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Abstract: Software transactional memory treats operations on the shared memory in
concurrent programs like data base transactions. STM Haskell integrates this approach
in Haskell and provides combinators to build software transactions in a composable
way. In previous work we introduced the process calculus CSHF as a formal model for
a concurrent implementation of software transactional memory in Concurrent Haskell.
The correctness of CSHF with respect to a specification semantics was shown by using
techniques from programming languages semantics. In this paper we first describe the
CSHF semantics informally to illustrate the ideas of our approach. Secondly, we report
on the implementation of the CSHF semantics as a library for software transactional
memory in Haskell. In difference to the implementation available in the Glasgow
Haskell Compiler our approach performs conflict detection as early as a possible, does
not use pointer equality to test for conflicts and it is written in Haskell and thus not
part of the runtime system. Besides explaining the features of CSHF and comparing
them to the approach taken in the Glasgow Haskell Compiler, we explain in detail our
design choices of the implementation.

1 Introduction

Writing efficient and correct concurrent and/or parallel programs is a challenge of com-
puter science since several decades, and due to modern hardware architectures and modern
distributed software this task is getting more and more important. Concurrent program-
ming is much more difficult than sequential programming, since shared resources must be
protected against parallel access which may corrupt the state of the resources or lead to
race conditions.

Traditional approaches to implement concurrent programs are locks, semaphores, moni-
tors, etc. All these approaches have in common that they are lock-based, i.e. critical sec-
tions are protected by locks to prevent that more than one thread enters the critical section
at the same time. However, lock-based programming is error-prone: setting or releasing
the wrong locks may lead to deadlocks and race conditions, setting too many locks makes
program execution inefficient (since sequential execution is unnecessarily enforced), set-
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ting too few locks may lead to inconsistent states. Debugging concurrent programs is also
much more difficult than debugging sequential programs, since thread execution is non-
deterministic (depending on the scheduler) and even printing a debug message may change
the scheduling of threads.

A recent approach to lock-free concurrent programming is transactional memory [ST95,
ST97, HMPH05, HMPH08] which occurs as software transactional memory (STM) if im-
plemented as a library of the programming language and as hardware transactional mem-
ory if implemented in hardware. We concentrate on STM. In this approach the shared
memory is treated like a data base, and memory accesses are programmed as transactions.
The implementation (i.e. the transaction manager) guarantees that transaction execution is
performed atomically and isolated, i.e. transactions are either executed as a whole or noth-
ing of the transaction is executed (atomicity), and concurrent execution of transactions is
invisible, i.e. the effects on the memory of all transactions are identical to the effects of a
sequential evaluation of all transactions (isolation).

There are some differences between data base transactions and software transactions: data
base transactions must ensure durability on permanent storage while this is not the case
for software transactions. Software transactions are not a closed system like data bases,
i.e. surrounding program code can interfere with transactions and try to observe or break
internals of transaction execution. A further difference is that for software transactions
there is no guarantee that their execution terminates. However, the transaction manager
should ensure at least global progress also if nonterminating and terminating transactions
are running.

Using STM for programming is convenient and easy, since no locks need to be set and
the transaction manager is responsible for correct execution. However, implementing the
STM library and the transaction manager is difficult and usually requires lock-based pro-
gramming.

In the functional programming language Haskell an STM-library (so-called STM Haskell)
was proposed in [HMPH05]. It is implemented as part of the Glasgow Haskell Compiler
(GHC) and used by a lot of programmers. STM Haskell combines the features of Haskell’s
strong type system and the ideas of STM to ensure that transactional code can only in-
terfere with other code on clearly defined interfaces: the type system forbids to execute
arbitrary side-effecting code inside software transactions, i.e. only reading and writing the
transactional memory is allowed. This ensures that transactions are reversible and thus can
be rolled back and restarted. The implementation of STM Haskell in the GHC is deeply
embedded in the runtime system and it is written in C, which makes it highly efficient.
However, as a disadvantage the code is not portable to other implementations of Haskell.

An important question is whether an STM-library is implemented correctly or not. More-
over, there is also no common notion of what correctness of such an implementation
means. Several correctness properties, mostly based on the trace of the memory accesses,
were proposed (see e.g. [GK08]). However, these notions do not capture the whole pro-
gram behavior.

In [SSS13] we showed correctness of an STM Haskell-implementation, using techniques
and notions of programming languages semantics: we modeled the specification and the
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implementation of STM Haskell as process calculi SHF and CSHF and showed correctness
of the translation ψ : SHF→ CSHF w.r.t. a contextual program equivalence.

However, our implementation calculus is different from GHC’s implementation in C, since
GHC’s implementation is not suitable for being modeled by a process calculus: an obstacle
is that the implementation compares the content of the transactional memory w.r.t. pointer
equality and another one are temporary checks which are performed by the scheduler. For
these reasons we proposed another implementation of STM Haskell which uses registra-
tions on transactional memory and sending notifications to conflicting transactions. We
also implemented a prototype of our proposal (called SHFSTM) in Concurrent Haskell
[PGF96] (using synchronizing variables (so-called MVars) for locking). In the meantime
we improved the prototypical implementation and made it more efficient.

The goal of this paper is twofold: on the one hand we present our results from [SSS13] in
an informal manner by describing the ideas behind the process calculi and the correctness
result, but omitting the formal definitions and details. On the other hand, we report on
our Haskell implementation and show several problems which had to be solved for the
implementation.

