Programming and Reasoning with Infinite Structures
Using Copatterns and Sized Types *

Andreas Abel
Department of Computer Science and Engineering
Chalmers and Gothenburg University
Gothenburg, Sweden
andreas.abel@gu.se

Inductive data such as lists and trees is modeled category-theoretically as algebra where
construction is the primary concept and elimination is obtained by initiality. In a more
practical setting, functions are programmed by pattern matching on inductive data. Du-
ally, coinductive structures such as streams and processes are modeled as coalgebras
where destruction (or transition) is primary and construction rests on finality [Hag87].
Due to the coincidence of least and greatest fixed-point types [SP82] in lazy languages
such as Haskell, the distinction between inductive and coinductive types is blurred in par-
tial functional programming. As a consequence, coinductive structures are treated just as
infinitely deep (or, non-well-founded) trees, and pattern matching on coinductive data is
the dominant programming style. In total functional programming, which is underlying
the dependently-typed proof assistants Coq [INR12] and Agda [Nor07], the distinction
between induction and coinduction is vital for the soundness, and pattern matching on
coinductive data leads to the loss of subject reduction [Gim96]. Further, in terms of ex-
pressive power, the productivity checker for definitions by coinduction lacks behind the
termination checker for inductively defined functions.

It is thus worth considering the alternative picture that a coalgebraic approach to coinduc-
tive structures might offer for total and, especially, for dependently-typed programming.
The coalgebraic approach as pioneered by Hagino has been followed in the design of the
language Charity [CF92] and advocated by Setzer for use in Type Theory [Set12]. Now,
if “algebraic programming” amounts to defining functions by pattern matching, what is
“coalgebraic programming”? Or, asked otherwise, what is the proper dualization of pat-
tern matching, what is copattern matching?

While patterns match the introduction forms of finite data, copatterns match on elimination
contexts for infinite objects, which are applications (eliminating functions) and destruc-
tors/projections (eliminating coalgebraic types = Hagino’s codatatypes = Cockett’s final
datatypes). An infinite object such as a function or a stream can be defined by its behav-
ior in all possible contexts. Thus, if we consider a set of copatterns covering all possible
elimination contexts, plus the object’s response for each of the copatterns, that object is
defined uniquely. More concretely, a stream is determined by its head and its tail, thus,

*Copyright © 2014 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

148

we can introduce a new stream object by giving two equations; one that specifies the value
it produces if its head is demanded, and one for the case that the tail is demanded. An-
other covering set of copatterns consists of head, head of tail, and tail of tail. For instance,
the stream of Fibonacci numbers can be given by the three equations, using a function
zipWith f s ¢t which pointwise applies the binary function f to the elements of streams s
and ¢.

zipWith f st .head = f (s.head) (¢.head)

zipWith f st .tail = zipWith f (s .tail) (¢ .tail)
fib .head =0
fib .tail .head =1
fib .tail .tail = zipWith (+) fib (fib .tail)

Taking the above equations as left-to-right rewrite rules, we obtain a strongly normalizing
system. This is in contrast to the conventional definition of fib in terms of the stream
constructor h :: ¢ by

fib =0 :: 1 :: zipWith (+) fib (fib .tail)

which, even if unfolded under destructors only, admits an infinite reduction sequence start-
ing with fib.tail — 1 :: zipWith (+) fib (fib.tail) — 1 = zipWith (4) fib (1 =
zipWith (+) fib (fib .tail)) — ... The crucial difference is that fib .tail does not reduce if
we choose the definition by copatterns above, since the elimination .tail is not matched by
any of the copatterns; only in contexts .head or .tail .head or .tail .tail it is that fib springs
into action.

Using definitions by copattern matching, we reduce productivity to termination and pro-
ductivity checking to termination checking. As termination of a function is usually proven
by a measure on the size of the function arguments, we prove productivity by well-founded
induction on the size of the elimination context. For instance, fib is productive because the
recursive calls occur in smaller contexts: at least one tail-destructor is “consumed” and,
equally important, zipWith does not add any more destructors. The number of elimina-
tions (as well as the size of arguments) can be tracked by sized types [HPS96], reducing
productivity (and termination) checking to type checking. For a polymorphic lambda-
calculus with inductive and coinductive types and patterns and copatterns, this has been
spelled out in joint work with Brigitte Pientka [AP13]. An introductory study of copatterns
and covering sets thereof can be found in previous work [APTS13].

This abstract has appeared under the title Productive Infinite Objects via Copatterns in the informal
proceedings of NWPT 2013 (Nordic Workshop of Programming Theory, Tallinn, Estonia, November
2013).

References

[AP13] Andreas Abel and Brigitte Pientka. Wellfounded Recursion with Copatterns: A Unified
Approach to Termination and Productivity. In International Conference on Functional

149

[APTS13]

[CF92]

[Gim96]

[Hag87]

[HPS96]

[INR12]
[Nor07]

[Setl2]

[SP82]

Programming (ICFP 2013). ACM Press, 2013.

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Pro-
gramming Infinite Structures by Observations. In The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’13, Rome, Italy,
January 23 - 25, 2013, pages 27-38. ACM Press, 2013.

Robin Cockett and Tom Fukushima. About Charity. Technical report, Department
of Computer Science, The University of Calgary, 1992. Yellow Series Report No.
92/480/18.

Eduardo Giménez. Un Calcul de Constructions Infinies et son application a la
vérification de systemes communicants. PhD thesis, Ecole Normale Supérieure de Lyon,
1996. These d’université.

Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of
Edinburgh, 1987.

John Hughes, Lars Pareto, and Amr Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 410-423,
1996.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition, 2012.

Ulf Norell. Towards a Practical Programming Language Based on Dependent Type The-
ory. PhD thesis, Department of Computer Science and Engineering, Chalmers University
of Technology, Géteborg, Sweden, 2007.

Anton Setzer. Coalgebras as Types Determined by Their Elimination Rules. In Episte-
mology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in
Honour of Per Martin-Lof, volume 27 of Logic, Epistemology, and the Unity of Science,
pages 351-369. Springer-Verlag, 2012.

Michael B. Smyth and Gordon D. Plotkin. The Category-Theoretic Solution of Recursive
Domain Equations. SIAM Journal on Computing, 11(4):761-783, 1982.

150

