Enabling execution of Semantic Web Services- WSM X
core platform

Michal Zaremba, Matthew Moran

Digital Enterprise Research Institute, DERI, Ireland
{michal.zaremba, matthew.moran}@deri.org

Abstract. In this paper we present a demo implementation of WSMX - a
software system based on WSMF [1] and WSMO [2] — which ira ¢
infrastructure enabling execution of Semantic Web Servitas, demo
implementation is based on research carried out by the WSMbking group.
The current system implementation is an Event and Ser@dented
Architecture (SOA) enabling discovery, selection, mediatiwh iavocation of
formally described Web Services to carry out specifientliasks. Although
our first implementation of the system is incomplete nmgeof the required
functionality, all components defined through WSMX working groog ia
place and the system is able to execute simple cliet# grpressed in WSMO.

1. INTRODUCTION

Web Services support the remote invocation of busifiesstionality over the
Internet through exchange of well defined standardised mess@gesing Web
Services’ cornerstone technologies such as UDDI [3EDW [4] and SOAP [5]
provide the basic functionality for discovering required fuwrality (UDDI),
describing interfaces (WSDL) and exchanging well-formed agess (SOAP) in
heterogonous, autonomous and didributed systems. Despite their potential, Web
Services remain almost nothing more than enhanced BIFDger the Internet. Most
available Web Services are only one-way data retriamd update functions hard
coded into client's software. While still useful, theég not provide any automated
fulfilment of customers’ goals. Web Services cannot braatically bound to
requestor goal at run time, but only at design time efréguestor system, because
existing Web Services are not semantically descridéglare building our system on
the most recent research in the Semantic Web SerW®bX aims to support basic
functionality of B2B & EAI integration servers while filling the promise of
automatic (semi-automatic) service discovery, selecti@diation and execution.

1 Web Services Modeling Execution (WSMX) working groulpttp://www.wsmx.org/

2. WSMX Core System

The WSMX platform aims to offer a complete support fagefacting with Semantic
Web Services. These Web Services must provide a WSM@amt (WSML [6])
description of themselves specifying their capabilitpwhto interact with them
(interfaces) and ontologies they use, along with ot functional properties.
Figure 1 presents the architecture and components (basgd])othat has been
addressed in the first version of the system (excepbvbsg).

‘ WSMX Monitoring ‘

‘ WSMO Editor

WSMX clients ‘ S] vv;t:oswedr;\ées
- WSMX Manager
> E
E B ([e WSMX Manager Core |
El E Manager
g 3| | Vot [Message Events Farser MatchMaker || Selector Medator Invoker Companent
- o Scanner Scanner Listener Listener Listener Listener Listener Listener n
Back-end
application : z § - } ME;;atDr }
8| 2 essage
=7 = Adaétern
| — -
52
“l: @ Reasoner APIs
- ‘ Resources Manager ‘ e T
>
g Events Repository || Ontolagy Repository || WSMX Repository Reasoner
g - = -
o —_— —_— = ——
L Relational Relational Relational
Discovery
Sersn:z}:EE\/S\/Eb
WEMO Registry API
WSMO Registry
-

UDDI and/or
Relational
Database

Fig. 1. In WSMX once an element described in WSML has been compileldecomes
available for WSMX to use during the execution. The WSNBtfprm can match the semantic
descriptions of Web Services’ capabilities with semanticrifeions of a goals provided by
users. If match can be made, the data mediator provides sfimptransformation between
ontologies of requestors and providers of Web ServicesllyFha invoker component makes
the call to the appropriate Web Service.

Separately to core WSMX platform, many others supportim@ponents such as
editors, monitoring tools or adapters are developed alangiay. WSMX provides a
WSDL [4] interface to communicate with these additia@mhponents.

Event-based communication in the WSMX platform is managdthe event
manager. Most of the components never communicatelgifene component never
calls the other component) but they create and conswers (or change status of
existing events), which are broadcast to all comporsrtiscribed to listen for events
in the system. Such an approach enables decoupling cooatianifrom processing,
which enables both flexible communication patterns andlegible run-time
architecture.

3. CONCLUSION AND FUTURE WORK

Web Services merely support the remote invocation ahbess functionality over the
Internet. WSMX - the reference implementation for Setit Web Services goes
much further, as the system aims to enable anynrtion systems to interact with
any other information system and to preserve messpgEess and protocol
semantics. Along the way through the open source develtpme aim to enhance
WSMX with intended functionality for all the conceptyatlefined components. Our
next steps will introduce business process engine, dynaeécon semantic engine
(future research in [8]), process and protocol mediatos many other core and
supportive components, which will enhance WSMX platform.

ACKNOWLEDGMENTS

The work is funded by the Science Foundation Ireland uhéeDERI Lion project.

REFERENCES

1. D. Fensel, C. Bussler. The Web Service Modeling FrameWwiWSMF. Electronic
Commer ce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V.

D. Roman, H. Lausen, and U. Keller. Web Services Mod@inplogy Standard. WSMO
Working Draft v02, 2004.

UDDI. OASIS specification for Universal Discovery Daption and Integration

Web Services Description Language (WSDL) 1.2, W3C Workiraftb8 March 2003
SOAP version 1.2, W3C Recommendation, 24 June 2003

J. Bruijn, D. Foxvog, E. Oren, D. Fensel. WSML-Coregriting Draft vO1, 2004,

M. Zaremba, M. Moran. WSMX Architecture. WSMO Workinga? v01, 2004.

E. Oren. WSMX Execution Semantics. WSMO Working Dvaft, 2004.

n

©ONo O M

2 Sourceforge — WSMX hosting sitéattp://sourceforge.net/projects/wsmx

