
WOOGLE meets Semantic Web Fred

Uwe Keller, Michael Stollberg, Dieter Fensel

Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
{uwe.keller, michael.stollberg, dieter.fensel}@deri.org

Abstract. A major merit of the Web Service Modeling Ontology WSMO is the well-
structured and unambiguous definition of the description elements for its components.
This allows developing concise, generic inference mechanisms for basic Semantic
Web Service technologies like Web Service Discovery as the detection of suitable
Wed Services for solving a Goal. This paper introduces WOOGLE, a basic but pow-
erful and generic WSMO-enabled Web Service discovery mechanism that is devel-
oped in the course of the Semantic Web Fred project. We outline the underlying con-
ceptual model for Web Service Discovery in WSMO, discuss the WOOGLE func-
tionality in the context of Semantic Web Fred, and explain its realization on top of a
First-order Logic theorem prover.

1 Introduction

The aim of research efforts around Semantic Web Services is to facilitate automated
handling of Web Services. Initial Web Service efforts failed to make the promise of auto-
matically interacting, dynamically composed Web Services become reality. The reason is
that the Web Service technology stack around SOAP, WSDL, and UDDI does not supply
sufficient means for describing Web Service in a way that supports generic mechanisms for
discovering, composing, and executing Web Services. Thus, the concept of Semantic Web
Services has been established: based on concise and unambiguous semantic description
frameworks for Web Services and related aspects, generic inference mechanisms shall be
developed for handling Semantic Web Services. Concerning overall frameworks for Se-
mantic Web Services, the most relevant ones existing at this point in time are OWL-S [9]
and the Web Service Modelling Ontology WSMO [8]; in comparison, WSMO is defined
more precisely and unambiguously, and it provides a more complete framework for aspects
and challenges arising within Semantic Web Services [4].

Web Service Discovery is concerned with detecting suitable Web Services for solving a
Goal, i.e. an objective that a client wants to get resolved when consulting a Web Service.
Discovery is a core technology for Semantic Web Services. After several discussions on
the conceptual model and means for realization, Web Service Discovery in WSMO has
been separated into three main steps:

1) matching of Goal postconditions and effects with those of Web Service Capabilities
in order to detect a set of Web Services that might can solve the Goal without regard
to data that is submitted as input to a Web Service

2) detection of those Web Services (out of the possibly usable Web Services in the re-
sult of (1)) which can really solve the Goal with regard to the preconditions and as-
sumptions of the Web Service, the data a Goal owner is able to submit as input to

the Service, as well as attending the Choreography Interface, i.e. the behavioral in-
terface of a Web Service for consuming its functionality

3) selection of one Web Service (out of the result of (2)) that is to be really used for
solving the Goal under consideration of user preferences and Web Service specific
non-functional properties.

The reason for this separation is to decompose the complexity for the overall Web Ser-
vice Discovery process and to allow combination of different discovery mechanisms within
WSMO, thus not restricting the realization of WSMO-enabled technologies to only one
solution. WOOGLE is the realization of the 1st step of Web Service Discovery within
WSMO that provides some functionality similar to GOOGLE, but on a semantic level: a set
Web Service identifiers (URLs) is returned that can possibly solve a given Goal. In fact,
only WOOGLE is intended to be a standardized Web Service Discovery technology within
WSMO. The subsequent steps are application-dependent, and thus are not part of WSMO
which aims at a general framework that is not limited to specific realization technologies
not to particular application fields.

The aim of this paper is to explain the framework for Web Service Discovery intended
in WSMO and elaborate the conceptual model for WOOGLE along with a prototypical
realization. For showcasing integration of WSMO-enabled Semantic Web Service technol-
ogy into complex systems, we outline the realization of the Service Discovery Module that
includes WOOGLE in Semantic Web Fred, an environment for automated agent coopera-
tion with WSMO-enabled dynamic service usage.

The paper is structured as follows: Section 2 explains the conceptual model for Web
Service Discovery in WSMO; Section 3 elaborates the theoretical basis of WOOGLE and
presents a prototypical realization; Section 4 describes the usage of WOOGLE within SWF
and explains the realization of the SWF Service Discovery Module; finally, Section 5 con-
cludes the paper.

2 Web Service Discovery in WSMO

Due to its overall structure and the concise definitions of description elements for the
components, WSMO provides the foundation for generic and precisely defined inference
mechanisms for Semantic Web Services technologies [8]; in fact, WSMO is designed to
support generic, ontology-based inference mechanisms for realizing Semantic Web Service
technologies, whereof Web Service Discovery is a core technology.

