Using WSM X to bind Requester & Provider at
Runtime when Executing Semantic Web Services

Matthew Moran, Michal Zaremba, Adrian Mocan, Christopls$er

Digital Enterprise Research Institute, DERI, Ireland
{nmatt hew noran, mchal.zarenba, adrian.nocan,
chris.bussler}@leri.org

Abstract. Since its introduction, Web Service technology has promieed t
revolutionize how businesses can release their servicesdmabtogy to the
world over the Internet. However, the widely accepteddsteds underpinning
Web Services do not solve the problem of how autonomousrolgeneous
services can be discovered, mediated and invoked at runtimeervice
requesters. Requesters can locate services in publicriegisut, at design
time, they still have to interpret the provider’'s intehtvhat the service means
and how it should be invoked. The Web Services Modelling Exatuti
Environment, WSMX, is a framework that facilitates segvirequesters in
discovering, selecting, mediating and invoking Web Servio#fiered by
providers at runtime.

1 Introduction

Despite being based on widely accepted standards, WeltesStgghnology has not
realized its potential for revolutionizing internet-tihsentegration between
companies. One of the significant stumbling blocks daisting Web Services
framework is that there is no common understandingeofrtbaning of the data input
and output by Web Services. The implication is that autiomdiscovery and
invocation of Web Services is not possible in an agperironment. As a consequence
service requesters need to know and bind to servicéderevat design time.

WSMX is an implemented software framework that allowd 8ervices whose
semantics have been described in a formal language ttisbevered, selected,
combined and invoked. Semantics is the formal meaningradus aspects of Web
Services that allow machines to reason about, and inVkk Services with a
minimum or no human intervention. WSMX is a referencelémentation for the
Web Service Modelling Ontology, WSMO [1], and has itanfdation in the Web
Service Modelling Framework, WSMF [2]. In particular, WXMadopts the
principles advocated in the WSMF of strong decoupling betwgsiem components
and a strong scalable mediation service that enabbegbmdy to speak to everybody
else.

Bind Provider

Requester (WSDL)

A

v SOAP .
Find Publish

Registry
(UDDI)

Service
Description

Figurel. IBM WS Model [3]

The Web Service architecture proposed by IBM in [3]lisstrated in figure 1
and is typical of current Web Service technology. A iserprovider syntactically
describes his service using WSDiAnd publishes the service description to a service
registry. Service requesters can search the registrg fiarticular service and once
located, can write code in whatever language they washind to this service. In this
model web services are based on the open standardETéP br communication,
SOAR for messaging, WSDL for service description, and UTIBM discovery. This
model of Web Services has the important feature of beimguage independent. A
service developed in C++ and published to UDDI by a provider Ine accessed by a
Java application written by a service requester. Howeaxggn with the standards
mentioned above, the process required by a service reqte$teate one or more
Web Services and then to invoke these services renaimanual task requiring
significant up-front knowledge or assumptions aboustregices.

The nature of the manual steps a service requester hiaketocan be best
illustrated through a simple example of locating and usingeh Bérvice to book a
train ticket for travel in Germany or Austria. Thesfistep is to search for a suitable
service in a UDDI service directory. The requesterinigy looking for services with
the name ‘Train Ticket Reservation’. If no servicesravlocated, they might try a
search on ‘Book Train Tickets' or even ‘Fahrschein Resaing'. If a service is
located in the registry, the service description cachieeked to see if the service fits
the requester’s requirements. However, as service desnpspirovided in UDDI are
informal, the requester needs to be able to intetpestmeaning and assume that their
understanding is the same as that intended by the serviédgr@@nce the requester
is satisfied with a web service, the associated W8Btument provides a syntactic
description of the groundings available for the servim\ahat input and outputs the
service expects. The input and output messages are describ@dL, optionally
using an XML schema. Again, the requester must intetipeaneaning of the parts of
the input and output messages. To make an invocatidre &Veb Service, they may
have to adjust their data to fit the service descriptwftware such as the SOAP
implementation provided by Apache Axisan generate client and server stubs based

