Demonstrating WSMX:
Least Cost Supply Management

Eyal Oren?, Alexander Wahler!, Bernhard Schreder!, Aleksandar Balaban!,
Michal Zaremba?, and Maciej Zaremba?

L NIWA Web Solutions, Vienna, Austria
<lastname>@niwa.at
2 Digital Enterprise Research Institute (DERI), Galway, Ireland*
<firstname.lastname>@deri.org

Abstract Current web service technologies lack semantic descriptions of
functionality and requirements; semantic markup of web services would
allow interoperability and dynamic discovery of services. The Web Ser-
vice Modelling Ontology (WSMO) provides a framework for semantic-
ally describing web services, ontologies, goals and mediators. WSMX is
an execution environment for WSMO allowing discovery, mediation and
invocation of semantically described services. We give an overview of the
current state of WSMX and demonstrate how WSMX can be used in or-
dering a broadband Internet line. We note two additional requirements
for a web service execution environment: that it should be possible to
partially defer web service descriptions until runtime and that it should
be possible to execute complex goals. We describe how we augmented
the software to support these requirements.

1 Introduction

The emerging web services technology has the potential of offering the industry
new ways to serve their customers. For many, the long-term goal of web ser-
vice effort is seamless inter-operation among networked programs and devices.
Once achieved, many see web services as providing the infrastructure for uni-
versal plug-and-play and ubiquitous computing. Web services expose functions
and information of systems and allow companies to creatively configure existing
offerings into new bundles of products and services. Once exposed, web services
can easily be accessed and reused, thereby greatly reducing total cost of owner-
ship of service operator systems. Semantically enriching web service descriptions
enhances the possibility of discovering and combining services. Enriching web
services with semantic descriptions of data enables automatic data exchange
and communication with third party suppliers. Organisations should provide
their functionalities as web services; semantic technologies would ensure inter-
operability of these services and allow automated business collaboration.

* This material is based upon works supported by the Science Foundation Ireland
under Grant No. 02/CE1/1131.

Business process technologies allow organisational entities to formalise spe-
cific processes of their business in order to support automation of these, thereby
enhancing production or other business areas. Such technologies promise signific-
ant improvements in business solutions. Several techniques for business process
representation and management have been developed. At this point in time,
around 350 [5, page 4] different business process technologies exist.

The problem currently faced within I'T-solutions for business support is the
integration problem [2]: techniques are needed for making different resources
interoperable, thus supporting automated business collaboration between het-
erogeneous resources. Another challenge is to make use of the Internet as a
world wide information and communication platform for business interaction.
Therefore, the web and web services, especially the semantic web along with se-
mantic web services are considered as technologies that can solve the problems
currently faced within IT business solutions.

The Web Service Modelling Ontology (WSMO)? is a research initiative devel-
oping a framework for semantic web services. WSMX* is a software system based
on WSMO that provides discovery, mediation and invocation of semantic web
services. Recently a first milestone of WSMX has been released: the architecture
is in place and initial versions of all components have been implemented.

This paper describes how to use WSMX in a process of ordering a broadband
Internet line. First we describe this use case in section 2. Then, in section 3, we
give an overview of WSMX and explain how WSMX is applied to the use case.
In section 4 we note two additional requirements for the software and describe
how we extended WSMX to support these; we conclude in section 5.

2 Use Case: Ordering Broadband Internet

For demonstrating the potential of WSMX we selected a use case from the tele-
communication sector. Many Internet service providers are extending their busi-
nesses with wholesaling of mobile and fixed line telephone services and unbundled
data lines. To stay competitive in the future market they need technologies for
easy and flexible integration of suppliers that offer these services.