The conceptual model of Web Service Discovery in WSMO is elaborated in detail in
[5]; however, as this document is under construction at the time of writing, the following
briefly outlines the approach for Web Service Discovery in WSMO with special attention
to the conceptual model of WOOGLE which might serve as a basis for further elaboration
of the Web Discovery framework. As stated above, the discovery process in WSMO is
separated into three subsequent steps: we explain these along with their position in WSMO,
and point out possible solutions.

2.1 Canonical Discovery – WOOGLE

The first step in WSMO Web Service Discovery is to detect (on a semantic basis) a set
of Web Services that might be able to solve a given Goal without regard to data that are

submitted as input to the Web Service or any other related aspects. The idea is to establish
a pre-selection of possibly usable Services to solve a Goal out of a potentially huge set of
available Services, thus providing a general facility for Web Service enabled applications
to pre-determine the Web Services to deal with. The result of this basic discovery mecha-
nism is a set of WSMO Web Services Identifiers (which are URLs) of available Services
that can possibly solve the Goal.

The matchmaking in WOOGLE relies on proving a suitable proof obligation, i.e. a logi-
cal formula that is composed by the logical representation of the Goal descriptions as well
as the description of the Web Services Capability. Thus, unlike current Internet search
engines WOOGLE is a semantic operation which takes into account the semantic descrip-
tions of what services provide and what a client wants to achieve.

Since this first step in the overall discovery process does not take into account concrete
input provided by a client on runtime, it is in principle possible to pre-compute matching
results for this step if goals and service capabilities are known in advance1 or at least cache
the results of frequently used goals and services. The pre-computed or cached results can
then be stored in a database and reused for discovery; hence, the number of actually per-
formed proof attempts (which are comparably expensive operations with regard to simple
database queries) can be reduced drastically without losing the characteristics of WOOGLE
to be a semantic operation. Moreover, the pre-computed information can be gathered and
maintained incrementally as new Service and/or Goal descriptions are stored in a registry.

The WOOGLE mechanism is completely WSMO-compliant as it does not require addi-
tional information beyond what is specified in WSMO component descriptions. Further-
more, it is a generic discovery facility independent of specific technologies or application
domains, and thus will be provided as a standardized Web Service Discovery mechanism
within WSMO.

2.2 Detection of usable Services

The WOOGLE mechanism identifies only Web Service that can possibly solve the
given Goal according to the logical proof obligation. The WOOGLE result set might con-
tain Services that can not be used for various reasons, e.g. spatial availability, too unspe-
cific service descriptions, or requested information the client can not or does not want to
provide. Thus, the aim of the 2nd step of Web Service Discovery in the proposed model is
to determine the set of Web Services which can actually be used to solve the given Goal
with regard to all related aspects. In general, this second step is not necessarily based on
logic-techniques and reasoning. Here, the main aim is to eventually increase the precision
of the discovery process drastically, for instance by consideration of the input data that is
actually provided by the client.

There are several possibilities for realization of this functionality. We give a brief over-
view of proposals that have been discussed with the WSMO working group along with the
deficiencies of each proposal:

 Hypothetical Execution of the real-world Service: the strictest method is to actu-
ally execute all possible Web Services – thus obviously detecting only usable Ser-

1 In fact, this can often happen if we assume that clients mostly use predefined goal templates in goal

repositories to express their desires and refine them by providing concrete input values. Service ca-
pability descriptions are advertisements for services and thus will not be generated for single invo-
cations but rather for long-time use.

vices. But this method is certainly not the most pleasant solution, as it brings up
several problems: a Web Service might expects critical input data, the execution
of a service might be very time consuming and all the executions have to be rolled
back after the hypothetical execution. Furthermore, service providers have to be
willing to support potentially numerous rollbacks without actual use for the pro-
vider and checking the usability of a single service is service-dependent in gen-
eral; for instance, one has to be able to determine algorithmically that the actual
results and outputs of the service execution satisfy the Goal specification.