Related Work. Besides the mentioned implementation of STM in the GHC, there are
some other approaches of implementing an STM library for Haskell. An implementation
of the approach in [HMPH05], but in Haskell not in C was done by Huch and Kupke
in [HK06] which is not as fast as the implementation in the GHC, but portable to other
Haskell compilers and interpreters. However, the STM library of [HK06] does not per-
form temporary validity-checks of the transaction log against the global content of the
transactional memory which may lead to semantically incorrect results, if non-terminating
transactions are involved (see Sect. 3.4 for more details).

Another implementation of STM Haskell was done by Du Bois in [Boi11] where the TL2
locking algorithm [DSS06] was implemented in Haskell. This algorithm uses a global
clock for creating time stamps on the transactional memory. Comparing the time stamps
decides validity of read- and write-accesses. Also this implementation does not handle
nonterminating transactions correctly.

A further approach of implementing the TL2 locking algorithm as a library for STM
Haskell is Twilight STM [BMT10], which extends STM by executing arbitrary side-
effecting code after the commit phase of a transaction. However, this library changes
the behavior of STM Haskell and uses different type signatures, which makes it hard to
compare to the other approaches.

Outline. In Sect. 2 we give an overview of STM Haskell and we explain some details of
its implementation in the GHC. In Sect. 3 we summarize the results of our investigation
in [SSS13] for showing correctness of an alternative STM Haskell implementation, and
discuss advantages and disadvantages of our approach compared to the approach taken in
the GHC. In Sect. 4 we describe the implementation of our STM Haskell library SHFSTM
which is based on the CSHF-semantics. We show and discuss some parts of the Haskell
code, and report on problems which had to be solved to implement the CSHF-semantics
in the functional programming language Haskell. We also present experimental results of
testing several Haskell STM libraries. We conclude in Sect. 5.
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2 STM Haskell: The API and GHC’s Implementation

In this section we recall the programmer’s interface to Haskell’s approach for software
transactional memory as proposed in [HMPH05] and available as the stm-package1. We
then briefly explain the implementation of STM Haskell in the Glasgow Haskell Compiler.

2.1 STM Haskell

The data type STM a represents an STM-transaction with return type a. The programmer
builds an STM transaction (of type STM a) by using primitive operations and operators
for composition of transactions. Execution of the transaction is performed by

atomically :: STM a → IO a

which takes an STM-action and runs it as a side effecting computation, where the imple-
mentation ensures atomicity and isolation of the execution.

Transactional variables TVar a are the main data structure of STM Haskell. They behave
like shared-memory mutual variables, but they can only be read or modified inside STM-
transactions, which ensures a consistent access. Primitive operations on TVars are:

• newTVar :: a → STM (TVar a) to create a new TVar,

• readTVar :: TVar a → STM a takes a TVar and returns its content, and

• writeTVar :: TVar a → a → STM () takes a TVar and a new content and
writes this content into the TVar.

For composing STM-transactions the STM-type is an instance of the Monad-class, i.e. the
return-operator for lifting any expression into the STM-monad, the �=-operator for
sequential composition of STM-transactions, and also the do-notation are available.

STM Haskell additionally provides the primitive retry :: STM a which gives the pro-
grammer explicit control about restarting transactions: if retry occurs during transac-
tion execution, then the whole transaction is stopped, its effects are made invisible, and
the transaction is restarted. A further combinator for the composition of transactions is
orElse :: STM a → STM a → STM a. The transaction orElse t1 t2 first tries to
execute transaction t1. If this execution is successful, then orElse t1 t2 is successful
with the same result. If the execution of t1 ends with retry, then the transaction t2 is ex-
ecuted: if t2 ends successfully, then this result is the result of orElse t1 t2, and otherwise
orElse t1 t2 retries. Note that orElse-calls can also be nested.

Finally, STM Haskell also includes exceptions and exception-handling for the STM-
monad. Since our semantic investigation in [SSS13] does not include exceptions, we will
ignore exceptions for the remainder of this paper and leave the inclusion of exceptions for
future work.

1http://hackage.haskell.org/package/stm
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2.2 The Implementation of STM Haskell in the GHC

The implementation of STM Haskell in the GHC is embedded in the runtime system and
implemented in C. We explain how transaction execution is performed by GHC’s transac-
tion manager. We first omit the orElse-command and assume that there is no orElse,
later we will also explain the implementation of orElse-execution.

Every transaction uses a local transaction log for book-keeping of the read and write-
operations on TVars. For every accessed TVar the value of the old content and the value
of the new content are stored in the log. For TVars which were only read these values
are identical. Write operations update the new value in the transaction log, but not the
content of the TVar. The old values are used for deciding whether the transaction log is
conflicting: the transaction log is valid iff all old values are pointer equal to the current
content of the TVar, otherwise the transaction log is conflicting. When all operations of
the transactions are performed, the accessed TVars are locked and the transaction log is
tested for validity. In case of a conflicting transaction, the locks are removed and the whole
transaction is restarted (the rollback consists only of throwing away the current transaction
log). Otherwise, if the transaction log is valid, the new content in the transaction log is
copied into the TVars and the locks are removed.

If a retry occurs during transaction execution, a restart with an empty transaction log is
performed. However, as an optimization the restart due to a retry command is delayed
by waiting until any content of an accessed TVar changes, since otherwise the restarted
transaction would end again with retry.

For implementing orElse, instead of storing a single new value in the transaction log, a
stack of those values is stored. Execution of orElse adds a new level on all these stacks
and aborting from the left argument of an orElse-evaluation by a retry-command
removes the top-element on all stacks.