An ADSL line is a broadband Internet connection on top of a regular tele-
phone line. In Austria several suppliers of unbundled ADSL lines are available
depending on the region where the customer is located. Most wholesalers need
a flexible and dynamic integration of these suppliers in their back-end systems.
These systems have to handle the ordering and service requests of the customers
and forward them to the selected least cost supplier. The service interfaces of
the suppliers (their offered web services for the ADSL ordering process) differ.
For example, to check the availability of the ADSL line at some address, supplier
A needs both name and address data in one message and does not distinguish
between door number and staircase numbers; supplier B however needs only the
address data in this first step and requests personal data later.

3 see http://www.Wsmo.org
% see http://www.wsmx.org

BPEL Engine WSMX Engine

Order Form Submitted

Check Domain Availability

Partner Service
Invocation (static)

Domain Not Available

Preconditions for start of a transaction
within BPEL process flow are valid credit
card and available internet domain

Preconditions OK
[Bank Details Not DK) Gan Transaction

Find ADSL Provider

Send suitable coded goal
for senvice finding to the
WSMX engine.

Dynamic Partner

Invoke Service
Service Invocation

Check Dynamic Invocation Status Notify BPEL

ADSL Not Available

Billing Add Customer Data) { Order Internet Domain

Check Transaction Status

Notify User

Figure 1. ADSL ordering process

Figure 1 gives an overview of a simplified ADSL ordering process. A new
customer activates the process by submitting a completed order form. The in-
formation in this order form is used to invoke several external web services. The
first step is to check whether the customer-supplied domain name is available
and the credit card information is correct. Then the ordering process commences,
executing in a transactional scope which allows for the rolling-back of completed
steps in case of an error.

The first activity inside this scope is the order of the ADSL line by invoking
a web service of an external supplier. Since several suppliers provide the same
functionality (with different conditions and costs) one of these suppliers has to
be chosen. The dynamic discovery, selection and invocation of these services is
delegated to WSMX: the system takes care of finding the least-cost supplier,
mediating the customer’s data to the ontology of the supplier and invoking the
selected supplier. In section 3 we describe how WSMX achieves these tasks.

Following this step several additional operations are necessary to complete
the ordering process, including ordering the domain, entering the customer data
in the customer database of the provider and billing the customer for the product
bundle. The process then responds back to the customer, reporting either the
successful order of the whole product bundle or providing information about its
failure.

At the moment practical implementations of these processes in Austrian tele-
communication providers are hard-wired (supported by emails, faxes and human
interactions) because of a lack of automation. We expect WSMX to provide es-
sential technologies for extensive automation of these processes and solutions for
the integration problem.

3 WSMX Overview

The WSMX platform aims to offer complete support for interacting with se-
mantic web services. WSMX is based on the framework offered by WSMO,
a meta-ontology describing various aspects related to semantic web services.
WSMO is based on four concepts: web services, ontologies, goals and mediators.

Web services are units of functionality; every web service has exactly one
capability, that describes logically what this web service can offer. A capability of
a web service consists of preconditions, postconditions, assumptions and effects.
The capability of a web service is interpreted as follows: the service guarantees
that, if at execution time of the service the preconditions and assumptions hold,
then the postconditions and effects will hold after execution. A web service has
a number of interfaces, which specify how to communicate with it.

Goals describe some state that a user may want to achieve. Ontologies are
the formal specification of the knowledge domain used by both the web service to
express its capability, and by the goal to express the desired world state. Mediat-
ors are used to solve different interoperability problems, for example differences
in the ontologies used by a web service and a goal.

WSMO is based on the notion of reuse of components and maximal decoup-
ling between concepts: web services and goals are strongly decoupled; mediators
enable reuse of components by refining or adapting an existing component. This
approach is similar to problem solving methods, c.f. [4,3].