1 Web Services Description Language (WSDL) 1.2, W3C WorKirgft, 3 March 2003
2 Hypertext Transfer Protocol — HTTP/1.1, June 1999

3 SOAP version 1.2, W3C Recommendation, 24 June 2003

4 OASIS UDDI v2 specifications (http://www.oasis-open.prg/

5 Apache Web Services Project. http://ws.apache.org/axis

on the WSDL for a Web Service. The stubs in thigednare Javaclasses that can
be used by the requester to invoke the web service. Sttielg the requester from the
complexity of interpreting the WSDL by providing a Java ARbwever they do not
change the fact that the service requester still hagerpret the meaning of the data
required by the Web Service.

In this example the binding between the service requasteservice provider is
hard-wired at design time. If the requester wants to bookhar train ticket later for
cities not supported by the initial Web Service, thell have to start the whole
process of finding and binding to a suitable service again.

2 Requirementsfor Runtime Binding

Many of the problems identified in the previous sectidseafrom the absence of
formal semantic descriptions for all aspects of WebiSesy This is particularly clear
in the area of service discovery using UDDI and makingtteal service invocation.
Formal descriptions based on mathematical logic can eeispty interpreted and
reasoned about by computer systems. In terms of Sem@#lr technology,
ontologies provide the model and vocabulary for creating sledtriptions. An
extensive discussion on ontologies and their importancéegoSemantic Web is
provided in [4]. Discovery systems based on formal serg&scriptions would allow
the requester to provide a description of the serhieg tequired and would provide a
matching service. However there is no guarantee thatateetypes of the input and
output required by the matching service would match the did¢ned by the
requester. A data mediation service that would allow mmtiransformation from
data described in the requester’s ontology and data bedcin the provider’s
ontology is needed.

Formal descriptions need to be interpreted and used. Amoemeént that can
interpret the descriptions and carry out activities sashservice discovery and
invocation is required. The environment should provide sintgerfaces that shield
the environment users from the complexity of how the enwirent is implemented.
The environment should have a modular construction whermpaorents have well
defined functionality and interfaces. Ideally it should gmssible to interchange
implementations for specific components without havimgebuild the environment.
The environment should have access to a repositorydiong formal descriptions of
services. The repository should allow Web Service gasams to be added, modified
or removed at any time without affecting the environtrstability.

The overall goal of the environment should be to allovitiest acting as service
requesters, to provide a formal description of a seittieg want to the environment.
Based on this description the environment should carryalh the steps required to
discover, and invoke a matching service.

8 http://java.sun.com

3 Semantic Web Service Execution with WSM X

3.1 WSMX Overview

The Web Services Modelling Execution Environment, WSMX, ifba software
framework that allows runtime binding of service requesterd providers. WSMX
uses Semantic Web technology to discover, select, neeatiat invoke Web Services
based on the formal descriptions of various aspectediMeb Services themselves as
well as the formal descriptions of service requestetsgda achieve their goal a
service requester formally describes the goal and setm¥MSMX. Taking this goal
description, WSMX searches its repository of Web Serdescriptions for any
Services whose descriptions match the goal. If mone dn@ matching Web Service
is found, WSMX selects the most suitable one basegreferences provided by the
service requester. WSMX then ensures that the datédprbin the service invocation
is in the format that the Web Service expects. Thisadjpe of data mediation is
possible as all the data representations used in tbethgoal and Web Service
descriptions belong to concepts described in ontologiesviknto the WSMX
environment.

The operations of discovering and selecting a Web &ermatching the requester
goal and, then mediating data before finally invoking\Web Service, are all taken
care of by WSMX. The service requester does not nekddw in advance the data
format expected by the service provider. As long as theptatided in the goal are
defined by concepts in an ontology known to WSMX andppitegs have been
defined between the concepts in that ontology and thelogy of the service
provider, WSMX will be able to fulfil the goal. Additiong]lif a new Web Service
description that can better satisfy the requester gaabide available to WSMX at a
later stage, WSMX will be able to select this Webvige to carry out the task
without the service requester having to take any additamiens.