To detect conflicting transactions earlier, validity of the transaction log is not only checked
at commit time, but also temporarily during thread execution. Later we will argue that this
is not only an optimization, but also a requirement for the correct implementation of STM
Haskell (see Sect. 3.4).

3 A Correct Implementation of STM Haskell

In [SSS13] we introduced two process calculi to model the semantics of Haskell STM:
the calculus SHF is the specification semantics, i.e. it specifies the correct behavior of
STM Haskell. The calculus CSHF is the implementation semantics, i.e. it defines a de-
tailed implementation of STM Haskell by using transaction logs, concurrent execution of
transactions, commit phases, and rollback and restart of transactions.
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3.1 The Specification Semantics

The specification semantics SHF is similar to the semantics of STM Haskell given already
in [HMPH05]. Differences are mainly that SHF is based on a model of Concurrent Haskell
extended by futures [SSS11, Sab12] (which slightly extend threads of Concurrent Haskell
in a safe manner [SSS12]), and that evaluation of purely functional expressions is defined
for SHF using a call-by-need operational semantics which respects sharing and avoids
code duplication, while the approach of [HMPH05] uses a (not specified) denotational
semantics.

These semantics are specifications only, since they are not directly implementable: they
include reduction rules whose applicability is not decidable (but semi-decidable). One
of such rules is the following rule for transaction evaluation (which has further restric-
tions on the contexts C,C ′, C1, C

′
1 described below), i.e. it defines the semantics of the

atomically-operator:

C1[atomically e]
SHFA,∗−−−−→ C ′1[atomically (returnSTM e

′)]

C[atomically e]
SHF−−→ C ′[returnIO e]

Here SHF−−→ denotes the reduction relation of SHF and
SHFA,∗−−−−→ means a finite sequence of a

special reduction relation, which only allows to evaluate transactions. The above rule can
be read as follows: if atomically e can be evaluated with SHFA−−−→-steps successfully in
the STM-monad (ending in a return), then the reduction SHF−−→ can do this in one step,
and returns the result in the IO-monad. The different contexts C,C ′, C1, C

′
1 mean that

C has its hole in a concurrent thread at reduction position and C1 is the part of C which
contains this single thread together with the transactional variables and heap bindings (but
no other threads). The local evaluation of this thread and environment then results in the
modified environment C ′1 and these modifications describe the difference between C and
C ′ in the original whole program.

The application of this big-step rule is not decidable, since one cannot decide whether the
transaction evaluation halts. Moreover, another disadvantage of the specification semantics
is that transactions are not evaluated concurrently, but in a sequential order, one transaction
after the other. However, this perfectly matches the semantics of software transactions,
since it guarantees isolation and atomicity of transaction evaluation.

3.2 The Implementation Semantics

The implementation semantics CSHF uses only small-step reduction rules. Application of
all rules is decidable. In this section we describe the main ideas of the implementation
semantics.
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3.2.1 Syntactic Extensions

We first explain the syntactic extensions of CSHF w.r.t. STM Haskell:

Transactional Variables. CSHF uses two different kinds of transactional variables:

• So-called global TVars are globally accessible, mutable shared-memory cells
which store the true content of the TVar and some further information:

– a locking label, which allows to lock the TVar by a single thread: if the lock-
ing label of TVar a is set to thread identifier i, then only thread i can access
a, all other threads which want to access the TVar are blocked. In the oper-
ational semantics of CSHF there is simply no matching reduction rule for the
case that the TVar is locked by some other thread.

– a set of thread identifiers of those threads which perform evaluation of an STM-
transaction and have read the global content of the TVar. This set is called the
notify list of the TVar and it is used for conflict detection.

• Every thread which performs evaluation of an STM-transaction has a local set of
so-called local TVars. These are copies of global TVars, but the content is stored
as a stack for orElse-evaluation. These local TVars are similar to the entries
in the transaction log of GHC’s implementation, but no old values are stored (see
Sect. 2.2).

Transaction Log. Besides the associated set of local TVars, the transaction log consists
of the following additional information which is stored for every thread i which performs
evaluation of an STM-transaction.

• A set T of pointers to global TVars where those TVars are stored whose modifica-
tion may lead to a conflict. This is a subset of all read TVars and exactly represents
the global TVars which have the thread identifier i in their notify lists.

• A stack of triples (La, Ln, Lw) where

– La is the set of accessed (read, written, and created) TVars,

– Ln is the set of created TVars, and

– Lw is the set of written TVars.

These triples are stored in a stack, since several copies of the triples are needed for
backtracking during evaluation of orElse. The set T is not stacked, since any
conflicting read TVar results in a conflict for the transaction, independently from
the orElse-branch where the TVar was read.

• A list K of TVars which is used during commit to store the TVars which where
locked by the committing thread.
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A further syntactic extension are special variants of the atomically- and the orElse-
operator, which indicate active evaluation of the corresponding transactions. There is also
a variant of atomically which additionally stores the original expression defining the
transaction, which is necessary for restarting the transaction.

3.2.2 Operational Behavior

We describe the main ideas of the operational semantics of CSHF, which defines transac-
tion execution. In our explanations we treat all operations on stacks as operations on the
top element, unless otherwise stated.

Start of transaction execution. The sets T, La, Lw and Ln are initialized as empty sets.

Thread i creates a new TVar t. A thread local TVar is created and added to the sets La

and Ln.

Thread i reads TVar t. The read-operation is performed on the local copy of t for thread
i. If no copy exists (the read-operation is the first operation on t), then a copy for
thread i is created and the thread identifier i is added to the notify list of t. The
TVar t is also added to the sets La and T .