WSMX is a software system that operates on these concepts. WSMX man-
ages a repository of web services, ontologies and mediators — all of whom are
semantically described and fed into WSMX. WSMX can achieve a user’s goal
by dynamically selecting a matching web service, mediating the data that needs
to be communicated to this service and invoking it. A simplified view of the
architecture that focuses on the relevant parts is shown in figure 2.

goal _, manager / web service |
Y ' / web service |

discovery selection mediation invocation :

i l ' web service

‘ repository ‘ web service

Figure 2. Simplified WSMX Architecture

In this use case WSMX takes care of ordering the ADSL line from a provider:
WSMX is asked to achieve the goal “ADSL line for the supplied phone number”.
WSMX performs dynamic discovery of all providers capable of delivering ADSL
lines, selection of the least-cost supplier, mediation of the customer’s data to the
format of the supplier and invocation of the selected supplier with this mediated
data.

The discovery component is responsible for finding all services that are able
to provide ADSL lines. As we will explain in section 4, we extended WSMX to
be able to check at runtime for exactly which numbers the suppliers can provide
ADSL lines. The selection component then selects from the discovered services
the one that is most preferable, based on the conditions and prices of the different
providers.

If the goal and the selected web service are specified using different ontologies
(which is most likely) the mediation component needs to solve this. This compon-
ent uses specified mappings between ontologies in order to mediate the payload
data from the format of the customer to the format that is used by the selected
web service. The specification of these mapping rules is done semi-automatically,
the mediation itself is carried out automatically (mediation is only possible if
mapping rules between these two ontologies have been specified). The invoca-
tion component then invokes the selected web service using the mediated payload
data.

An important business element in the context of dynamic discovery is the
notion of trust, in two aspects. First of all a business may not completely trust
the outcome of the discovery process: is this really the best provider for their
goal. Secondly, a business might not want to use the discovered provider without
a prior established relation: they might not trust arbitrary partners. We do not
address these issues here; these have to be addressed in other work.

4 Extending WSMX

The use case shows that for WSMX to be useful in real-world scenarios a num-
ber of things are necessary. Firstly the assumption of WSMX —that providers
are able to completely describe the functionality of their web services at design
time— is unreasonable. The exact functionality of services can be rapidly chan-
ging; providers need a mechanism to defer specification of their capabilities until
runtime.

Secondly, WSMX has a quite limited operational behaviour: WSMX can
match services against a goal and then select one of those matching services for
invocation. However, in real-world scenarios richer process models are necessary
to guide the software. Therefore it would be useful if WSMX could understand
some process modelling language, so that complex goals could be specified con-
sisting of several subgoals that should be achieved in a certain order.

We will explain and address these two concerns in the following sections.

4.1 Conditional Web Services

An important element of this use case is that providers are not really able to
fully specify their capabilities upfront. All providers state they can provide ADSL
lines for telephone numbers, but the exact set of numbers for which they can
provide a line is changing so rapidly that they cannot describe this range in their
capability. The set of numbers for which each provider is responsible changes
very frequently and it is not feasible to continuously update their capability
descriptions.

The question is how to correctly specify the capability of a provider without
explicitly stating the range of telephone numbers. This can be achieved by intro-
ducing a built-in function in the logical expression that will at runtime evaluate
to a web service invocation. This web service invocation takes as input the actual
phone number of the customer and returns whether the provider supports an
ADSL connection for that number at that specific moment. All providers have
to offer this web service, which indeed they do in reality.

For technical reasons we chose to implement a slightly different solution that
is less generic than the above-mentioned one but easier to implement. In future
work we would like to further explore the above-mentioned solution. Instead of
extending the logical language to include the possibility of defining functions
that are implemented by a web service, we decided to extend the capabilities
of web services with what we call a conditional web service. The capability of a

web service should now be interpreted as follows: the service guarantees that, if
at execution time of the service the preconditions and assumptions hold and the
conditional web service evaluates to “true”, then the postconditions and effects
will hold after execution.

Introducing this concept of a conditional web service changes the operational
behaviour of WSMX. Let us say some web service W matches a goal G and the
capability of this web service contains a conditional web service C. To decide
whether the capability of W is valid and thus whether this service really matches
the goal, WSMX needs to execute the conditional web service C.