 Hypothetical Execution of the Service Description: an exhaustive framework
based on a transaction-logic approach has been defined in [6]. This approach basi-
cally executes a service on a logical level (rather than in the real-world) according
to their specifications: based on a notion of Input that is transmitted from the Goal
to the Web Service, the Capability precondition is checked to be satisfied; if so,
the service postcondition and effects are assumed to hold and the Goal postcondi-
tion and effects are validated. If both are satisfied the Service is considered to
match the Goal. This approach obviously contradicts the design of WSMO Goals;
besides, it only works on the Capability description of a Web Service. This pre-
sumes that the Web Service Capability completely and correctly describes the
functionality of a Web Service, which might be considered as an unrealistic as-
sumption for many application domains like Semantic Web Service based eCom-
merce2.

 Additional Information Facilities in the Service Interface: another solution pro-
posed with regard to the eCommerce-related services is to define additional ‘in-
formation facilities’ for Semantic Web Services, that is a set of additional (and
perhaps standardized) functions that are invocable as part of the Web Service In-
terface in order to gather the needed information that is missing in the service de-
scription (and acquired in the other approaches by service execution). An example
would be a getProductPrice()-method that retrieves the price of a certain prod-
uct out of the internal product database. This approach is an application-specific
technique that contradicts the design of WSMO components as well.

It is obvious that this step of Web Service Discovery is very much dependent on specific
application scenarios or technologies, or it requires additional description elements which
are not defined in WSMO (and are not by intention). We do not claim the above mentioned
efforts to be wrong or not usable: they might serve as ideas and starting points for more
elaborated mechanisms for this step of Web Service Discovery. In any way, as there seems
not to be any generic solution, this step is considered not to be part of the general Web
Service Discovery provided within WSMO.

2 Imagine the Amazon.com Web Service and a Goal “buying a certain book for less than 10$”: the

Service Capability Description can not list the price for each product of Amazon, therefore one can
not be sure that the Amazon-Web Service can solve this Goal when following this purely logical
approach. For the sake of accuracy and simplicity of service descriptions, some sort of real-world
interaction with the service (or its provider) will have to take place.

2.3 Selection of a Service to be used

The final step of WSMO Web Service Discovery is to select one Web Service out of the
2nd step result set that shall be used to solve the clients Goal. This selection shall be based
on user preferences in relation to Web Service specific non-functional properties as defined
in WSMO Standard [8]. Although these aspects have not been elaborated in detail yet, the
WSMO reference implementation specifies a specific component “Selector” for this dis-
covery step [10].

3 A prototypical Implementation of WOOGLE

After outlining the overall conceptual model of Web Service Discovery within WSMO,
this section discusses the prototypical realization of WOOGLE on top of the First-order
Logic theorem prover VAMPIRE [7].

3.1 WOOGLE with VAMPIRE

VAMPIRE is a saturation based theorem prover for First-order Logic with equality and
since several years now one of the most powerful theorem provers for this kind of logic. In
our case, we want to reason about proof obligations in the WSML Service Description
Language. The precise proof obligation for WOOGLE will be discussed in detail in [13]. In
order to being able to use VAMPIRE for our problem, we need a translation of the proof
obligation (and hence WSML expressions) to First-order Logic with equality. In fact, this
is not a difficult task: The WSML language is inspired by and based on F-Logic [11],
which in wide parts (i.e. the non-monotonic part) can be mapped to First-order Logic [12].
Since WSML does not contain features of F-.Logic which give rise to non-monotonic be-
havior during inferences, the same translation can be used in our case.

In the following we briefly outline the formalization that is used in SWF. Since the for-
mal modeling of services and goals in WSMO is under development at present, this model-
ing might be adapted in the future. Clearly, this will not present a serious problem for our
approach, since it is rather unlikely that the proof obligations that we eventually have to
deal with are not expressible in First-order Logic with equality.

A goal is represented by two unary predicates g-post(x) which defines the set of in-
stances a user is interested in and g-eff(x) which specifies the set of desired effects. A ser-
vice is represented in the same way by two unary predicates ws-post(x) which defines the
set of instances that can be delivered by the service and ws-eff(x) which specifies the set of
effects that are caused by the service execution. All these four unary predicates P(x) are
formally defined by a formula ∀x.(P(x) ↔φ(x)), where φ(x) is an arbitrary F-Logic for-
mula which (possibly) contains x.

A service is considered to (canonically) match a goal, if the sets of desired instances and
effects are all completely delivered by the services. Formally, this means that we prove
∀x.(gs-post(x) → ws-post(x)) ∧ ∀x.(gs-eff(x) → ws-eff(x)) with respect to some collection
of ontologies. Often, this kind of match is called plug-in match.