Thread i writes TVar t. The write-operation is performed on the local copy of t for
thread i. If no copy exists (the write-operation is the first operation on t), then a
copy for thread i is created. Note that i is not added to the notify list of t. The
TVar t is also added to the sets La and Lw.

Thread i evaluates retry outside orElse. In this case the transaction must be re-
started. Therefore thread i walks iteratively through its set T and removes its entry
in the notify list of every TVar t ∈ T . Note that this removal is done in several steps
and not in one global step (which would require to lock all TVars in T ). Thereafter
the transaction restarts with sets T, La, Ln, Lw reset.

Thread i evaluates orElse e1 e2. Then for all local TVars the top element of the
content stack is duplicated, and for the triple stack also the top element (La, Ln, Lw)
is duplicated. Then e1 is evaluated.

Thread i evaluates retry inside orElse. In this case all stacks for local TVars are
popped, and also the triple stack is popped. Thereafter the second argument of
orElse is evaluated. Note that the set T is not changed, since a conflict with a read
TVar in another orElse-branch should also lead to a restart of the transaction.

Thread i commits. If all operations of a transaction are executed, then thread i starts its
commit phase. As a first step all read and to-be-written TVars are locked by thread
i (by setting the locking label of the corresponding TVars to i). This set of TVars
is computed as T ∪ (La \ Ln). In CSHF this locking is performed as an indivisible
atomic step. To keep track of the locked TVars, thread i stores the set T ∪(La \Ln)
as the set K.
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After setting the locks, other threads cannot access these TVars. Now the following
steps are performed which may be interleaved by other transactions (accessing other
TVars):

1. Thread i iteratively removes its entry in all notify lists of TVars t ∈ T and
removes t from T . This iteration stops when T = ∅.

2. Thread i iteratively walks over all notify lists corresponding to the TVars in
Lw: if thread i′ is member of such a notify list, then thread i sends a retry-
command to thread i′, i.e. it notifies i′ to restart. In the operational semantics
of CSHF this is specified by replacing the code of thread i′ by retry (at the
right position inside atomically). Thereafter thread i′ performs in the same
way as executing a programmed retry (first it removes its notify entries and
then it restarts, as described above). The iteration stops when all notify lists of
TVars in Lw are empty.

3. Thread i iteratively updates the global content of the TVars by copying the
content of the local TVars into the global ones, for every TVar t ∈ Lw

(removing t ∈ Lw).
4. If Lw = ∅, then thread i iterates over the set K and removes its lock on every

TVar t with t ∈ K.
5. Thread i iterates over the set Ln and creates a global TVar for every locally

created TVar in Ln.
6. Thread i removes all local TVars and returns the result of transaction execu-

tion.

We argue why we claim that CSHF detects conflicts as early as possible: the CSHF seman-
tics restarts conflicting transactions when the committing transaction determines a conflict
(in step 2.). It is not possible to restart a transaction earlier: for instance one cannot restart
a transaction i1 at the moment when another transaction i2 writes into the TVar t with i1
in the notify list of t: although i1 is conflicting when i2 commits, there is no guarantee that
i2 executes its commit phase, and this may happen because i2 runs into an infinite loop or
i2 is rolled back and restarted due to a conflict caused by another TVar.

3.3 Correctness of the Implementation

In [SSS13] we proved that CSHF is a correct implementation of SHF (and thus STM
Haskell), by first defining a contextual semantics for both calculi which equates programs
if their observable behavior is indistinguishable in any enclosing program context. Since
both calculi are non-deterministic, the contextual equivalence uses two observations of
the behavior: may-convergence ↓ holds for a program P , if the main-thread of P can
be reduced into a return , and should-convergence ⇓ holds for P , if every reduction
successor of P remains may-convergent.

Correctness of the implementation was shown by inspecting the translation ψ : SHF →
CSHF which is more or less the identity. We have shown that ψ preserves and reflects
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may- and should-convergence, i.e. for every SHF-program P : P ↓ ⇐⇒ ψ(P ) ↓ and P ⇓
⇐⇒ ψ(P ) ⇓. This shows that CSHF can be used to evaluate SHF-programs without any
different observation. Hence, CSHF is a correct interpreter of SHF. Additionally, we have
shown that ψ is adequate, i.e. if ψ(P1) and ψ(P2) are contextually equal in CSHF, then P1

and P2 are contextually equal in SHF. This e.g. implies that program transformations
performed on CSHF-programs that preserve the program equivalence, are also correct
program transformations for the SHF-semantics. I.e., a correct compiler for CSHF does
not change the semantics viewed from SHF.

3.4 Comparison of CSHF and GHC’s STM Implementation

We explain the main differences between the semantics specified by CSHF and the im-
plementation of STM Haskell in the GHC. In GHC transactions test their transaction log
against the current state of the TVars and thus recognize a conflict by themself, in CSHF
the conflicting transactions are notified and restarted by the committing transaction. We
will discuss the advantages and disadvantages of the CSHF-approach.