However, executing this conditional web service is not straightforward: it may
well be that mediation is needed because the conditional web service is using
a different ontology than the goal. Ideally we would like to reuse WSMX for
this complicated procedure and to send this subgoal (invoking the conditional
web service C with some payload) through the WSMX system. However, the
web service that should be used for this subgoal is known® so matchmaking and
selection should be skipped. This means that for executing the conditional web
service a different operational behaviour is needed than for executing a normal
goal: some components can be skipped. To make this scenario technically possible
we need to make some adjustments to the software.

In the WSMX architecture all communication between components consists
of events. In order to enable the execution of conditional web services, and to
use the outcome of this execution in the execution of the parent service, we need
a mechanism to relate different events. We take the following approach:

For all conditional web services a semantic description is available in the
WSMX repository, otherwise we do not know which ontology it uses or how to
invoke it. If a conditional web service is part of the capability of a web service
then it must be executed during matchmaking, to check whether a capability
actually holds. Each conditional web service creates a new event in the system (a
sub-event of the main event), which does not follow the same execution semantics
as the main event. Instead, a sub-event only needs mediation and invocation, but
we do not need to discover and select the web service to achieve the sub-event.

All sub-events return typed values; if all return values from conditional web
services are “true” values then the conditional web service is fulfilled and exe-
cution of the main web service can be performed. A new component, the event
correlation manager, maintains the relationships between the main event and
the sub-events. When a conditional web service is encountered, the correlation
manager puts the main event into a sleep state and initialises the sub-events;
when all the sub-events reach a final state the correlation manager wakes up the
main event to process the result of the conditional web service.

When a conditional web service is defined in a web service capability the
event correlation manager takes over, puts the running event into sleep and
generates new sub-events that are executed using different execution semantics.

As depicted in figure 3 sub-events can be nested recursively. A newly created
sub-event can be made to skip certain components, by giving it a specific initial

5 it is the service C, as specified in the capability of WS

Send result when finished

/

Event Main " Event Cond 1
Parent reference Sﬁf\f:m Parent reference =
NULL Event Main
Status =
Status = SLEEP MEDIATION

Condition reference list Condition reference list =
NULL

Create
Sub-event

Event Cond 2
Parent reference =
Send result when finished— Event Main
Status =
MEDIATION

Condition reference list =
NULL

Figure 3. Example of relation between main event and sub-events

state; to skip matchmaking for example, a new sub-event could be given the
before_mediation status, which will make only mediation and invocation take
place.

These conditional web service invocations can be recursive, i.e. the web ser-
vice we execute to determine a condition can itself specify a conditional web
service. When trying to execute these recursions we may encounter infinite re-
cursions and execute in endless loops without reaching a service that returns
an answer. We have not yet addressed these issues, but we envisage recursion-
detection mechanisms in the software to prevent us from being caught in such
loops.

4.2 Business Process Engine

In the presented use case WSMX is only used in a certain part of the overall
process. In figure 1 the whole ordering process is shown: WSMX is only used
to order the line, but the rest of the process is executed by a process execution
engine®. The process execution engine is able to understand the given specifica-
tion of the ordering process and manages the runtime execution of this process.
It keeps track of the process and tells components to execute a certain task.

It would be very useful if WSMX could understand such a process specific-
ation. One could specify a goal that consists of this process specification and

5 of course one could also hard-code the process into a computer program; that does
not change our argument

WSMX would, while executing the goal, manage the process and execute the
subgoals in it. Each atomic task inside the process model would be executed
through WSMX, using the powerful matchmaking, mediation and invocation
capabilities. The WSMO working group is committed to include specification of
complex goals in WSMO. Once such a specification is made WSMX will support
execution of these complex goals by including a process management component.