Furthermore, the canonical definition of matching immediately suggests further and
slightly different notions of matching, namely: A service is considered to match (strong
contributing match) if it delivers parts of what the user wants to have (as specified in the

Goal) as the output and effects (but no other kinds of information or effects). Formally, this
means ∀x.(ws-post(x) → gs-post(x)) ∧ ∀x.(ws-eff(x) → gs-eff(x)). In this case the client
would have to consult additionally a couple of matching services (in this sense), if he is
actually interested in getting all the instances and effects that the Goal predicates specify.

An even weaker notion than the strong contribution match (commonly referred to as in-
tersection match) drops the requirement that the service does not deliver instances and
causes effects apart from those mentioned in the Goal. Formally, this is expressed by
∃x.(ws-post(x) ∧ gs-post(x)) ∧ ∃x.(ws-eff(x) ∧ gs-eff(x)). We call this notion (weak) con-
tribution match. In particular, this notion is appropriate, if the user is only interested in
getting some instance and effects that are specified in the goal. Clearly, the weak contribu-
tion match is the weakest possible notion of matching in our approach of formal modeling
of Services and Goals.

As the informal descriptions already suggest, the appropriate proof obligations to be
used for a specific discovery request depends on how the user interprets the sets of in-
stances and effects that he formalized as part of his request: If his intuition for this request
is that all elements of the set are needed in order to claim a match , then the plugin-criterion
is the appropriate one, whereas if his intuition is that the set of elements represents the set
of valid solutions to his problem and that only some of these elements are actually needed
to resolve his Goal, then the (weak) contribution matches would be the suitable notions for
modeling his desire. Furthermore, we can imagine that it is also useful to allow the usage of
different of these notions to the postcondition part and the effect part in the same proof
obligation. Please note, that all this kinds of notions (and any combined notions as well)
can principally be supported by our prototype.

In summary, this means that a discovery request in our modeling approach not only con-
sits of a Goal specification, but additionally the user gives some additional information
about his intention with the given modeling by explicitly (or indirectly) selecting the ap-
propriate notion of matching that is to be applied when processing his discovery request.

3.2 Advantages and Shortcomings

We came up with a rather general approach that allows to deal with a very rich modeling
language (WSML-FOL, as well as everything that can be mapped into WSML-FOL, e.g.
WSML-Core and WSML-DL). This allows us to deal with WSML descriptions on a very
general level with the least possible efforts. In particular, the most difficult component, the
deduction system has been reused almost without any efforts. Now, we are in a suitable
position to look at actual use cases and evaluate this rather naïve approach for implementa-
tion of WOOGLE in a concrete application context.

On the other hand, First-order Logic is a very expressive logic and thus there are no

computational guarantees for finding proofs (or recognizing that such a proof can not be
found) like in less expressive formalisms, e.g. Description Logics. This might be a problem
in general, but does not necessarily have to be a problem in our specific applications. For
instance, in [15] it is shown that VAMPIRE can indeed be used for Description Logic rea-
soning without extreme drawbacks in comparison to specialized and highly optimized
inference systems. Indeed, one needs to perform actual and realistic experiments to make a
meaningful statement in this regard.

The architecture of VAMPIRE at present does not seem to support the maintenance of a
knowledge base. That means that all ontologies to which Goal and Service descriptions

refer to have to be (re)loaded for every proof task. Clearly, this is not desirable and has to
be resolved for complex applications where we have to deal with big ontologies.

Most Description Logic and Logic Programming systems support so-called concrete
domains (like integers and strings) and operations on these domains (+, <, substring) by an
extra-logical component in order to compute these operations efficiently. Such a compo-
nent is not present in any First-order Logic theorem provers and integrating such a compo-
nent is not straightforward. Instead, dealing with concrete domains is realized by axioma-
tizing these domains. Unfortunately, this method (although more general) is less efficient
for many standard tasks, e.g. computing the value of the product of two given integers.

At present, we only implemented a straightforward translation of WSML-FOL to First-
order Logic. On the other hand, as experience in translation-based theorem proving for
logics like Modal Logics or Description Logics show, the efficiency of a theorem prover
can significantly be improved by using a suitable (clever) translation. For instance in [15] it
is demonstrated that some sort of preprocessing and filtering during the translation process
can drastically prune the search space for the prover. Clearly, our translation has to be
carefully analyzed and optimized in this respect in the course of a concrete use case.

