
Using WSMX to bind Requester & Provider at 
Runtime when Executing Semantic Web Services  

Matthew Moran, Michal Zaremba, Adrian Mocan, Christoph Bussler 
 

Digital Enterprise Research Institute, DERI, Ireland 
{matthew.moran, michal.zaremba, adrian.mocan, 

chris.bussler}@deri.org 

Abstract. Since its introduction, Web Service technology has promised to 
revolutionize how businesses can release their services and technology to the 
world over the Internet. However, the widely accepted standards underpinning 
Web Services do not solve the problem of how autonomous, heterogeneous 
services can be discovered, mediated and invoked at runtime by service 
requesters. Requesters can locate services in public registries but, at design 
time, they still have to interpret the provider’s intent of what the service means 
and how it should be invoked. The Web Services Modelling Execution 
Environment, WSMX, is a framework that facilitates service requesters in 
discovering, selecting, mediating and invoking Web Services offered by 
providers at runtime.   

1 Introduction 

Despite being based on widely accepted standards, Web Service technology has not 
realized its potential for revolutionizing internet-based integration between 
companies. One of the significant stumbling blocks for existing Web Services 
framework is that there is no common understanding of the meaning of the data input 
and output by Web Services. The implication is that automatic discovery and 
invocation of Web Services is not possible in an open environment. As a consequence 
service requesters need to know and bind to service providers at design time.  

WSMX is an implemented software framework that allows web services whose 
semantics have been described in a formal language to be discovered, selected, 
combined and invoked. Semantics is the formal meaning of various aspects of Web 
Services that allow machines to reason about, and invoke Web Services with a 
minimum or no human intervention. WSMX is a reference implementation for the 
Web Service Modelling Ontology, WSMO [1], and has its foundation in the Web 
Service Modelling Framework, WSMF [2]. In particular, WSMX adopts the 
principles advocated in the WSMF of strong decoupling between system components 
and a strong scalable mediation service that enables everybody to speak to everybody 
else.  



 

Figure 1. IBM WS Model [3] 

The Web Service architecture proposed by IBM in [3] is illustrated in figure 1 
and is typical of current Web Service technology. A service provider syntactically 
describes his service using WSDL1 and publishes the service description to a service 
registry. Service requesters can search the registry for a particular service and once 
located, can write code in whatever language they wish, to bind to this service. In this 
model web services are based on the open standards of HTTP2 for communication, 
SOAP3 for messaging, WSDL for service description, and UDDI4 for discovery. This 
model of Web Services has the important feature of being language independent. A 
service developed in C++ and published to UDDI by a provider may be accessed by a 
Java application written by a service requester. However, even with the standards 
mentioned above, the process required by a service requester to locate one or more 
Web Services and then to invoke these services remains a manual task requiring 
significant up-front knowledge or assumptions about the services.  

The nature of the manual steps a service requester has to take can be best 
illustrated through a simple example of locating and using a Web Service to book a 
train ticket for travel in Germany or Austria. The first step is to search for a suitable 
service in a UDDI service directory. The requester might try looking for services with 
the name ‘Train Ticket Reservation’. If no services were located, they might try a 
search on ‘Book Train Tickets’ or even ‘Fahrschein Reservierung’. If a service is 
located in the registry, the service description can be checked to see if the service fits 
the requester’s requirements. However, as service descriptions provided in UDDI are 
informal, the requester needs to be able to interpret the meaning and assume that their 
understanding is the same as that intended by the service provider. Once the requester 
is satisfied with a web service, the associated WSDL document provides a syntactic 
description of the groundings available for the service and what input and outputs the 
service expects. The input and output messages are described in XML, optionally 
using an XML schema. Again, the requester must interpret the meaning of the parts of 
the input and output messages. To make an invocation of the Web Service, they may 
have to adjust their data to fit the service description. Software such as the SOAP 
implementation provided by Apache Axis5 can generate client and server stubs based 

                                                        
1 Web Services Description Language (WSDL) 1.2, W3C Working Draft, 3 March 2003 
2 Hypertext Transfer Protocol – HTTP/1.1, June 1999 
3 SOAP version 1.2, W3C Recommendation, 24 June 2003 
4 OASIS UDDI v2 specifications (http://www.oasis-open.org/) 
5 Apache Web Services Project. http://ws.apache.org/axis/ 



on the WSDL for a Web Service. The stubs in this context are Java6 classes that can 
be used by the requester to invoke the web service. They shield the requester from the 
complexity of interpreting the WSDL by providing a Java API. However they do not 
change the fact that the service requester still has to interpret the meaning of the data 
required by the Web Service.  

