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Abstract: We present pylibjit, a Python library for generating machine code at load
time or run time. The library can be used for dynamic code generation, although it is
mainly aimed at optimizing compilation of existing Python function definitions.

Python functions can be compiled by simply annotating them with a decorator
specifying data types. The pylibjit compiler takes advantage of this type information
to perform unboxing, omit dynamic type checks, and avoid unnecessary reference
counting operations.

We discuss pylibjit’s compilation schemes based on an abstract syntax tree or
Python’s internal bytecode representation, and present benchmark results. For sim-
ple numerical programs, we achieve speedups of up to 50× over standard interpreted
Python.

1 Motivation

Interpreted high-level programming languages are often criticized for their comparatively
poor performance. Still, they are popular due to their ease of use and high-level features.
Various techniques are used to bridge the performance gap to more traditional compiled
languages: tracing just-in-time compilers (JITs) [CSR+09, BCFR09], JITs for subsets of
languages marked by special annotations [asm], or ahead-of-time compilers that rely on
static type annotations [Sel09, num] or type inference [she]. A partial solution is to use
interpreters that specialize the program at run time [Bru10].

This paper introduces the pylibjit library which aims to provide a JIT for fragments
of Python code marked by annotations (‘decorators’ in Python parlance). The compiled
code runs within the normal Python interpreter embedded in a traditional Python program;
program parts without compiler annotations are interpreted as usual, while the compiled
parts can make use of static type information provided by the developer.

This is in contrast to most other Python compilers, such as PyPy [BCFR09]. PyPy is
a complete re-implementation of the Python language and uses an object model that is
incompatible with the standard Python interpreter (known as CPython). This means that if
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def fib(n):
if n < 2:

return n
else:

return fib(n-1) + fib(n-2)

Figure 1: The naïve Fibonacci function in Python.

a Python project is to use PyPy, all of the project must be runnable in PyPy; however, PyPy
cannot be used with many popular Python libraries which have parts written against the
interpreter’s C API. As a popular example, the popular Qt GUI library is not compatible
with PyPy. Such problems do not occur with pylibjit, which the programmer only
applies to a few selected functions, while the rest of the program runs in the interpreter as
before. Further, pylibjit is compatible with CPython’s API, so even Python functions
manipulating objects of externally defined types can be compiled. Compared to PyPy,
however, pylibjit is currently built on a much less aggressively optimizing compilation
scheme.

JITs are mostly associated with languages that are compiled to some form of ‘bytecode’
intermediate representation. However, machine code generation at run time is an important
topic even for some programs written in traditional, statically compiled languages. Code
generation can be useful for programs that perform expensive computations with con-
trol flow that heavily depends on user input. For example, image processing applications
can benefit from generating specialized JIT-ed code for user-defined image filters [Pet07].
Even the Linux kernel contains a JIT compiler for a simple domain-specific language de-
scribing network packet filtering rules [Cor11].

Our pylibjit project builds on a JIT library meant for building code at run time in
such applications. However, since Python also allows execution of code at load time (or
rather, since there is no clear distinction between ‘run time’ and ‘load time’), we can apply
the same library to compile entire Python function definitions as they appear in a source
file, while the file is being loaded at program startup. The following sections describe
how pylibjit builds up from a simple JIT library interface to what is a de facto ahead-
of-time compiler for a large subset of the Python language.

2 Compiling functions using the low-level API

Our pylibjit library builds on the GNU libjit just-in-time compiler library1 and an
existing Python wrapper library for it2. We will use the naïve Fibonacci function in Fig-
ure 1 to illustrate the use of this existing library and our improvements to it. The library
exports a class jit.Function which users must subclass for each function they wish

1http://www.gnu.org/software/libjit/
2https://github.com/eponymous/libjit-python
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class fib_function(jit.Function):
def create_signature(self):

# argument order: return type, argument types
return self.signature_helper(jit.Type.int, jit.Type.int)

def build(self):
# values: n, one, two
n = self.get_param(0)
one = self.new_constant(1, jit.Type.int)
two = self.new_constant(2, jit.Type.int)
# if n < 2: goto return_label
return_label = self.new_label()
self.insn_branch_if(n < two, return_label)
# return fib(n-one) + fib(n-2)
fib_func = self
fib_sig = self.create_signature()
a = self.insn_call(’fib’, fib_func, fib_sig, [n-one])
b = self.insn_call(’fib’, fib_func, fib_sig, [n-two])
self.insn_return(a + b)
# return_label: return n
self.insn_label(return_label)
self.insn_return(n)

Figure 2: Building the Fibonacci function using the low-level JIT interface.

to build and compile. Figure 2 shows the code needed to build the Fibonacci function using
this interface. The code defines a class fib_function inheriting from jit.Function
containing two methods create_signature and build. Single-line comments are
introduced using the # sign.