3.2 A Conceptual Model for WSM X

The operation of WSMX is made possible by its use of Sem#itb technologies,
in particular the application of the Web Service Madell Ontology, WSMO.
WSMO is an ontology that describes various aspecttedeta Web Services. The top
level concepts in WSMO are goal, web service, mediatat ontology. A full
description of the conceptual model of WSMO is provided ind1jrief description
follows in this paper for completeness.

Goals describe what a service requester wishes tovacfibe main elements of a
goal are the post-condition and effect, both of which described as logical
expressions. Post-conditions describe what happensns tdrdata within a system if
the goal is achieved while effects are real worldoagtithat follow from successful
achievement of the goal. For example, in the case gjdhkto buy a train ticket, the
post-condition might be that the credit card billing sgstis invoked to debit the

provided credit card number. The effect might be thatkat is printed and posted to
the service requester.

Web Services are defined in terms of the capabiligy they offer, the interfaces
they provide, and the mediators that they can use. apabdity of a web service is
what is used when matching the requester goal. Capabiliiwe pre- and post-
conditions as well as assumptions and effects. As witjoad, the pre- and post-
conditions are functions on the input and output datahef gervice, while the
assumptions and effects are based in the real-worlddiBhevery of a Web Service
capability that matches a requester Goal happens at euntinthe example of the
train ticket booking, WSMX will check for the best seevidescription for booking
train tickets matching the requester’s goal each timgdakis sent to WSMX. This
means that if a new service provider provides a newcgar description for booking
train tickets to WSMX, it becomes immediately avakafar use without any changes
to the environment.

Mediators provide a way to transform data describedchan apnceptual model to
data in a another conceptual model. Data mediation iIMMWI described later in

this paper.

wafiries Hon Furctionl Pogerios

b ¥
3 wee = o] Gapabiity (4 e WehXGeal |4 spectishy | peay
t Zanic 3 apability [4—— H ol " = Brance
e by s definad al] sabisfed by - ‘..'_Seu?!cdw
pronidos T 1 s T .Tt:‘-’-l:---e
ppenacied
b -
—»l Business
e Pe"l":e’m | usaings o
i
o * T recaivas
[E- L & | it of
lllll 1 " e by === et al ———
OOMediator | . rﬂnmbgy L Maszage
58S . I_ “J > sepida
« hpana fBCHN « |
DONEHRS ® conters ¥

—I iy i = sa
RelationDefinition [4. <s¢||.-m} ConcepiDefinition
natweon

Figure2. WSMX-O [7]

WSMX has a specific aim to address the problems adsdciwith B2B
integration. When identifying the concepts required forN¥S$ a first step was to
start with the conceptual model provided by WSMO and tixeend it by looking at a
simple problem from the B2B [6] domain. Two business nmg want to
communicate with each other in a business transaetignone wants to send a
purchase order to the other. Each business partner udéferant ontology for
describing business documents and each of these ontalogyesse one or more data
mediators. This simple example led to the definition ofomceptual model for
WSMX called WSMX-O [7], shown in figure 2, that contairem® concepts not
present in WSMO. These concepts are WSMXGoal whicmestéhe Goal concepts

of WSMO, Business Partner, Preference that a BusinageeP may have, and
Message. WSMX-O is described fully in [7].

There are several languages that can be used to represeontepts of WSMO,
as described in [8]. WSMX extends one of these languagssMCore [9] to
include the additional concepts in WSMX-O.

3.3 WSMX Execution Semantics

The execution semantics of a system is the formal definof the operation of that
system. Execution semantics provide an unambiguous defirafibhe operational
behaviour of the system. Once a system's operdi@ves been modelled in this way,
using a formal methodology, simulations can be run tolcfe deadlocks, livelocks
and the effects of specific stimuli to the system. Daadmeans a situation in which
two or more processes are prevented from continuingevelaith waits for resources
to be freed by the continuation of the other. Livkl@accurs where a system never
reaches its termination state e.g. an endless loop.€ekkcution semantics of the
current version of WSMX are modelled using classicati Pets and are described
fully in [12].