In conclusion, we can summarize that we have chosen this translation-based approach (and
VAMPIRE) for building a reasoner for WSML-FOL to primarily come up quickly with a
system that allows us to actually experiment with service discovery using WSML (in par-
ticular WSML-FOL) and that is flexible enough to easily allow to adapt to changes in the
style of formal modeling of Goals and Services and thus the proof obligations that have to
be established by the system. Moreover, VAMPIRE is the most powerful deduction system
for First-order Logics at present and thus it makes perfect sense to start with this system as
the underlying deduction system for our reasoner and the discovery component. It is impor-
tant to note that we conceptually have only a loose coupling of our system to VAMPIRE:
the proof obligation actually is serialized according to TPTP format [14], which is the de-
facto standard for automated theorem proving systems and can be used as an input format
for all available major ATP systems for First-order Logic. Thus, we principally can ex-
change VAMPIRE at any point in time without any efforts.

4 WOOGLE meets Semantic Web Fred

As an overview of the background on the WOOGLE development in Semantic Web
Fred, we outline the usage of WOOGLE in SWF and explain its realization within the SWF
GS Discovery Module as an example for integration into a WSMO-enabled application

4.1 SWF Overview

The aim of the SWF project is to develop advanced mechanisms for cooperative goal
resolution within the FRED system, and agent platform developed by Net Dynamics
(www.netdynamics-tech.com), and to align these with Semantic Web Service technologies
emerging around WSMO. In SWF, Goals are solved within cooperations between agents
(called Freds): each Fred has a Goal to be solved, and it needs Services to automate the
goal resolution. SWF distinguishes between Goal Schemas as predefined Goals, whereof
Goal Instances can be created that are assigned to Freds for resolution. Goal Schemas are
WSMO Goals, while Goal Instances hold additional information (a ‘submission’ as the

data that are submitted as Input to a Service, the Goal Owner id, and resolution status in-
formation). Services in SWF are described as WSMO Web Services. Similar to WMSO,
ontologies are used as the data model throughout the whole system, and WSMO Mediators
can be included to resolve possibly occurring heterogeneities.

Figure 1. SWF Architecture

Figure 1 shows the overall architecture of SWF, wherein three discovery mechanisms

establish cooperative goal resolution between Freds. After a successful pass through all of
these mechanisms, the Freds are sent into a Meeting where the cooperation contract is
executed.

• GG Discovery. At first, potential cooperation partners have to be detected by
matching Goal Instances assigned to Freds. Goals are considered to be compatible if
their objects of interest (i.e. the postconditions and effects) match, and when the co-
operation roles of the Goal Instance owners are compatible.

• GS Discovery. Next, each partner has to find the Services that he needs for the co-
operation. Therefore, GS Discovery detects suitable Services available in the system
similar to Web Service Discovery.

• WW Discovery. For automated execution, the Services detected in GS Discovery
need to have compatible Choreography Interfaces. WW Discovery checks this, re-
sulting in a choreographed service execution model.

In fact, these mechanisms increase the rate of productive meetings (i.e. wherein Goals
are really resolved): they do not predict success of a meeting because some aspects will
never be determinable by description only – never mind how elaborated discovery mecha-
nisms are.

4.2 The GS Discovery Module of Semantic Web Fred

The WOOGLE facility is incorporated into the SWF GS Discovery Module. This is real-
ized as an open-source Java-Module which consists of the following elements that are
needed for every system integration of WOOGLE3.

Registry API. Interface to retrieve component descriptions out of a Registry / Reposi-
tory. Here, this is realized for the WSMO Registry [3].

WSML Parser and Translator. Out of the components’ descriptions in WSML [1,8],
and abstract representation is derived which is then transformed into the format required
by the theorem prover, e.g. the TPTP format supported by all major FOL theorem
provers like VAMPIRE.

Prover and ProverConnector. The component which actually tries to establish a proof
for given proof obligations and the component which abstracts away from how to locate
and talk to a specific deduction system. The prover connector for instance can be used
realize easily a distributed network of provers which can dynamically grow and shrink
(on top of a Tuple-space blackboard infrastructure) in order to address scalability of the
system.

GS Discoverer. Defines the control structure for the GS Discovery process, i.e. receives
a Goal and Service descriptions as input and determine the result set of the discovery.
The SWF GS Discoverer integrates WOOGLE as well as a solution for the 2nd step of
Web Service Discovery as outlined above.

