the calling context. If we still evaluate
the function definition we know for sure that the predicate holds, hence the evidence in
the function body.

For postconditions it works exactly the other way around. We add guard into the function
definition because only in the definition do we stand a chance to prove the predicate.
If we return to the calling context, we thus know that the predicate holds: it becomes
evidence in the calling context. We demonstrate this pair-wise occurrence of guard
and evidence by completing our example:

1 float[*] c + (float[*] a, float[*] b)
2 {
3 g1 = evidence(shape(a) == shape(b));
4 shp = shape(a);
5 res = with {
6 (0*shp <= iv < shp) : a[iv] + b[iv];
7 }: genarray(shp, 0);
8 g2 = evidence(shape(res) == shp ++ shape(0));
9 g3 = guard(shape(res) == shape(a));

10 res2 = collect(res, g1, g2,g3);
11 return res2;
12 }
13
14 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
15 {
16 g1 = evidence(shape(a) == shape(b));
17 g2 = guard(shape(a) == shape(b));
18 t1 = a+b;
19 g3 = evidence(shape(t1) == shape(a));
20 g4 = guard(shape(a) == shape(b));
21 t2 = a-b;
22 g5 = evidence(shape(t2) == shape(a));
23 g6 = guard(shape(t1) == shape(t2);
24 g7 = guard(shape(t1) == shape(a);
25 t3, t4 = collect(t1, t2, g1, g2, g3, g4, g5, g6,g7);
26 return (t3, t4);
27 }

In the definition of the element-wise sum function we also add the evidence that arises
from the semantics of the with-loop (line 8): The result shape is the concatenation of
the with-loop’s shape vector (first expression position after the genarray key word)
and the so-called element shape as determined by the with-loop’s default element (second
expression position after the genarray key word).

138

We omit the definition of the element-wise difference function as it is completely analo-
gous to the element-wise sum function.

6 Resolving hybrid types

Our goal is to prove as many shape constraints at compile time as possible. For this we
reuse the aggressive optimisation capabilities of the SAC compiler now that we have prop-
erly represented type constraints within the intermediate SAC code. In a first step we apply
common subexpression elimination to a number of identical predicates. Furthermore, we
simplify evidence g2 in the definition of the sum function: the shape of a scalar constant
is the empty vector, which is the neutral element of vector concatenation. This first round
of optimisation yields the following code representation:

1 float[*] c + (float[*] a, float[*] b)
2 {
3 p1 = shape(a) == shape(b);
4 g1 = evidence(p1);
5 shp = shape(a);
6 res = with { (0*shp <= iv < shp) : a[iv] + b[iv];
7 }: genarray(shp, 0);
8 p2 = shape(res) == shp;
9 g2 = evidence(p2);

10 p3 = shape(res) == shape(a);
11 g3 = guard(p3);
12 res2 = collect(res, g1, g2,g3);
13 return res2;
14 }
15
16 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
17 {
18 p1 = shape(a) == shape(b);
19 g1 = evidence(p1);
20 g2 = guard(p1);
21 t1 = a+b;
22 p2 = shape(t1) == shape(a);
23 g3 = evidence(p2);
24 g4 = guard(p1);
25 t2 = a-b;
26 p3 = shape(t2) == shape(a);
27 g5 = evidence(p3);
28 p4 = shape(t1) == shape(t2);
29 g6 = guard(p4);
30 g7 = guard(p2);
31 t3, t4 = collect(t1, t2, g1, g2, g3, g4, g5, g6,g7);
32 return (t3, t4);
33 }

139

A number of predicates in plusminus appear both in guard and evidence positions. The
evidence ensures us that the predicate holds, hence the corresponding guards can be re-
moved. The same holds for guard g3 in the sum function after one more round of variable
propagation and common subexpression elimination. The result looks as follows:

1 float[*] c + (float[*] a, float[*] b)
2 {
3 p1 = shape(a) == shape(b);
4 g1 = evidence(p1);
5 res = with { (0*shape(a) <= iv < shape(a)) : a[iv] + b[iv];
6 }: genarray(shape(a), 0);
7 p2 = shape(res) == shape(a);
8 g2 = evidence(p2);
9 res2 = collect(res, g1, g2);

10 return res2;
11 }
12
13 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
14 {
15 p1 = shape(a) == shape(b);
16 g1 = evidence(p1);
17 t1 = a+b;
18 p2 = shape(t1) == shape(a);
19 g3 = evidence(p2);
20 t2 = a-b;
21 p3 = shape(t2) == shape(a);
22 g5 = evidence(p3);
23 p4 = shape(t1) == shape(t2);
24 g6 = guard(p4);
25 t3, t4 = collect(t1, t2, g1, g3, g5, g6);
26 return (t3, t4);
27 }

With all guards resolved in the definition of sum (and analogously difference) we can now
focus on plusminus. One more round of common subexpression elimination yields:

1 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
2 {
3 as = shape(a);
4 bs = shape(b);
5 p1 = as == bs;
6 g1 = evidence(p1);
7 t1 = a+b;
8 t1s = shape(t1);
9 p2 = t1s == as;

10 g3 = evidence(p2);
11 t2 = a-b;
12 t2s = shape(t2);
13 p3 = t2s == as;

140

14 g5 = evidence(p3);
15 p4 = t1s == t2s;
16 g6 = guard(p4);
17 t3, t4 = collect(t1, t2, g1, g3, g5, g6);
18 return (t3, t4);
19 }

Next, we exploit equality evidence (g1, g3, g5). If two values are equal, we can replace
all occurrences of one by the other, making the left operand the representative of the cor-
responding equivalence class. This yields:

1 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
2 {
3 as = shape(a);
4 bs = shape(b);
5 p1 = as == bs;
6 g1 = evidence(p1);
7 t1 = a+b;
8 t1s = shape(t1);
9 p2 = t1s == as;

10 g3 = evidence(p2);
11 t2 = a-b;
12 t2s = shape(t2);
13 p3 = t2s == t1s;
14 g5 = evidence(p3);
15 p4 = t2s == t2s;
16 g6 = guard(p4);
17 t3, t4 = collect(t1, t2, g1, g3, g5, g6);
18 return (t3, t4);
19 }

The last remaining guard (g6) is resolved through reflexivity of the equivalence relation
equality, a standard compiler optimisation. As a final step we remove all occurrences
of evidence and run a final round of dead code removal and variable propagation, which
results in

1 float[*] c, float[*] d plusminus (float[*] a, float[*] b)
2 {
3 t1 = a+b;
4 t2 = a-b;
5 return (t1, t2);
6 }

In essence, we managed to resolve all type constraints within the definition of plusminus
including all constraints in the locally defined functions sum and difference. Assuming
plusminus is exported from the compilation unit under consideration, its hybrid type en-
sures that applications of plusminus are protected by a guard ensuring that both argument

141

arrays are of the same shape. Within the calling context this guard is subject to similar
compiler transformations as just shown and potentially this guard may also be removed.

7 Related work

The term hybrid type was coined in the area of object-oriented programming [FFT06].
Similar to that approach we aim at statically resolving as many type constraints as possible,
but we accept that it is generally undecidable to resolve all such constraints at compile time
and thus we leave the remaining ones to dynamic checks rather than rejecting the program
as ill-typed. Our work differs form the above referenced by the deliberate restriction to
shapely relationships within the calculus of multidimensional arrays, which we expect to
give us much better chances for static resolution than would be found in the general case.

In practice, our approach is not entirely dissimilar to preconditions and postconditions as
(arguably) first proposed in the The Vienna Development Method (VDM) [BJ78]. VDM
is/was first and foremost a specification method and not meant to statically resolve con-
straints as we expect nor is/was it in any way related to arrays and their specific relation-
ships.