The core is the build function which performs the API calls to build up the interme-
diate code step by step: API calls provide for computations, labels, conditional and un-
conditional jumps, and function calls. Note that, since the intermediate code is meant to
be compiled to machine code, all computations are typed, although type annotations are
mostly only needed where a value is first introduced; the types of arithmetic and other
operators are inferred from their operands. The type name int refers to the machine’s
‘usual’ word-sized integer type, as in C.

Note also that already at this level, Python’s high-level nature offers some convenience:
The arithmetic operators + and - (and others) are overloaded to work on the compiler’s
‘value’ objects, so we can directly generate an addition instruction by writing a + b
rather than the less natural insn_add(a, b).

Having created this definition, the class can be instantiated and the instance called as if it
were a normal Python function. Wrapper code takes care of unboxing Python argument
values and boxing the native code’s return value in a Python object.
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3 The higher-level API

While this library is usable, it makes building functions more verbose than absolutely
necessary. Having to subclass Function and implement several methods on it can lead
to a lot of boilerplate code; the only interesting function in a typical subclass is build,
so ideally users should not have to write more than this function. Conveniently, Python
provides a concept of function decorators that can be used for this purpose.

A decorator is a callable object that can be attached to a function definition using the @
operator. After the function has been parsed and compiled to Python bytecode, the decora-
tor is applied to it and can perform any analysis or transformation. Finally, the decorator’s
return value replaces the original function object.

That is, the effect of a decorator example_decorator on a function definition:

@example_decorator
def func():

...

is equivalent to defining the function, then calling the decorator manually and using its
value to replace the defined object:

def func():
...

func = example_decorator(func)

This enables various higher-order programming techniques based on wrapping or bypass-
ing function calls.

Using this mechanism, it is easy to write a decorator for JIT builder functions that hides
all the boilerplate involved in defining a class and instantiating it. This is encapsulated in
the jit.builder decorator exported by pylibjit. This decorator creates an internal
class subclassing jit.Function, defines the build method in that class to call the
decorated function provided by the user, and finally takes care of instantiating the JIT-ed
function.

Besides boilerplate, another inconvenience when using the pure libjit interface is the
lack of structure. In Figure 2, the control flow in the generated program is difficult to
see as it is implicit in a number of labels and jump statements. We can, however, build
constructs for more structured programs using Python’s context managers combined with
its with statement. In essence, a context manager is a pair of two functions __entry__
and __exit__. A statement of the form:

with foo:
# statements
...

wraps the enclosed block of statements in a context manager foo (which must be de-
fined elsewhere). Whenever execution reaches the with statement, first the context man-
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@jit.builder(return_type=jit.Type.int,
argument_types=[jit.Type.int])

def fib2(func):
n = func.get_param(0)
one = func.new_constant(1, jit.Type.int)
two = func.new_constant(2, jit.Type.int)
with func.branch(n < two) as (false_label, end_label):

func.insn_return(n)
# else:

func.insn_label(false_label)
func.insn_return(func.recursive_call(’fib’, [n - one]) +

func.recursive_call(’fib’, [n - two]))

Figure 3: Building the Fibonacci function using the higher-level interface.

ager’s __entry__ function is called. Any values returned by __entry__ may be
bound to variables using the as keyword. Afterwards, the block is executed as usual.
Whenever execution of the block ends in any way, including by returns or exceptions,
the context manager’s __exit__ function is called before execution or stack unwinding
continues.