5 Conclusions and Future Work

In this paper we have outlined the general approach for Web Service Discovery in
WSMO, and we have defined the conceptual model as well as means for realization of
WOOGLE. As a basic but powerful discovery mechanism for Semantic Web Service,
WOOGLE is intended to be provided as a standard discoverer within WSMO. Although
the overall Web Service Discovery is comprised of further and extendable steps,
WOOGLE is a generic solution that is compliant with the WSMO. We also outlined the
position of WOOGLE in SWF as an example for integration into a more complex Semantic
Web Services system

Future work is to evaluate the performance of our prototype implementation of
WOOGLE, to identify and realize potential for optimization, and to provide a WOOGLE
prototype with a Web Service Interface for seamless integration into other WSMO-enabled
systems on the WSMO Web Server for demonstration purposes. Besides, the work pre-
sented here is considered as a working proposal for definition of a final overall framework
for Web Service Discovery in WSMO.

3 All sources of the GS Discovery Module along with a Use Case for SWF and some documentation

are available at the web interface of the SWF CVS at: http://cvs.deri.at/cgi-bin/viewcvs.cgi/swf/.

Acknowledgement

The work presented is funded by the Austrian government under the CoOperate pro-
gramme 2003, and by the European Commission under the IST projects DIP and SWWS.
We like to thank the WSMO working group for fruitful input; special thanks go to Michael
Kifer, Holger Lausen, Ruben Lara, and Axel Polleres for intensive and helpful discussions
and to Net-Dynamics for likewise fruitful input and support for the realization Service
Discovery within Semantic Web Fred.

References

1. de Bruijn, J. (ed.): WSML-Core. WSML Work Draft D16.7, 13 August 2004.
2. Fensel, D.; Bussler, C.: The Web Service Modeling Framework WSMF. Electronic Commerce

Research and Applications, 1(2), 2002.
3. Herzog, R.; Zugmann, P.; Stollberg, M.; Roman, D.: WSMO Registry, WSMO Working Draft

D10, 26 April 2004.
4. Lara, R.; Roman, D.; Polleres, A.; Fensel. D.: A Conceptual Comparison of WSMO and OWL-S.

To appear in Proceedings of the European Conference on Web Services (ECOWS'04).
5. Keller, U.; Lara, R. (ed.): Inferencing support for Semantic Web Services. Proof Obligations.

WSML Working draft D5.1, August 2nd, 2004.
6. Kifer, M.; Lara, R.; Polleres, A..; Zhao, C.; Fensel, D.; Keller, U.; Lausen, H.; Stollberg, M.: A

Logical Framework for Web Service Discovery. Submitted to the ISWC 2004 Workshop on Se-
mantic Web Services: Meeting the World of Business Applications.

7. Riazanov, A.; Voronkov, A.: The design and implementation of VAMPIRE. AI Communications
15(2), Special issue on CASC, pp. 91 -110, 2002.

8. Roman, D.; Lausen, H.; Keller, U. (eds.): Web Service Modeling Ontology - Standard (WSMO -
Standard) v 1.0, WSMO Working Draft D2, 16 August 2004.

9. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services, version 1.1, 2004.
10. Zaremba, M. (ed): WSMX Architecture. WSMX Working Draft D13.4, 22 June 2004.
11. Kifer M. ; Lausen G.; Wu J.: Logical Foundations of Object-Oriented and Frame-Based Lan-

guages, Journal of the ACM 42(4), pp. 741-843, 1995.
12. Fensel D. ; Decker S. ; Erdmann M. ; Studer R.: Ontobroker: How to make the WWW intelligent,

Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based Systems, Workshop
(KAW98) (Banff, Canada), 1998.

13. Keller, U.; Lara, R; Polleres A.. (ed.): Discovery of Semantic Web Services. WSML Working
draft D5.1, to appear at www.wmso.org/wsml.

14. Sutcliffe G.; Suttner C.: The TPTP Problem Library for Automated Theorem Proving. See:
http://www.cs.miami.edu/~tptp/

15. Tsarkov D.; Horrocks I.: DL Reasoner vs. First-order Prover. In Proc. of the 2003 Description
Logic Workshop (DL 2003), volume 81 of CEUR, pages 152-159, 2003.

16. Bachmair L.; Ganzinger H.: Resolution Theorem Proving, Chapter 2 in Handbook of Automated
Reasoning, Vol. I, A. Robinson and A. Voronkov (Eds.), pp. 19-99, 2001