Another related approach is design by contract proposed by Bertrand Meyer [Mey91,
Mey92], which is widely used both in object-oriented programming languages [BFMW01,
Plo97] and functional programming languages [Xu06, FF02, BM06]. But none of them
has concrete shape restrictions on arrays as described in this paper.

Interpreted array programming languages like APL [Ive62] and J [Ive95] are dynamically
typed. When the interpreter encounters an array operation, it first checks whether the ar-
guments properly match in rank and shape regarding the specific semantic requirements
of the operation. If so, the interpreter performs the corresponding computation; if not, it
aborts program execution with an error message. The drawback of any interpretive ap-
proach is twofold: any programming error can only materialise at runtime, and repeatedly
checking argument properties can have a considerable runtime impact [Ber98]. Our pro-
posed compiler technology counters both aspects by giving programmers compile time
information, e.g. including hints where and why dynamic checks do remain in the code,
and by only leaving those dynamic checks in the code that cannot be resolved at compile
time.

Our work indeed is very related to Qube [Tro11, TG09], a programming language that
combines the expressiveness of array programming similar to SAC with the power of
fully-fledged dependent array types. The difference to our current work is that the Qube
compiler rejects any program for which it cannot prove type-correctness. In practice, this
means that, just as with other dependently typed programming languages, writing a type-
correct program can be challenging. In contrast, with our proposed hybrid type approach
we will in practice accept a much wider variety of programs.

Further related work in the context of SAC focusses on checking domain constraints of
SAC’s built-in functions [HSB+08]. In contrast, in our current work we target general
user-defined functions and, thus, more general constraints. To resolve these constraints,

142

among others, we adopt symbiotic expressions [BHS11], which is a method for algebraic
simplification within a compiler.

8 Conclusion

We propose hybrid array types as a refinement of standard SAC array types by user-defined
constraints that allow us to more accurately specify the shapely relationships between pa-
rameters and return values of functions. Shapely constraints involving multiple parameters
can be used to restrict the domain of functions while constraints between multiple return
values or constraints between parameters and return values provide the compiler with ad-
ditional information on the code, which can be exploited for general code optimization
just as for the static resolution of constraints.

We aim at resolving as many constraints as possible at compile time and only to leave
the remaining ones optionally as runtime checks. Here, we exploit the dual nature of
such runtime checks: runtime checks in the first place, but likewise static evidence of
the checked property in the remaining code. As we demonstrated by means of a small
case study, it is typical that a few constraints remain as dynamic assertions in the code
due to lack of information on argument values and separate compilation, but with their
evidence many (often all) subsequent constraints within a compilation unit can statically
be resolved.

This resolution is mainly based on aggressive partial evaluation and code optimization,
characteristic for the SAC compiler. Nonetheless, we identified a number of additional
code transformations that one by one may be considered trivial, but which in conjunction
make the more sophisticated optimizations, namely common subexpression elimination,
considerably more effective, both in general optimization as well as in constraint resolu-
tion. Following the credo as much static resolution as possible, as many dynamic checks
as necessary our approach may, however, prove simpler for programmers as the inability
to statically solve all constraints does not let the compiler reject a program as illegal.

We are currently busy implementing hybrid types with shape constraints in the SAC com-
piler and look forward to gather more experience with the approach across a wide range
of applications. Issues of interest are among others questions about the practicability of
the approach, both with respect to user acceptance as well as compilation times and size
of intermediate code due to the addition of constraint representations.

References

[Ber98] R. Bernecky. Reducing computational complexity with array predicates. In ACM
SIGAPL APL Quote Quad, pages 39–43. ACM, 1998.

[BFMW01] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass–Java with assertions.
Electronic Notes in Theoretical Computer Science, 55(2):103–117, 2001.

143

[BHS11] R. Bernecky, S. Herhut, and S.B. Scholz. Symbiotic expressions. Implementation and
Application of Functional Languages, pages 107–124, 2011.

[BJ78] Dines Bjørner and Cliff B. Jones. The Vienna Development Method: The Meta-
Language. In The Vienna Development Method: The Meta-Language, volume 61 of
Lecture Notes in Computer Science. Springer, 1978.