Advantages. Advantages of the CSHF approach are that conflict detection may occur
earlier than in the GHC, and that CSHF does not rely on comparing contents of TVars.
Moreover, in CSHF there is no need to temporarily check the transaction log against the
state of the global storage. Note that those checks are necessary in GHC’s implementation
to ensure correctness w.r.t. the STM Haskell semantics (as e.g. given by SHF): consider the
following Haskell code which runs two transactions i1 and i2which access the TVar tv:

i1 tv = atomically $ do i2 tv = atomically (writeTVar tv False)
c ← readTVar tv
if c then main = do tv ← atomically (newTVar True)
let loop = do loop in loop s ← newEmptyMVar
else return () forkIO (i1 tv � putMVar s ())

threadDelay 10000
forkIO (i2 tv � putMVar s ())
takeMVar s � takeMVar s

Note that the MVar is used to wait for termination of both concurrent threads i1 and
i2. Execution of main should terminate successfully in any case: suppose that first i1
is executed, and since it reads True for tv, it loops. If transaction i2 now runs and
commits, then in CSHF, transaction i1 is notified, restarted, and in the next run it will
terminate successfully. In GHC it is necessary that i1 checks its transaction log against the
global content of the TVars even it does not reach its commit phase. In the specification
semantics SHF the transaction i1 can only be performed (as a single big-step reduction) if
the content of tv is already set to False which enforces to evaluate first i2 and then i1
and thus the whole program terminates in any case.

Testing the program in GHC shows that the program does not behave as expected, since
GHC detects the loop, throws an exception and finally blocks forever on the MVar. If we
change the code for the loop into let loop i = do loop (i+1) in loop 1, then the
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program behaves as expected, since the loop is not detected, and so after enough time the
transaction i1 is restarted. However, this shows that loop-detection does not work well
together with the temporary check of the transaction log and perhaps should be turned off
for transaction execution. The Haskell STM implementations in [HK06, Boi11, BMT10]
all perform only a validity check during the commit phase and hence do not terminate in
both cases, which can also be observed by testing the program with these libraries.

Considering nonterminating transactions, which always do not terminate, and which do
not read any TVar, e.g. a transaction like

atomically $ let loop = loop in if loop then return 1 else return 2

the “operational” behavior of the specification semantics is different from all STM Haskell
implementations: In SHF the this transaction is never executed, while the implementa-
tions (including CSHF) start the execution, but never detect a conflict nor reach the com-
mit phase. However, semantically this is correct, since the nonterminating transaction is
equivalent to a nonterminating program ⊥, and SHF simply does not touch the ⊥, while
the implementations evaluate ⊥, which makes no difference.

Disadvantages. A disadvantage of CSHF compared to the GHC approach is that rollback
of transactions in CSHF requires to remove the entries of the thread in all notify lists while
in GHC it is sufficient to throw away the transaction log. A further disadvantage of CSHF
is that there a few more cases where a conflict occurs: if a transaction i1 reads the content
c of a TVar t, then transaction i2 reads t and finally i1 writes back the same content c into
t and i1 commits, then the transaction i2 is restarted in CSHF. In contrast, since GHC uses
a pointer equality test, the transaction log of i2 would still be valid and no restart happens.
However, these cases may be rare and e.g. the following transaction for i1:

atomically $ readTVar tv�=λc → writeTVar tv (let x = c in x)

makes the transaction log of i2 invalid, since pointer equality of c and (let x = c in x)
does not hold.

4 The Implementation of CSHF in Haskell

In this section we explain our implementation of the CSHF-semantics as the SHFSTM-
library in Haskell which is available from

http://www.ki.cs.uni-frankfurt.de/research/stm.

4.1 Implementing Local and Global TVars and the Transaction Log

While the CSHF-semantics associates the set of local TVars to its thread, this approach
does not work well for an implementation in Haskell. The set would be of heterogeneous
type, since TVars with different content type must be stored. It is also not possible to use
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existential types to hide the content types in the set, since e.g. the readTVar-operation
would not be typeable, since it extracts the content type. To avoid this problem, our im-
plementation uses an associated map for every global TVar which stores the local content
stack for every running transaction.

The triple stack and the sets T and K are also heterogeneous sets of TVars. For imple-
menting these sets there are at least the following three possibilities:

• The triple stack, T and K are implemented as heterogeneous sets using existential
types. This is a typical use case for existential types, since all corresponding opera-
tions on the stack and the sets do not make visible the content type of TVars (they
look into notify lists, they copy from local to global content, or they set locks).

• Instead of storing the TVars heterogeneously, we could store the monadic actions
(inspecting the notify lists, copying etc.). This approach was used in [HK06].

• We could convert the TVars into pointers and cast them back for the needed opera-
tions (using unsafeCoerce). This approach was used in [Boi11].

The second approach is very elegant, since it does not require extensions of the Haskell
standard, however, it makes the program harder to understand. The third approach is
similar to the first one, where instead of using a type system extension unsafe operations
are used. Thus we prefer the first choice, mainly since it is the closest one to our formal
specification.

Our implementation thus uses two references to transactional variables: one with a poly-
morphic type and one with a monomorphic type (where the content type is hidden using
existential types). Thus, a TVar a is a pair of a TVarA a (the polymorphically typed
TVar) and a TVarAny (where the content type is hidden). Both types are MVars (for
synchronizing the accesses) which contain the data of type ITVar a (explained below).