In this example the binding between the service requester and service provider is 
hard-wired at design time. If the requester wants to book another train ticket later for 
cities not supported by the initial Web Service, they will have to start the whole 
process of finding and binding to a suitable service again. 

2 Requirements for Runtime Binding 

Many of the problems identified in the previous section arise from the absence of 
formal semantic descriptions for all aspects of Web Services. This is particularly clear 
in the area of service discovery using UDDI and making the actual service invocation. 
Formal descriptions based on mathematical logic can be precisely interpreted and 
reasoned about by computer systems. In terms of Semantic Web technology, 
ontologies provide the model and vocabulary for creating such descriptions. An 
extensive discussion on ontologies and their importance to the Semantic Web is 
provided in [4]. Discovery systems based on formal service descriptions would allow 
the requester to provide a description of the service they required and would provide a 
matching service. However there is no guarantee that the data types of the input and 
output required by the matching service would match the data offered by the 
requester. A data mediation service that would allow runtime transformation from 
data described in the requester’s ontology and data described in the provider’s 
ontology is needed.   

Formal descriptions need to be interpreted and used. An environment that can 
interpret the descriptions and carry out activities such as service discovery and 
invocation is required. The environment should provide simple interfaces that shield 
the environment users from the complexity of how the environment is implemented. 
The environment should have a modular construction where components have well 
defined functionality and interfaces. Ideally it should be possible to interchange 
implementations for specific components without having to rebuild the environment. 
The environment should have access to a repository for storing formal descriptions of 
services. The repository should allow Web Service descriptions to be added, modified 
or removed at any time without affecting the environment stability.  

The overall goal of the environment should be to allow entities, acting as service 
requesters, to provide a formal description of a service they want to the environment. 
Based on this description the environment should carry out all the steps required to 
discover, and invoke a matching service. 

                                                        
6 http://java.sun.com 



3 Semantic Web Service Execution with WSMX 

3.1 WSMX Overview 

The Web Services Modelling Execution Environment, WSMX, [5] is a software 
framework that allows runtime binding of service requesters and providers. WSMX 
uses Semantic Web technology to discover, select, mediate and invoke Web Services 
based on the formal descriptions of various aspects of the Web Services themselves as 
well as the formal descriptions of service requester goals. To achieve their goal a 
service requester formally describes the goal and sends it to WSMX. Taking this goal 
description, WSMX searches its repository of Web Service descriptions for any 
Services whose descriptions match the goal. If more than one matching Web Service 
is found, WSMX selects the most suitable one based on preferences provided by the 
service requester. WSMX then ensures that the data provided in the service invocation 
is in the format that the Web Service expects. This operation of data mediation is 
possible as all the data representations used in both the goal and Web Service 
descriptions belong to concepts described in ontologies known to the WSMX 
environment.  

The operations of discovering and selecting a Web Service, matching the requester 
goal and, then mediating data before finally invoking the Web Service, are all taken 
care of by WSMX. The service requester does not need to know in advance the data 
format expected by the service provider. As long as the data provided in the goal are 
defined by concepts in an ontology known to WSMX and, mappings have been 
defined between the concepts in that ontology and the ontology of the service 
provider, WSMX will be able to fulfil the goal. Additionally, if a new Web Service 
description that can better satisfy the requester goal is made available to WSMX at a 
later stage, WSMX will be able to select this Web Service to carry out the task 
without the service requester having to take any additional actions.  

3.2 A Conceptual Model for WSMX 

The operation of WSMX is made possible by its use of Semantic Web technologies, 
in particular the application of the Web Service Modelling Ontology, WSMO. 
WSMO is an ontology that describes various aspects related to Web Services. The top 
level concepts in WSMO are goal, web service, mediator and ontology. A full 
description of the conceptual model of WSMO is provided in [1]; a brief description 
follows in this paper for completeness.  

Goals describe what a service requester wishes to achieve. The main elements of a 
goal are the post-condition and effect, both of which are described as logical 
expressions. Post-conditions describe what happens in terms of data within a system if 
the goal is achieved while effects are real world actions that follow from successful 
achievement of the goal. For example, in the case of the goal to buy a train ticket, the 
post-condition might be that the credit card billing system is invoked to debit the 



provided credit card number. The effect might be that a ticket is printed and posted to 
the service requester.  