However, no decision has yet been made on a formalism for specifying com-
plex goals; in the meantime a temporary solution would be to embed WSMX
inside a business process engine”. This solution could be used with any web ser-
vices business process engine, for instance YAWL [1] or WS-BPEL®. We demon-
strate this simple idea with WS-BPEL — our approach is however as applicable
to any other business process language.

WS-BPEL is a language for modelling business processes based on web ser-
vices; it is widely used for automation of business processes by execution of the
modelled processes. A WS-BPEL process consists of basic activities, that are
composed into complex activities using routing constructs. The basic activit-
ies are essentially sending and receiving data to and from other web services.
The exact paths followed during execution can depend on data gathered during
execution.

The web services with which a WS-BPEL process can communicate have to
be known at design time. This is clearly not a desired situation — the specification
itself states that mechanisms for dynamic service discovery should be available.
However, no such mechanism is implemented in the current WS-BPEL specifica-
tion. WSMX on the other hand is able to perform this dynamic discovery and to
mediate the payload to a format that the selected web service can understand.

The integration is straightforward: given a certain WS-BPEL process, one
changes in all atomic tasks the web service calls W7..W,, into calls W{..W/.
Each call W; is an invocation of a specific web service, the replacing W/ is an
invocation of WSMX asking to achieve goal G;. This goal G; corresponds to
what web service W; would have achieved, but by using WSMX to achieve this
goal the actual service that is used is dynamically selected during runtime. The
challenge is to find an appropriate semantic description of the goal such that it
corresponds with what the web service W; would have achieved in the original
process.

A major drawback of WS-BPEL is the need to statically define the used
web services at design time; it is not possible to communicate with services
that were unknown at design time. WSMX is however well able to dynamically
discover new services that provide some wanted functionality: an integration of
these two approaches leads to a process execution engine that can execute some
complex business process model and, during execution, dynamically discover
relevant services.

7 which could be seen as the “opposite” approach
8 formerly known as BPEL4WS, see http://www-106.ibm.com/developerworks/
library/ws-bpel/

5 Conclusion and Future Work

We have discussed a use case that deals with ordering broadband Internet con-
nections from several providers. This scenario is currently implemented without
much automation — using human interaction and human communication chan-
nels. Information technology solutions face the integration problem: to integrate
heterogeneous resources and heterogeneous communication channels.

We have presented WSMX, an execution environment for semantic web ser-
vices that is able to perform dynamic discovery, mediation and invocation of
services; WSMX provides the technology to support this use case. The use case
however also makes clear that the general assumption of WSMX —that providers
should completely describe the functionality of their services at design time- is
unreasonable. We have presented a general solution to this problem and shown
how we have technically implemented this solution.

We have also argued for a business process management component as part of
WSMX. As a temporary solution we have shown how to integrate the widely used
process modelling language WS-BPEL with WSMX. This combination provides
a process modelling engine that is able to execute complex processes and can
dynamically discover services to solve atomic tasks, including mediation of data
into a format understandable by the selected service.

We hope to address in future work the two shortcomings noted in this paper:
firstly, to extend the logical language to include a built-in function that evaluates
during runtime to a web service call; secondly, to include a process modelling
component in WSMX that is able to execute complex goals.

Acknowledgements We would like to thank the referees for their valuable
comments on a previous version of this article.

References

1. W. M. P. v. d. Aalst and A. t. Hofstede. YAWL: Yet another workflow language.
Technical Report FIT-TR-2003-04, Queensland University of Technology, 2003.

2. C. Bussler. B2B Integration, Concepts and Architecture. Springer-Verlag, 2003.

3. D. Fensel. Problem-solving methods: Understanding, development, description, and
reuse. In Lecture Notes On Artificial Intelligence, number 1791. Springer, 2000.

4. D. Fensel et al. The unified problem-solving method development language UPML.
Knowl. Inf. Syst., 5(1):83-131, 2003.

5. L. Hommes. The Evaluation of Business Process Modeling Techniques. PhD thesis,
Delft University of Technology, 2004.