Additionally, since we use sets of TVarAny, an Ord-instance is required and thus we add
unique identifiers TVarId to TVarAny, which are Integers:

newtype TVar a = TVar (TVarA a,TVarAny)
newtype TVarA a = TVarA (MVar (ITVar a))
data TVarAny = ∀ a. TVarAny (TVarId, MVar (ITVar a))

An invariant of our implementation of TVars is that both MVars always point to the
same object. Now we explain the data type ITVar. As said before, we store the global
content and a map which holds the local content for every thread identifier. All these
components are protected by MVars to make them mutable and to protect them from
parallel accesses. The third components of an ITVar is the notify-list which holds a set
of thread identifiers, the fourth component represents the lock which is used during the
commit phase, and there is one more component – called waiting queue – which
implements an optimization: if a thread wants to access a locked TVar it waits on the
waiting queue until the committing threads wakes it up again. Hence the type ITVar is
defined as the following record type:
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data ITVar a = TV { globalContent :: MVar a
, localContent :: MVar (Map.Map ThreadId (IORef [a]))
, notifyList :: MVar (Set.Set ThreadId)
, lock :: MVar ThreadId
, waitingQueue :: MVar [MVar ()] }

The transaction log of a transaction consists of the set T (called readTVars), the stack
of triples (La, Ln, Lw) (called tripelStack) and the set K (called lockingSet).
These sets are implemented as sets (a stack of triples of sets, resp.) of TVarAny, which al-
lows to store the heterogeneous sets. To allow easy updates the log is stored in an IORef:

data Log = Log { readTVars :: Set TVarAny,
, tripelStack :: [(Set TVarAny,Set TVarAny,Set TVarAny)]
, lockingSet :: Set TVarAny }

newtype TLOG = TLOG (IORef Log)

4.2 Implementation of the STM Monad and atomically

The data type STM implements data constructors for all STM-operations, where continua-
tions corresponding to the�=-operator for sequencing are packed into the constructors.

data STM a = Return a
| Retry
| ∀ b. NewTVar b (TVar b → STM a)
| ∀ b. ReadTVar (TVar b) (b → STM a)
| ∀ b. WriteTVar (TVar b) b (STM a)
| ∀ b. OrElse (STM b) (STM b) (b → STM a)

The STM-operations generate the corresponding data, and the monad instance for the type
STM is implemented straightforward, where the bind-operator�= combines the actions:

newTVar :: a → STM (TVar a) writeTVar :: TVar a → a → STM ()
newTVar a = NewTVar a return writeTVar v x = WriteTVar v x (return ())

readTVar :: TVar a → STM a
readTVar a = ReadTVar a return

orElse :: STM a → STM a → STM a
retry :: STM a orElse a1 a2 = OrElse a1 a2 return
retry = Retry

instance Monad STM where
return = Return
m�=f = case m of Return x → f x

Retry → Retry
NewTVar x ct → NewTVar x (λi → ct i�=f)
ReadTVar x ct → ReadTVar x (λi → ct i�=f)
WriteTVar v x ct → WriteTVar v x (ct�=f)
OrElse a1 a2 ct → OrElse a1 a2 (λi → ct i�=f)
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A program of type STM thus is represented by a data structure. It is executed by applying
atomically to it. As explained before, in CSHF, the committing thread sends notifi-
cations to conflicting threads and thus enforces their rollback and restart. We implement
this behavior using exceptions: every transaction has an exception handler that handles
the exception for retry, and the committing thread will throw a synchronous exception
to conflicting threads. We introduce a new exception type RetryException for the
thrown exception. The implementation of atomically is as follows: it creates a new
transaction log, calls the function performSTM, which will execute the transaction, and
catches the retry exception. If the exception is caught, first the function globalRetry
is called, which removes all notify entries of the thread in accessed TVars, and then an
atomically-call restarts the transaction execution. This sequence of actions is pro-
tected against receiving further exceptions using uninterruptibleMask_:

atomically :: STM a → IO a
atomically act = do
tlog ← emptyTLOG
catch (performSTM tlog act)
(λe → case e of

RetryException →
(uninterruptibleMask_ (globalRetry tlog)) � atomically act

_ → throw e)

The function performSTM calls a function for every action of the STM transaction:

performSTM tlog act =
case act of
Return a → commit tlog � return a
Retry → waitForExternalRetry
NewTVar x ct → newTVarWithLog tlog x �=λtv → performSTM tlog (ct tv)
ReadTVar x ct → readTVarWithLog tlog x�=λc → performSTM tlog (ct c)
WriteTVar v x ct → writeTVarWithLog tlog v x � performSTM tlog ct
OrElse ac1 ac2 ct → do orElseWithLog tlog

resleft ← performOrElseLeft tlog ac1
case resleft of
Just a → performSTM tlog (ct a)
Nothing → do orRetryWithLog tlog

performSTM tlog (ac2�=ct)

If Return a occurs, then it is the last action of the transaction and thus the commit phase
has to be started, and thus the function commit (see Sect. 4.4) is called, before returning
the resulting value in the IO-monad.

If a retry occurs, we could call the globalRetry-function in the same way as we
do when a RetryException gets caught. However, if the content of the TVars is not
changed, the execution of the transaction will result in retry again. That is why we call
waitForExternalRetry, which simply blocks the thread on an MVar. If the content
of accessed TVars changes, then the transaction becomes conflicting and will receive an
exception, and otherwise if the content of the TVars never changes, then restarting the
transaction will run in the same retry again. Thus, our implementation prefers blocking
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instead of busy-waiting. The same approach is used in GHC’s STM Haskell implementa-
tion, but in our approach it is much simpler, since there is no need for additional waiting
queues on TVars and additional signaling code.

For creating, reading, and writing TVars the special functions newTVarWithLog,
readTVarWithLog, and writeTVarWithLog are called, which modify the trans-
action log and adjust the local copies of the TVars. We will explain only the
readTVarWithLog-operation in the subsequent section.

For performing nested orElse-evaluation we use a special variant of performSTM,
called performOrElseLeft, which either returns Just, if evaluation finishes with
Return, or it returns Nothing, if evaluation ends with Retry.