Context managers are typically used to manage opening and closing resources such as files,
but they are also a good match to the work that must be done to set up a branch or a loop:
At the head of the control structure, a branch condition must be evaluated, and at the end a
label (and, for loops, a jump back to the loop head) must be generated. pylibjit defines
context managers branch and loop for this purpose. Figure 3 shows how the code
building the Fibonacci function can be simplified by using a decorator and the branch
context manager. The context manager’s entry function generates the labels needed to
distinguish the true and false branches of execution; unfortunately, the abstraction is not
perfect because the user must still take care of placing some of the jumps and labels.

This interface makes it convenient to build functions at run time and, if needed, specialize
them to user input that is partly known (such as user-defined filters [Pet07]). However, the
API is still too verbose for functions encapsulating algorithms that we do not want to spe-
cialize in this way. The next section puts everything together by showing how pylibjit
can leverage Python’s own syntax for specifying compiled functions.

4 Compiling Python functions: The AST approach

As the final step in the initial development, we note that Python’s inspectmodule allows
function decorators to access metadata for functions. In particular, it can be used to obtain
the function’s original source code (if the program is available in source form, which is
typically the case); that code can be extracted and passed to the ast module to obtain an
abstract syntax tree (AST) for the function [BJ13].
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@jit.compile(return_type=jit.Type.int,
argument_types=[jit.Type.int])

def fib(n):
if n < 2:

return n
else:

return fib(n-1) + fib(n-2)

Figure 4: The compiled naïve Fibonacci function, using unmodified Python source code.

We are therefore in a position to write a decorator function which accesses its decorated
function’s AST and traverses that AST emitting appropriate pylibjit instructions for
each AST node. That is, we obtain a very simple way to replace interpreted Python func-
tions by compiled code implementing the same semantics. The Python code itself need
not change at all: Whether the code is interpreted or compiled depends only on whether
an appropriate decorator is present.

A compiled version of the Fibonacci function is shown in Figure 4. Note, again, that apart
from the decorator it is identical to the original Python implementation in Figure 1. At any
point during development, the decorator can be removed (e. g., by commenting it out) to
switch back to the original interpreted function, or inserted again to obtain the benefits of
compilation.

As with all the previous examples, this also produces an object that can be called like
a function. On our development machine (Intel Atom N270 at 1.60 GHz running Linux
3.2.0), it takes about 8.2 seconds to evaluate fib(32) for the original Python version,
while the compiled version takes about 0.155 seconds, for a speedup of about 53×.

5 Compiling Python functions: The bytecode approach

Compiling functions from the Python AST has both advantages and drawbacks. An ad-
vantage is that top-down AST traversal is aware of enclosing context and can generate
special code for some constructs in particular contexts. As an important example, the loop

for i in range(n):
...

can be optimized into an unboxed counting loop with i’s value ranging from 0 to n − 1.
This is only possible for this for loop construct containing a call to range in the head: In
all other contexts, range(n) must be compiled into a regular function call. This case is
easy to detect in the AST. Without easy access to the information which calls occur in loop
heads, our compiled code would have to follow more costly standard Python semantics:
Construct an iterator from the range object and call its next method on each iteration
to obtain a boxed integer object.
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However, compiling from the AST duplicates some of the work that Python’s built-in
AST-to-bytecode compiler and its bytecode interpreter already know how to perform. In
particular, when handling general boxed objects, it is difficult to generate code from the
AST that exactly matches the sometimes obscure rules by which Python increments and
decrements reference counts. Getting reference counting right is very important, as miss-
ing decrement operations lead to costly memory leaks, while missing increments (or too
many decrements) cause memory corruption bugs.

In order to match the Python interpreter’s semantics, we therefore implemented a second
compiler based on its bytecode format. The bytecode representation of any Python func-
tion can be obtained via reflection and visualized using the dis (disassembly) module.
The human-readable representation of the bytecode for the naïve Fibonacci function is
shown in Figure 5. After some preliminary information about the function, the bytecode
instructions are listed in blocks corresponding to source code lines (with line numbers in
the leftmost column). Each instruction is listed with its offset, in bytes, from the beginning
of the block of bytecode; jump targets are additionally marked with a >> symbol. The last
columns show the decimal values of each instruction’s numeric operand, if present. These
numbers are also resolved to names of constants or variables where appropriate.

The bytecode is normally executed using a simple stack-based interpreter. The vari-
ous LOAD instructions load operands (variables or constants) onto the value stack, while
arithmetic, logic, and comparison instructions such as BINARY_ADD or COMPARE_OP
consume them and push their own results.