Formal execution semantics allow the separation obpleeational description of
WSMX from the implementation of the individual compote In future versions of
WSMX, this will provide the powerful feature of allovgrthe execution semantics to
be modified and extended without requiring any software teweitten.

3.4 WSMX Architecture

WEMO Edisor

HETWORK
______ 1
; Back-gnd |
applicaton | IWEHX Marssger
U 1
______ ol [wenex [WSHX Manager Core |
& Maraga:
§ Listaner Mossage Events Parsar MNatchMakp Selectar Mediator I-_m:l::q
_____ i Sennes Seannis Listanar Listisnas Listenar Listarer Listener
™ agent | B
§ Beting an | £ §
bahalf of § - PR [oo L
1 o i
| User | g : |t’:cﬂ\-~n-|¢hI I MatehiMaked ‘ [E-ulndﬂr] |M‘nnalor| Crar | | Ikt l
| Fescurces hanager l
Ewvanis Repcsiiory Oniology Repositony WSMO Registry Reasoner
— — ,_.———__3
U —— = —— —
e =% - l D10 vo.1 Flora/X58 -]

Figure 3. WSMX Architecture

A full description of the architecture of WSMX is deserl in [10] while a brief
outline is included here for completeness. There areope@rational aspects to the
WSMX Architecture — compilation and execution. Compilatis the mechanism for

making elements relating to Semantic Web Services rdéadyse by WSMX.
WSMX-O descriptions of Web Services, Ontologies and Mediatwritten in
WSML, are compiled to WSMX. Execution, in the simples$e; means discovering
and invoking the right web service to carry out antligoal. In more complex cases,
execution could mean multiple discovery and invocation atjmers on different web
services carried out in a controlled process. It isctrapilation aspect that allows
new service descriptions to be added to WSMX at any timdependent of the
execution aspect of the environment.

This paragraph briefly describes how each componeys i part in getting from
a description of a requester’s goal to the invocatfom matching Web Service. The
architecture, shown in figure 3, has been implememiethé first version of WSMX.
The WSMO Editor is used to create WSMO descriptions of web services,
ontologies, mediators and goals. WSMX provides a WSérfice to accept these
descriptions and direct them to th@ompiler component. Compilation means
validating the descriptions and storing them persisténttiie Ontology Repository.
The WSM X Manager controls the operational flow of the system implementire
execution semantics. TMISM X Manager regularly scans for new messages. Once
a new message representing a requester goal is picked apiranslated into an
internal persistent WSML representation by the Mes$agser. TheM atchmaker
then carries out discovery to match the client goa tapability of Web Services
known to WSMX. TheSelector component selects the web service that provides the
best match for the goal based on service requester gmeée. If necessary timta
Mediator mediates between the data (instance of ontology pts)gerovided by the
requester and those expected by the service provider. @Qecelata has been
mediated, thénvoker makes the actual web service invocation on the teelegeb
service using the mediated data.

3.5 Mediation in WSM X

As mentioned earlier, mediation is a key feature requioeallow requester goals
be matched to Web Services dynamically. WSMX does natnasghat all web

services share one conceptualization of the world. Rétkegkes the view that the
applications represented by Web Service interfaces ammally heterogeneous
and autonomous. This gives rise to the need for mediatiatata, process and
business protocol levels. This version of WSMX starts wlith problem of data
mediation. An overview of data mediation in WSMX it in figure 4 while a

complete description can be found at [11].

Business
Partner
Execution

Environment Information
uses communicate
(WSMX) System

Mediator uses
Component

Ontology 1

Figure4. Data Mediation in WSMX [11]

The Execution Environment communicates with a Businessné?aand an
Information System each using a different ontology. Wheset of instances have to
be passed from the Business Partner to the Informa&igsiem the Mediator
Component is called to perform the transformation frooree to the target format.

3.6 WSMX Implementation

The first version of WSMX architecture has been lemgented through the open
source projeétand is described in detail at [13]. This implementatiomforthe
backbone for an environment which can host components opexklby anybody
interested contributing to WSMX. The implementation of MXS server remains
minimal but complete. All components are in place withl defined interfaces and
the executions semantics described for the systemeiational. In the case of some
components, only a simple implementation of functiondiiag been carried out to
make these components operational.