4.3 Implementation of the Read-Operation

We explain the function readTVarWithLog that executes the read-operation during
transaction evaluation. If the global TVar is locked, since another process is commit-
ting, the read-operation must not access the global TVar and should wait. Therefore the
readTVarWithLog-function iteratively calls tryReadTVarWithLog until the read-
operation was successful.

readTVarWithLog :: TLOG → TVar a → IO a
readTVarWithLog tlog tvar =
do res ← tryReadTVarWithLog tlog tvar
case res of Right r → return r

Left blockvar → takeMVar blockvar � readTVarWithLog tlog tvar

If the TVar is locked, then the transaction adds a new MVar to the waiting queue of
the TVar and waits to become unblocked (which is the responsibility of the commit-
ting thread). The code of tryReadTVarWithLog is shown in Fig. 1. We explain the
code: if a local copy of the TVar exists (determined by inspecting the set La (lines 4–7)),
then the local content is extracted and returned (lines 8–11). If no local copy exists, then
tryReadTVarWithLog tests whether the TVar is locked (line 13). If the TVar is not
locked, then the thread adds its identifier to the notify list, reads the global content of the
TVar, creates the local copy of the content, and adjusts its transaction log (lines 15–26).
If the TVar is locked, then the thread creates a new MVar and adds this MVar to the
waitingQueue, and returns the MVar to block on (lines 28–32).

Every read-attempt is protected (using uninterruptibleMask_) against receiving
the retry exception, since otherwise the concurrent data structures can become corrupted.
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tryReadTVarWithLog (TLOG tlog) (TVar (TVarA tva,tvany)) =
uninterruptibleMask_ $ do
_tva ← takeMVar tva -- access the TVar
lg ← readIORef tlog -- access transaction log

5let ((la,ln,lw):xs) = tripelStack lg
mid ← myThreadId
if tvany ‘Set.member‘ la then do -- local TVar exists:

localmap ← readMVar (localContent _tva) -- local content
contentStack ← readIORef (localmap mid)

10putMVar tva _tva
return (Right (head contentStack))

else do -- local TVar doesn’t exist:
b ← isEmptyMVar (lock _tva)
if b then do -- TVar is unlocked:

15nl ← takeMVar (notifyList _tva) -- add to notify list
putMVar (notifyList _tva) (Set.insert mid nl)
globalC ← readMVar (globalContent _tva) -- read global content
content_local ← newIORef [globalC]
mp ← takeMVar (localContent _tva)

20writeIORef tlog -- adjust transaction log
(lg{readTVars = Set.insert tvany (readTVars lg),

tripelStack = ((Set.insert tvany la,ln,lw):xs)})
putMVar (localContent _tva) -- copy to local

(Map.insert mid content_local mp) -- TVar stack
25putMVar tva _tva

return (Right globalC) -- return the content
else do -- TVar is locked:
blockvar ← newEmptyMVar -- add the thread to the
wq ← takeMVar (waitingQueue _tva) -- waiting queue

30putMVar (waitingQueue _tva) (blockvar:wq)
putMVar tva _tva
return (Left blockvar) -- return the blockvar

Figure 1: The implementation of tryReadTVarWithLog

4.4 Implementation of the Commit-Phase

The function commit performs committing of the transaction. It calls seven function,
where the first function performs the locking of the read and to-be-written TVars.

The remaining six function calls correspond to the steps described in Sect. 3.2.2, i.e. re-
moving the entries in the notify lists, sending the retry exception to conflicting threads,
writing the local content into the global TVars, creating global TVars for the new TVars,
removing the local TVars, and removing the locks. The implementation of commit is:
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commit :: TLOG → IO ()
commit tlog =
do writeStartWithLog tlog -- lock the TVars

writeClearWithLog tlog -- remove notify entries of the committing thread
sendRetryWithLog tlog -- notify conflicting threads
writeTVWithLog tlog -- copy local content into global TVars
writeTVnWithLog tlog -- create the new TVars
writeEndWithLog tlog -- clear the local TVar-stacks
unlockTVWithLog tlog -- unlock the TVars

Here the implementation is a little bit different from the CSHF-semantics: The unlock-
phase is at the end, while in CSHF it is before creating the new TVars. The reason is that
in CSHF newly created TVars cannot be accessed before the TVars are globally created
(there is simply no binding, and threads cannot proceed without that binding), but in our
implementation the TVars already exist (but should not be accessed). The earliest point
of time when other threads may get references to the new TVars is after unlocking the
modified TVars, since they may be updated by references to newly created TVars.

We do not explain the implementation of the subprocedures in detail, but discuss some
interesting details about the first step, writeStartWithLog, and the third step,
sendRetryWithLog.

4.4.1 Locking TVars During Commit

The CSHF-semantics locks the TVars in T ∪ (La \ Ln) by one reduction rule in one
single indivisible step. In a previous prototype of our implementation we implemented
this locking by using a global lock on all TVars, then locked the TVars in T ∪ (La \Ln)
and then removed the global lock. The performance of this approach was poor, since
transactions became blocked for a while due to the global lock, even if they operated on
disjoint sets of TVars. In our current implementation the phase of locking the TVars
is no longer atomic. We lock the TVars one by one (without using a global lock) in
ascending order of the to-be-locked TVars, which is possible since the type TVar has
an Ord-instance. The total order theorem thus ensures that no deadlock can occur: if
several transactions perform writeStartWithLog at least one transaction will lock
all TVars for its corresponding set T ∪ (La \ Ln). However, we had to be careful with
those transactions that do not get all locks. It is not correct to let them wait until the
next lock becomes available: such a waiting transaction may be a conflicting transaction
which receives a retry by another committing transaction. During the retry-phase the
transaction must not hold locks on TVars. In our implementation a transaction that does
not get all locks in T ∪ (La \Ln) releases all locks it already holds and it adds itself to the
waiting queue of the TVar which was locked by some other thread.