Web Services are defined in terms of the capability that they offer, the interfaces 
they provide, and the mediators that they can use. The capability of a web service is 
what is used when matching the requester goal. Capabilities have pre- and post-
conditions as well as assumptions and effects. As with a goal, the pre- and post-
conditions are functions on the input and output data of the service, while the 
assumptions and effects are based in the real-world. The discovery of a Web Service 
capability that matches a requester Goal happens at runtime. In the example of the 
train ticket booking, WSMX will check for the best service description for booking 
train tickets matching the requester’s goal each time the goal is sent to WSMX. This 
means that if a new service provider provides a new services description for booking 
train tickets to WSMX, it becomes immediately available for use without any changes 
to the environment.     

Mediators provide a way to transform data described in one conceptual model to 
data in a another conceptual model. Data mediation in WSMX is described later in 
this paper. 

 

Figure 2. WSMX-O [7] 

WSMX has a specific aim to address the problems associated with B2B 
integration. When identifying the concepts required for WSMX, a first step was to 
start with the conceptual model provided by WSMO and then extend it by looking at a 
simple problem from the B2B [6] domain. Two business partners want to 
communicate with each other in a business transaction e.g. one wants to send a 
purchase order to the other. Each business partner uses a different ontology for 
describing business documents and each of these ontologies may use one or more data 
mediators. This simple example led to the definition of a conceptual model for 
WSMX called WSMX-O [7], shown in figure 2, that contains some concepts not 
present in WSMO. These concepts are WSMXGoal which extends the Goal concepts 



of WSMO, Business Partner, Preference that a Business Partner may have, and 
Message. WSMX-O is described fully in [7].   

There are several languages that can be used to represent the concepts of WSMO, 
as described in [8]. WSMX extends one of these languages WSML-Core [9] to 
include the additional concepts in WSMX-O.  

3.3 WSMX Execution Semantics 

The execution semantics of a system is the formal definition of the operation of that 
system. Execution semantics provide an unambiguous definition of the operational 
behaviour of the system. Once a system's operations have been modelled in this way, 
using a formal methodology, simulations can be run to check for deadlocks, livelocks 
and the effects of specific stimuli to the system. Deadlock means a situation in which 
two or more processes are prevented from continuing while each waits for resources 
to be freed by the continuation of the other. Livelock occurs where a system never 
reaches its termination state e.g. an endless loop. The execution semantics of the 
current version of WSMX are modelled using classical Petri nets and are described 
fully in [12].  

Formal execution semantics allow the separation of the operational description of 
WSMX from the implementation of the individual components. In future versions of 
WSMX, this will provide the powerful feature of allowing the execution semantics to 
be modified and extended without requiring any software to be rewritten.  

3.4 WSMX Architecture 

 

Figure 3. WSMX Architecture 

A full description of the architecture of WSMX is described in [10] while a brief 
outline is included here for completeness. There are two operational aspects to the 
WSMX Architecture – compilation and execution. Compilation is the mechanism for 



making elements relating to Semantic Web Services ready for use by WSMX. 
WSMX-O descriptions of Web Services, Ontologies and Mediators, written in 
WSML, are compiled to WSMX. Execution, in the simplest case, means discovering 
and invoking the right web service to carry out a client goal. In more complex cases, 
execution could mean multiple discovery and invocation operations on different web 
services carried out in a controlled process. It is the compilation aspect that allows 
new service descriptions to be added to WSMX at any time independent of the 
execution aspect of the environment. 

This paragraph briefly describes how each component plays its part in getting from 
a description of a requester’s goal to the invocation of a matching Web Service. The 
architecture, shown in figure 3, has been implemented for the first version of WSMX. 
The WSMO Editor is used to create WSMO descriptions of web services, 
ontologies, mediators and goals. WSMX provides a WSDL interface to accept these 
descriptions and direct them to the Compiler component. Compilation means 
validating the descriptions and storing them persistently in the Ontology Repository. 
The WSMX Manager controls the operational flow of the system implementing the 
execution semantics. The WSMX Manager regularly scans for new messages. Once 
a new message representing a requester goal is picked up, it is translated into an 
internal persistent WSML representation by the Message Parser. The Matchmaker 
then carries out discovery to match the client goal to a capability of Web Services 
known to WSMX. The Selector component selects the web service that provides the 
best match for the goal based on service requester preferences. If necessary the Data 
Mediator mediates between the data (instance of ontology concepts) provided by the 
requester and those expected by the service provider. Once the data has been 
mediated, the Invoker makes the actual web service invocation on the selected web 
service using the mediated data. 

