
Functional Interfaces vs. Function Types
in Java with Lambdas∗

– Extended Abstract –

Martin Plümicke
Baden-Wuerttemberg Cooperative State University Stuttgart

Department of Computer Science
Florianstraße 15, D–72160 Horb

pl@dhbw.de

1 Introduction

In several steps the Java type system is extended by features, which we know from func-
tional programming languages. In Java 5.0 [GJSB05] generic types as well as a limited
form of existential types (bounded wildcards) are introduced. In Java 8 the language will
be expanded by lambda expressions, functional interfaces as target types, method and
constructor references and default methods. In an earlier approach real function types
were introduced as types of lambdas. The function types have been replaced by functional
interfaces (interfaces with one method).

Brian Goetz [Goe13] gave some reasons for this decision, why no function types have been
introduced: the mix of structural and nominal types, the divergence of library styles – some
libraries would continue to use callback interfaces, while others would use structural func-
tion types, the syntax could be unwieldy, there would not be a runtime representation for
each distinct function type, caused by type erasure, e.g, it would not be possible (perhaps
surprisingly) to overload methods m(T->U) and m(X->Y).

This decision allows, however, to use lambda expressions as an abbreviation for anony-
mous inner classes. In this paper we will show some disadvantages and propose an idea to
allow both function types and functional interfaces.

2 Functional interfaces vs. function types

First we will present the idea of functional interfaces as target types of lambda expressions.
A lambda expression in Java 8 has no explicit type. The type is inferred by the compiler
∗ c©2014 for the individual papers by the papers’ authors. Copying permitted for private and academic pur-

poses.

146

from the context in which the expression appears. This means that one lambda expression
can have different types in different contexts.

Callable<String> c = () -> "done";
PrivilegedAction<String> a = () -> "done";

There is a canonical target type of a lambda expression (T1 a1, ..., TN aN)->lbody

interface FunN<R,T1 , ..., TN> {R apply(T1 arg1 , ..., TN argN);}

where the type variables T1 , . . . , TN are instanced, respectively.

Using functional interfaces as function types there are two disadvantages wrt. subtyping
and direct evaluation of lambda expressions:

Subtyping: While for real function types there is a subtyping relation

T ′1 × . . .× T ′N → T0 ≤∗ T1 × . . .× TN → T ′0, Ti≤∗ T ′i .

for functional interfaces this holds only by introducing wildcards

FunN<T0, T
′
1, . . . , T

′
N> ≤∗ FunN<?extendsT ′0,?superT1, . . . ,?superTN>, Ti≤∗ T ′i .

Evaluation of lambda expressions: In the λ-calculus a lambda expression can be applied
directly to its arguments like: ((x1, , . . . , xN)→ h(x1, , . . . , xN))(a1. . . . , aN).

In Java 8 this is only possible by applying the method of the functional interface and
introducing a type-cast

((FunN<T0, T1, . . . , TN>)(x1,..., xN)->h(x1,..., xN)).apply(a1....,aN);

For curried functions this becomes very unbeautiful:

((Fun1<Fun1<Fun1<. . .Fun1<T0, TN>, . . .>, T2>, T1>)
((x1)->(x2)->...->(xN)->h(x1,...,XN))).apply(a1).....apply(aN));

3 Solution

We propose to extend Java 8 by real function types, such that lambda expressions have
explicite types. Additionally we maintain the target typing of lambda expressions, which
means that a function type is then converted automatically to a functional interface. Then
Java would have the properties: lambda expressions as abbreviations for anonymous inner
classes, subtyping as expected for function types and the possibility to apply a lambda
expression to its arguments, directly.

References

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Specifi-
cation. The Java series. Addison-Wesley, 3rd edition, 2005.

[Goe13] Brian Goetz. State of the Lambda, September 2013.

147