The importance of implementing WSMX has been to prove #igity of the
design, execution semantics and architecture. With thisemmgitation of WSMX
server, we also provide an implementation of a back-eptication system that can
take the role of a service requester by generating gsatigéons and sending these
to WSMX via a Web Service interface. As a resultisialready possible to issue
requester goals from back-end application, carry out disgaved data mediation
before finally invoking a specific Web Service offeredebprovider.

4 Reated Work

The work referenced here is viewed from Semantic Wehi&s are still a relatively
new research area but one in which there is consigeiraierest. In this section we
compare other approaches to execution environmenid/étr Services particularly
from the perspectives of when the binding of requesterawder is made

Biztalk Servet is Microsoft’s platform for EAl and Business Procé&snagement
and is based on XML and Web Service technologies. IRiatéfers two core

"WSMX at sourceforge — http://sourceforge.net/projectsivs
8 Microsoft Biztalk Server, http://www.microsoft.cobiztalk/

functions: a process execution engine and a messaging hwiceSeused when
executing processes with Biztalk must be identified inaade and bound to the
process steps at design time.

IRS [14] is a Web Service execution environment develdpethe Knowledge
Media Institute of the Open University. The conceptuatieh for IRS and WSMX is
very similar and both initiatives have roots in #BR0OW project [18]. The most
recent version, IRS3, is WSMO compatible and will lteao interoperate with
WSMX. With IRS3, a service provider can create a WSs&dvice description that
can be published against their service on the IRS&isefhe actual implementation
of the service might be in Java or in another languagh as Lisp. Once a Web
Service description is available, a goal can be deestiin WSMO and bound to the
published Web Service description using a mediator. The lgjrwlithis case is still at
design time but the use of mediators to link goals and ssrvemoves the manual
hard-wiring required for standard Web Services.

[15] implements an approach to dynamic binding of Web Sesvy augmenting
the BPWS4Jimplementation of BPELAWSwith a semantic discovery service. This
is prompted by the limitation of BPWS4J of not allowidgnamically discovered
services to be assigned to partner roles. Additionalyauthors point out that the
BPEL4WS specification itself restricts the descriptibrservice partners to syntactic
WSDL portType definitions. Their solution is to buildVdeb Service that can
discover custom service partners at runtime based on DBNI6] descriptions of
these services. This discovery service is then bourdBBWS4J process at design
time. This is an imaginative solution. In WSMX we buihds functionality into the
environment from the beginning.

Meteor-S WSDI [17] proposes a method of adding semartidd/aéb Services
descriptions and then publishing those descriptions in Uegiktries. They provide
tools to map WSDL descriptions to ontology-based seimdescriptions and propose
that such descriptions could be used successfully for Webc8ealiscovery if the
user service requirement could be described in terms afeptm from the same
ontologies. The main body of the paper describes antectinie and implementation
for a P2P-based scalable infrastructure for accessittipta registries. The design of
public registries for hosting WSMO descriptions has resnbconsidered yet in the
WSMX design.

5 Conclusion

WSMX already provides a conceptual model, architectureirmptementation of a

Semantic Web Services execution environment thatvalla goal provided by a
service requester to be matched to a Web Servicetitneiand for this service to be
executed. WSMX combines the technologies of the Semafgicand Web Services
and is a reference implementation for WSMO. The fiession of WSMX provides a
robust service oriented architecture that provideamdmwork for ongoing research in
the area of Semantic Web Services and in particulaV®&MO.

9 BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4;
10 BPEL4WS, http://www-106.ibm.com/developerworks/library/wstbpe

6 Acknowledgments

The work is funded by the Science Foundation Ireland uhéeDERI Lion project.

7 REFERENCES

1. Roman, D., Lausen, H., Keller, U.: The Web Service MindeOntology Standard
(WSMO-Standard) v0.2, 6 March 2004, Digital Enterprise Rekdastitute. Available at
http://www.wsmo.org/2004/d2/v0.2/20040306/

2. Fensel, D., Bussler, C.: The Web Service Modeling Framewd&/SMF. Electronic
Commerce Research and Applications, Vol. 1, Issue 2, ElsBuience B.V.