3.5 Mediation in WSMX 

As mentioned earlier, mediation is a key feature required to allow requester goals 
be matched to Web Services dynamically. WSMX does not assume that all web 
services share one conceptualization of the world. Rather it takes the view that the 
applications represented by Web Service interfaces are normally heterogeneous 
and autonomous. This gives rise to the need for mediation at data, process and 
business protocol levels. This version of WSMX starts with the problem of data 
mediation. An overview of data mediation in WSMX is hsown in figure 4 while a 
complete description can be found at [11]. 
 



 

Figure 4. Data Mediation in WSMX [11] 

The Execution Environment communicates with a Business Partner and an 
Information System each using a different ontology. When a set of instances have to 
be passed from the Business Partner to the Information System the Mediator 
Component is called to perform the transformation from source to the target format.  

3.6 WSMX Implementation 

The first version of WSMX architecture has been implemented through the open 
source project7 and is described in detail at [13]. This implementation forms the 
backbone for an environment which can host components developed by anybody 
interested contributing to WSMX. The implementation of WSMX server remains 
minimal but complete. All components are in place with well defined interfaces and 
the executions semantics described for the system is operational. In the case of some 
components, only a simple implementation of functionality has been carried out to 
make these components operational.  

The importance of implementing WSMX has been to prove the validity of the 
design, execution semantics and architecture. With this implementation of WSMX 
server, we also provide an implementation of a back-end application system that can 
take the role of a service requester by generating goal descriptions and sending these 
to WSMX via a Web Service interface. As a result, it is already possible to issue 
requester goals from back-end application, carry out discovery and data mediation 
before finally invoking a specific Web Service offered by a provider. 

4 Related Work 

The work referenced here is viewed from Semantic Web Services are still a relatively 
new research area but one in which there is considerable interest. In this section we 
compare other approaches to execution environments for Web Services particularly 
from the perspectives of when the binding of requester to provider is made 

Biztalk Server8 is Microsoft’s platform for EAI and Business Process Management 
and is based on XML and Web Service technologies. Biztalk offers two core 

                                                        
7 WSMX at sourceforge – http://sourceforge.net/projects/wsmx  
8 Microsoft Biztalk Server, http://www.microsoft.com/biztalk/ 



functions: a process execution engine and a messaging hub. Services used when 
executing processes with Biztalk must be identified in advance and bound to the 
process steps at design time. 

IRS [14] is a Web Service execution environment developed by the Knowledge 
Media Institute of the Open University. The conceptual model for IRS and WSMX is 
very similar and both initiatives have roots in the IBROW project [18]. The most 
recent version, IRS3, is WSMO compatible and will be able to interoperate with 
WSMX. With IRS3, a service provider can create a WSMO service description that 
can be published against their service on the IRS3 server. The actual implementation 
of the service might be in Java or in another language such as Lisp. Once a Web 
Service description is available, a goal can be described in WSMO and bound to the 
published Web Service description using a mediator. The binding in this case is still at 
design time but the use of mediators to link goals and services removes the manual 
hard-wiring required for standard Web Services.  

[15] implements an approach to dynamic binding of Web Services by augmenting 
the BPWS4J9 implementation of BPEL4WS10 with a semantic discovery service. This 
is prompted by the limitation of BPWS4J of not allowing dynamically discovered 
services to be assigned to partner roles. Additionally the authors point out that the 
BPEL4WS specification itself restricts the description of service partners to syntactic 
WSDL portType definitions.  Their solution is to build a Web Service that can 
discover custom service partners at runtime based on DAML-S [16] descriptions of 
these services. This discovery service is then bound to a BPWS4J process at design 
time. This is an imaginative solution. In WSMX we build this functionality into the 
environment from the beginning.  

Meteor-S WSDI [17] proposes a method of adding semantics to Web Services 
descriptions and then publishing those descriptions in UDDI registries. They provide 
tools to map WSDL descriptions to ontology-based semantic descriptions and propose 
that such descriptions could be used successfully for Web Service discovery if the 
user service requirement could be described in terms of concepts from the same 
ontologies. The main body of the paper describes an architecture and implementation 
for a P2P-based scalable infrastructure for accessing multiple registries. The design of 
public registries for hosting WSMO descriptions has not been considered yet in the 
WSMX design.  

5 Conclusion 

WSMX already provides a conceptual model, architecture and implementation of a 
Semantic Web Services execution environment that allows a goal provided by a 
service requester to be matched to a Web Service at runtime and for this service to be 
executed. WSMX  combines the technologies of the Semantic Web and Web Services 
and is a reference implementation for WSMO. The first version of WSMX provides a 
robust service oriented architecture that provides a framework for ongoing research in 
the area of Semantic Web Services and in particular for WSMO.  