[BM06] M. Blume and D. McAllester. Sound and complete models of contracts. Journal of
Functional Programming, 16(4-5):375–414, 2006.

[FF02] R.B. Findler and M. Felleisen. Contracts for higher-order functions. ACM SIGPLAN
Notices, 37(9):48–59, 2002.

[FFT06] Cormac Flanagan, Stephen N Freund, and Aaron Tomb. Hybrid types, invariants, and
refinements for imperative objects. FOOL/WOOD, 6, 2006.

[Gre12] C. Grelck. Single Assignment C (SAC): High Productivity meets High Performance.
In V. Zsok Z. Horvath, editor, 4th Central European Functional Programming Summer
School (CEFP’11), Budapest, Hungary, volume 7241 of Lecture Notes in Computer
Science. Springer, 2012. to appear.

[GS06] Clemens Grelck and Sven-Bodo Scholz. SAC: A Functional Array Language for
Efficient Multithreaded Execution. International Journal of Parallel Programming,
34(4):383–427, 2006.

[GT04] Clemens Grelck and Kai Trojahner. Implicit Memory Management for SaC. In
Clemens Grelck and Frank Huch, editors, Implementation and Application of Func-
tional Languages, 16th International Workshop, IFL’04, pages 335–348. University of
Kiel, Institute of Computer Science and Applied Mathematics, 2004. Technical Report
0408.

[HSB+08] Stephan Herhut, Sven-Bodo Scholz, Robert Bernecky, Clemens Grelck, and Kai Tro-
jahner. From Contracts Towards Dependent Types: Proofs by Partial Evaluation. In
Olaf Chitil, Zoltan Horváth, and Viktória Zsók, editors, 19th International Symposium
on Implementation and Application of Functional Languages (IFL’07), Freiburg, Ger-
many, Revised Selected Papers, volume 5083 of Lecture Notes in Computer Science,
pages 254–273. Springer, 2008.

[Hui92] R.K.W Hui. An Implementation of J. Iverson Software Inc., Toronto, Canada, 1992.

[Int93] International Standards Organization. Programming Language APL, Extended. ISO
N93.03, ISO, 1993.

[Ive62] K.E. Iverson. A programming language. In Proceedings of the May 1-3, 1962, spring
joint computer conference, pages 345–351. ACM, 1962.

[Ive95] K.E. Iverson. J Introduction and Dictionary. New York, NY, USA, 1995.

[Jen89] M.A. Jenkins. Q’Nial: A Portable Interpreter for the Nested Interactive Array Lan-
guage Nial. Software Practice and Experience, 19(2):111–126, 1989.

[Mey91] B. Meyer. EIFFEL: The language and environment. Prentice Hall Press, 300, 1991.

[Mey92] B. Meyer. Applying design by contract. Computer, 25(10):40–51, 1992.

[MJ91] L.M. Restifo Mullin and M. Jenkins. A Comparison of Array Theory and a Mathemat-
ics of Arrays. In Arrays, Functional Languages and Parallel Systems, pages 237–269.
Kluwer Academic Publishers, 1991.

144

[Plo97] R. Plosch. Design by contract for Python. In Software Engineering Conference, 1997.
Asia Pacific... and International Computer Science Conference 1997. APSEC’97 and
ICSC’97. Proceedings, pages 213–219. IEEE, 1997.

[TG09] K. Trojahner and C. Grelck. Dependently typed array programs don’t go wrong. Jour-
nal of Logic and Algebraic Programming, 78(7):643–664, 2009.

[Tro11] K. Trojahner. QUBE–Array Programming with Dependent Types. PhD thesis, Univer-
sity of Lübeck, Lübeck, Germany, 2011.

[Xu06] Dana N. Xu. Extended static checking for Haskell. In Proceedings of the 2006 ACM
SIGPLAN workshop on Haskell, Haskell ’06, pages 48–59, New York, NY, USA, 2006.
ACM.

145