3. IBM Web Services Conceptual Architecture, IBM, availadile
http://www-306.ibm.com/software/solutions/webservices/pdf/\APaf

4. de Bruijn, J.: Using Ontologies, Enabling Knowledge SharingReuse on the Semantic
Web, DERI Technical Report, DERI-2003-10-29, available at:
http://www.deri.ie/publications/techpapers/documents/DERI-TB3200-29. pdf

5. Oren E., Zaremba, M., Moran, M.: Overview and Scop&/&MX. WSMO Working
Draft v0.1, 11 June 2004, Digital Enterprise Researditute, available from
http://www.wsmo.org/2004/d13/d13.0/v0.1/20040611/

6. Bussler, C.: B2B Integration, Concepts and Architecturen§eriVerlag, 2003, ISBN 3-
540-43487-9

7. Cimpian, E., Mocan, A., Moran, M., Oren, E., Zaremida, WSMX Conceptual Model.
WSMO Working Draft v0.1, Digital Enterprise Research ts¢i (DERI), available from
http://www.wsmo.org/2004/d13/d13.1/v01

8. Oren, E., Lausen, H., de Bruijn, J.: Languages for WSMGMO Working Draft, 3
August 2004, available at: http://www.wsmo.org/2004/d16/d16.2/20040803/

9. de Bruijn, J., Foxvog, D., Oren, E., Fensel, D.: WSMLe&CWSMO Working Draft, 23
August 2004, available at:
http://www.wsmo.org/2004/d16/d16.7/v0.1/20040823/

10. Zaremba, M., Moran, M., Oren, E., Cimpian, E., MgcA.: WSMX Architecture, WSMO
Working Draft v0.1, 22 June 2004, available at:
http://www.wsmo.org/2004/d13/d13.4/v0.1/20040622/

11. Mocan, A., Oren, E., Cimpian, E. Moran, M., Zaremba, WISMX Mediation, WSMO
Working Draft v0.1, 28 June 2004, Digital Enterprise Reseastitute (DERI), available
from http://www.wsmo.org/2004/d13/d13.3/v0.1/20040628/

12. Oren, E.: WSMX Execution Semantics. WSMO Working Draft,\&1/5/04. available at:
http://www.wsmo.org/2004/d13/d13.2/v0.1/20040531/index.pdf

13. Moran, M., Zaremba, M., Cimpian, E., Mocan, A., Qré&: WSMX Implementation,
WSMO Working Draft v01, 19 July 2004, available at:
http://www.wsmo.org/2004/d13/d13.5/v0.1/20040719/

14. Motta, E., Domingue, J., Cabral, L., Gaspari, M.:4R8 Framework and Infrastructure
for Semantic Web Services in D. Fensel et al., (E@&¢: Semantic Web — ISWC 2003.
Lecture Notes in Computer Science, Vol. 2870. pp 306-318, dapsWerlag, Heidelberg
(2003).

15. Mandell, D. J., Mcllraith, S. A.: Adapting BPEL4AWS fdret Semantic Web: The Bottom-
Up Approach to Web Service Interoperation. D. Fensel gffals.): The Semantic Web —
ISWC 2003. Lecture Notes in Computer Science, Vol. 2870. pj22a7Springer-Verlag,
Heidelberg (2003).

16. DAML Services Coalition. DAML-S and OWL-S. http://wwwahhorg/services/

17.

18.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oukahss., Miller, J.: METEOR—
S WSDI: A Scalable P2P Infrastructure of Registries $mmantic Publication and
Discovery of Web Services, available at: http://Isdisaga.edu/lib/download/MWSDI.pdf
Benjamins, V. R., Plaza, E., Motta, E., Fensel Suder, R., Wielinga, B., Schreiber, G.,
Zdrahal, Z., Decker, S.: An intelligent brokering sernfimeknowledge component reuse
on the World-Wide-Web. Gaines & Musen (Eds.)," 1%orkshop on Knowledge
Acquisition, Modeling and Management, Banff, Canada, 1998.