Our bytecode compiler simulates these stack operations at compile time. In a single linear
pass, the compiler visits each instruction and emits appropriate code. The implementation
of the compile-time and execution-time semantics of each instruction can mostly be trans-
lated from the implementation of the instruction in the standard bytecode interpreter. For
example, the Python interpreter’s implementation of the LOAD_CONST instruction is as
follows:

TARGET(LOAD_CONST)
x = GETITEM(consts, oparg);
Py_INCREF(x);
PUSH(x);

This obtains the constant value x at a given index oparg in the current execution con-
text’s consts array, increments its reference count, and pushes it onto the interpreter
stack. The following is a simplified implementation of the same operation in pylibjit’s
bytecode compiler:

def LOAD_CONST(func, arg, offset):
boxed = consts[arg]
name = str(boxed)
type = symbols[name].type
x = StackEntry(boxed_value=boxed, name=name, type=type)
INCREF(x)
PUSH(x)
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Constants:
0: None
1: 2
2: 1

Names:
0: fib

Variable names:
0: n

5 0 LOAD_FAST 0 (n)
3 LOAD_CONST 1 (2)
6 COMPARE_OP 0 (<)
9 POP_JUMP_IF_FALSE 16

6 12 LOAD_FAST 0 (n)
15 RETURN_VALUE

8 >> 16 LOAD_GLOBAL 0 (fib)
19 LOAD_FAST 0 (n)
22 LOAD_CONST 2 (1)
25 BINARY_SUBTRACT
26 CALL_FUNCTION 1
29 LOAD_GLOBAL 0 (fib)
32 LOAD_FAST 0 (n)
35 LOAD_CONST 1 (2)
38 BINARY_SUBTRACT
39 CALL_FUNCTION 1
42 BINARY_ADD
43 RETURN_VALUE
44 LOAD_CONST 0 (None)
47 RETURN_VALUE

Figure 5: Python bytecode for the naïve Fibonacci function.
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At compile time, the constant value is obtained from the function’s constant pool and
stored in a StackEntry object along with some useful metadata such as the constant’s
name and type. Code to emit the object’s reference count at run time is emitted by
the INCREF function, and the StackEntry is pushed onto the stack at compile time.
In contrast to the interpreter, the evaluation stack and its entries do not exist at run time:
Operands are stored in libjit values that are mapped to machine registers as far as
possible. The compile-time stack is used to match these values with the appropriate oper-
ations.

The bytecode compiler contains a function like the one above for each instruction in the
bytecode instruction set. A main loop iterates over the code and invokes the appropriate
function for each instruction. While the implementation of LOAD_CONST is particularly
simple, other instructions involve more work at compile time. In particular, arithmetic
instructions make use of the metadata on the compile-time stack to determine the types of
their operands, and whether those operands are boxed (stored in an object on the heap).
Computations on two unboxed numbers can be compiled directly to the machine’s arith-
metic instructions, while other operations involve calling the appropriate Python API func-
tion. Thus the stack allows us to recover much of the context that is present in the AST, as
discussed above.

However, some patterns are more difficult to detect in the bytecode. The example of the
counting for loop iterating over a range of integers compiles to a sequence of several
bytecode instructions:

3 LOAD_GLOBAL 0 (range)
6 LOAD_FAST 0 (n)
9 CALL_FUNCTION 1

12 GET_ITER
>> 13 FOR_ITER 6 (to 22)

16 STORE_FAST 1 (i)

A scheme based purely on compiling each instruction in isolation would not be able to un-
box this loop. We solve this case using a combination of laziness and lookahead: Calls to
the built-in range function are not compiled immediately but propagated on the compile-
time stack until the context in which the return will be used is clearer. When the compiler
encounters an instance of FOR_ITER that takes such a range operand and is followed by
a STORE_FAST instruction to an unboxed number, the optimized counting loop is gener-
ated without ever executing a call to range. Otherwise, the compiler emits the call and
follows Python’s usual iteration protocol.