                                                        
9 BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j 
10 BPEL4WS, http://www-106.ibm.com/developerworks/library/ws-bpel/ 



6 Acknowledgments 

The work is funded by the Science Foundation Ireland under the DERI Lion project. 

7 REFERENCES 

1. Roman, D., Lausen, H., Keller, U.: The Web Service Modeling Ontology Standard 
(WSMO-Standard) v0.2, 6 March 2004, Digital Enterprise Research Institute. Available at 
http://www.wsmo.org/2004/d2/v0.2/20040306/ 

2. Fensel, D., Bussler, C.: The Web Service Modeling Framework, WSMF. Electronic 
Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V. 

3. IBM Web Services Conceptual Architecture, IBM, available at  
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf 

4. de Bruijn, J.: Using Ontologies, Enabling Knowledge Sharing and Reuse on the Semantic 
Web, DERI Technical Report, DERI-2003-10-29, available at:  
http://www.deri.ie/publications/techpapers/documents/DERI-TR-2003-10-29.pdf 

5. Oren E., Zaremba, M., Moran, M.: Overview and Scope of WSMX. WSMO Working 
Draft v0.1, 11 June 2004, Digital Enterprise Research Institute, available from 
http://www.wsmo.org/2004/d13/d13.0/v0.1/20040611/ 

6. Bussler, C.: B2B Integration, Concepts and Architecture, Springer-Verlag, 2003, ISBN 3-
540-43487-9 

7. Cimpian, E., Mocan, A., Moran, M., Oren, E., Zaremba, M.: WSMX Conceptual Model. 
WSMO Working Draft v0.1, Digital Enterprise Research Institute (DERI), available from 
http://www.wsmo.org/2004/d13/d13.1/v01 

8. Oren, E., Lausen, H., de Bruijn, J.: Languages for WSMO. WSMO Working Draft, 3 
August 2004, available at: http://www.wsmo.org/2004/d16/d16.0/v0.2/20040803/ 

9. de Bruijn, J., Foxvog, D., Oren, E., Fensel, D.: WSML-Core. WSMO Working Draft, 23 
August 2004, available at: 
http://www.wsmo.org/2004/d16/d16.7/v0.1/20040823/  

10. Zaremba, M., Moran, M., Oren, E., Cimpian, E., Mocan, A.: WSMX Architecture, WSMO 
Working Draft v0.1, 22 June 2004, available at: 
http://www.wsmo.org/2004/d13/d13.4/v0.1/20040622/ 

11. Mocan, A., Oren, E., Cimpian, E. Moran, M., Zaremba, M.: WSMX Mediation, WSMO 
Working Draft v0.1, 28 June 2004, Digital Enterprise Research Institute (DERI), available 
from http://www.wsmo.org/2004/d13/d13.3/v0.1/20040628/  

12. Oren, E.: WSMX Execution Semantics. WSMO Working Draft v01, 31/5/04. available at: 
http://www.wsmo.org/2004/d13/d13.2/v0.1/20040531/index.pdf 

13. Moran, M., Zaremba, M., Cimpian, E., Mocan, A., Oren, E.: WSMX Implementation, 
WSMO Working Draft v01, 19 July 2004, available at: 
http://www.wsmo.org/2004/d13/d13.5/v0.1/20040719/ 

14. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II A Framework and Infrastructure 
for Semantic Web Services in D. Fensel et al., (Eds.): The Semantic Web – ISWC 2003. 
Lecture Notes in Computer Science, Vol. 2870. pp 306-318, Springer-Verlag, Heidelberg 
(2003). 

15. Mandell, D. J., McIlraith, S. A.: Adapting BPEL4WS for the Semantic Web: The Bottom-
Up Approach to Web Service Interoperation. D. Fensel et al., (Eds.): The Semantic Web – 
ISWC 2003. Lecture Notes in Computer Science, Vol. 2870. pp 227-240, Springer-Verlag, 
Heidelberg (2003).  

16. DAML Services Coalition. DAML-S and OWL-S. http://www.daml.org/services/  



17. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEOR–
S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and 
Discovery of Web Services, available at: http://lsdis.cs.uga.edu/lib/download/MWSDI.pdf 

18. Benjamins, V. R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Schreiber, G., 
Zdrahal, Z., Decker, S.: An intelligent brokering service for knowledge component reuse 
on the World-Wide-Web. Gaines & Musen (Eds.), 11th Workshop on Knowledge 
Acquisition, Modeling and Management, Banff, Canada, 1998. 