4.4.2 Sending retry-Notifications

The CSHF semantics injects retry in conflicting threads, i.e. those threads that have
registered themselves in the notify lists of TVars which are written by the committing
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transaction. As already explained this injection is implemented in our library by throwing
exceptions. Indeed sendRetryWithLog uses the following subprocedure to throw the
exceptions:

notify [] = return ()
notify (tid:xs) = throwTo tid (RetryException) � notify xs

If a conflicting transaction has registered itself in more than one notify list of to-be-written
TVars, then the CSHF-semantics notifies the thread several times. As an optimization
our implementation keeps track of notified threads and throws the exception only once for
every thread identifier. However, if several transactions commit concurrently, it may still
happen that more than one exception is thrown to the same thread. To ensure that several
exceptions do not break the state of the MVars, we used uninterruptibleMask to
protect the retry-phase against receiving further exceptions.

4.5 Experimental Results

We tested our SHFSTM and also other implementations (i.e. the GHC implementation, and
the ones in [HK06, Boi11]) using some test cases of the STM benchmark of [PSS+08] and
also two other tests (SM and SMack). The tests where executed on a linux machine with an
Intel i7-2600 CPU processor, 8GB main memory, and compiled with GHC 7.4.2 and with
optimization -O2. We performed tests on a single processor without turning -threaded
on during compilation (denoted by “seq.” in the following table), and with -threaded
on multiple processors (1,2,3 and 4 cores).

Table 1 shows the mean runtime of 15 runs for every of the following tests:

SM This test uses a map of 200 (key,TVar)-pairs stored in a TVar. Every of 200 threads
reads all TVars and writes the sum in the last TVar.

SMack The test is similar to SM (with 40 threads, 5 TVars), where all TVars are filled
with the value 3 and for every lookup ackermann(i, 3) is computed where i is be-
tween 6 and 8, depending on the thread number. The sum of these numbers and
the thread number is written into the last TVar. Thus the runtime of the concurrent
transactions are different, the last TVar is filled with different values.

SInt The test runs 200 threads where every thread increases a single shared TVar 200
times.

LL For this test every of 200 threads performs 100 insertions and deletions of random
data into a linked list of initial length 300 which is built from TVars.

BT For this test every of 200 threads performs 100 insertions and deletions of random
data into an (unbalanced) binary tree of initial size 300 built from TVars.

SK The test solves concurrently Sudoku-Puzzles where the cells are stored in TVars.
HT For this test every of 100 threads performs 100 insertions and deletions on a

hashtable built from TVars.

The results show that GHCSTM performs much better than the other implementations. An
exception is the test SMack, where SHFSTM has the best performance. The reason may be
that SHFSTM restarts conflicting transactions earlier than e.g. the GHC implementation.
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STM-library #cores SM SMack SInt LL BT HT SK

GHCSTM seq 0.04 2.54 0.02 0.16 0.08 0.03 0.70
1 0.04 2.56 0.03 0.17 0.06 0.04 0.73
2 0.03 2.62 0.03 0.13 0.06 0.04 0.37
3 0.03 8.59 0.04 0.13 0.09 0.06 0.23
4 0.03 30.49 0.04 0.13 0.10 0.06 0.19

SHFSTM seq 0.28 2.62 0.11 5.71 1.28 0.09 3.35
1 0.27 2.64 0.14 6.23 1.31 0.10 3.58
2 2.20 1.66 52.58 28.01 4.00 3.10 2.69
3 1.95 1.39 69.44 27.64 4.34 2.40 2.28
4 1.88 1.08 75.99 29.34 4.26 2.40 2.23

[HK06] seq 0.19 2.49 0.15 7.86 0.23 0.04 20.64
1 1.25 2.52 0.36 10.81 0.34 0.06 22.67
2 26.58 3.04 5.13 49.55 0.47 0.33 24.86
3 25.25 2.11 8.97 61.70 0.39 0.45 25.50
4 29.37 2.37 11.73 68.02 0.31 0.51 32.37

[Boi11] seq 0.40 25.50 1.88 3.00 0.43 0.14 2.70
1 0.45 25.70 0.76 3.18 0.59 0.12 2.70
2 0.24 12.29 6.68 4.90 0.70 1.39 2.60
3 0.19 8.58 28.95 2.49 6.92 7.88 1.32
4 0.11 6.74 23.76 1.82 8.95 6.24 1.07

Table 1: Runtimes in sec., bold numbers: best per library, gray background: best of all libraries

Another observation is that parallelisation does not lead to a speedup, but to a slowdown,
for the three implementations in Haskell and the tests with high contention. A reason may
be that on a single processor, there are not so many conflicting transactions, since they
more or less run sequentially. Comparing the three Haskell implementations shows that
performance depends on the specific problem and on the concrete scheduling of threads.

5 Conclusion

We explained the CSHF-semantics and discussed our implementation of this approach
to STM Haskell in Haskell. The results show that our approach works, but considering
efficiency the STM-implementation in GHC performs much better. A general conclusion
is that STM implementations should take care to stop nonterminating transactions if they
become conflicting which is not the case for all STM Haskell implementations. For further
work we may optimize our implementation, especially by replacing the maps and sets
inside the TVars with lock-free data structures like e.g. concurrent skip-lists. Another
approach would be to combine the test on the content change (as GHC does) with our
approach of notifying conflicting transactions.
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