Another obvious optimization is the elision of reference counting operations [Bru11]. The
stack entry metadata can track an abstract reference count field at compile time and only
insert increment/decrement operations that are actually needed because objects are stored
in or retrieved from dynamic data structures. Other operations are incidental; the inter-
preter only needs them to ensure that all references from the stack are counted correctly.
If the stack is compiled away, these operations could disappear as well. A prototype of
this optimization exists in pylibjit, but it is not completely bug free yet and was not
enabled during the experiments reported below.
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Execution time (s)
Benchmark Interpreted Compiled Ratio
fannkuch 7.57 4.78 1.58
float 2.09 1.92 1.09
meteor 1.27 0.99 1.28
nbody 2.01 0.81 2.48
richards 1.02 1.01 1.01
spectral_norm 2.61 0.29 9.00
AES 12.40 0.61 20.32
geometric mean 2.69

Table 1: Influence of compilation on execution times.

The bytecode compiler is useful in supporting language features that involve complex
control flow, such as list comprehensions. The AST-based pylibjit compiler prototype
does not try to unravel these, but their bytecode representation is handled automatically
using regular control-flow instructions.

As a consequence, the bytecode-based pylibjit compiler is able to handle a much
larger subset of Python than the AST version. In principle, the only features that are not
supported are default function arguments and constructs that would require us to support
an explicit call stack at run time: Python’s exceptions and coroutines (generators). How-
ever, we do support the special case of Python’s iteration protocol which uses exceptions
internally.

Overall, the implementation of the AST-based and bytecode-based pylibjit compilers
and various shared utilities comprises about 2400 lines of Python code.

6 Experimental evaluation

We have applied pylibjit’s bytecode-based compiler on a number of benchmarks from
Python’s benchmark suite3 and an implementation of the AES encryption algorithm4.
Since our compiler requires type annotations for function signatures and all variables used
by each function, using pylibjit involves some manual work and is mainly useful for
programs that have a few very hot functions. We focused on such benchmarks and had
to exclude others that would have required annotation of too many functions. Some other
benchmarks could not be compiled because they used unsupported language features or
hit bugs in our prototype compiler.

Of the benchmarks we were able to handle with pylibjit, we achieved speedups versus
the Python 3 interpreter in all cases, although the effect is quite small in some cases.
The richards benchmark performs a virtual method call in a very hot loop. The call

3http://hg.python.org/benchmarks/
4Adapted to Python 3 from a version available from https://bitbucket.org/pypy/benchmarks/src
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is monomorphic, and while our type annotations allow us to devirtualize such calls in
general, this specific case uses inheritance in a way that the compiler cannot specialize yet.
We therefore have to generate a call from our compiled code into the Python interpreter;
such calls require construction of an explicit call stack frame object and are therefore as
slow as normal function calls in the interpreter. This kind of call also limits speedups in
several other benchmarks. Other runtime features affect other benchmarks: The float
benchmark is slightly sped up because some floating-point computations can be unboxed,
but execution time is dominated by a very large number of attribute lookups in Python
objects, which are performed using the standard code in the interpreter.

The programs that involve most unboxable arithmetic operations are spectral_norm
and AES, which result in correspondingly large speedups of 9× and 20×, respectively.
(We have previously reported a speedup of 53× on a slightly different version of the
spectral_norm benchmark than the one used here [Bar13]. The difference is the use
of range versus enumerate in a for loop head; unboxing is implemented for the
former but not the latter.)

7 Conclusions and future work

We presented pylibjit, a Python wrapper for the GNU libjit just-in-time compiler
library. Besides just exposing the underlying API, pylibjit allows the use of deco-
rators to cause existing Python functions to be compiled to machine code. This is due
to Python’s flexibility and its large standard library that includes various useful reflective
tools. Our pylibjit library supports a large fragment of Python that includes everything
except default function arguments, exceptions, and coroutines.

The current version of pylibjit is not fit for general use, but the compiler is simple and
extensible and is undergoing thorough debugging for a public release. Since the compiled
code runs within the Python interpreter, all of the functions used internally by Python
to implement operations are accessible and can be called from the compiled code. This
allows code compiled with pylibjit to interact with any Python objects, including ones
implemented in other languages in extension modules.

The presence of type annotations means that we can elide certain operations that add over-
head, such as dynamic typechecks and boxing/unboxing operations. An obvious applica-
tion of this work would be studies of the speedups that could be achieved using static type
inference for Python. Another goal is to study the applicability and impact of optimiza-
tions such as reference count elision.
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