

Program Proceedings

International Workshop on Design and
Implementation of Formal Tools and Systems

Portland, OR

October 19, 2013

Co-located with FMCAD and MEMOCODE

Preface	
The second DIFTS (Design and Implementation of Formal Tools and Systems) workshop

was held at Portland, Oregon on Oct 19, 2013, co-located with Formal Methods in Computer-
Aided Design Conference (FMCAD), and Formal Methods and Models for Co-design
(MEMOCODE). The workshop emphasized the insightful experiences in tool and system design.
The goal of the workshop is to provide a forum for sharing challenges and solutions that are
original with ground breaking results. The workshop provided an opportunity for discussing
engineering aspects and various design decisions required to put such formal tools and systems
into practical use. It took a broad view of the formal tools/systems area, and solicited
contributions from hardware and software domains such as decision procedures, verification,
testing, validation, diagnosis, debugging, and synthesis.

The workshop received 10 original submissions, out of which 3 were chosen under tool
category, and 3 were chosen under system category. There were also three invited talks: first was
given by Rance Cleaveland, Reactive Systems Inc., USA on “Approximate Formal verification
using Model-based Testing”, second was given by Masahiro Fujita, University of Tokyo on
“Diagnosis and correction of buggy hardware/software with formal approaches”, and third talk
was given by Dhiraj Goswami, Synopsys Inc. on “Stimulus generation, enhancement and debug
in constraint random verification.”

First of all, we thank FMCAD’s steering committee for their continual support. We also
thank FMCAD chairs Sandip Ray and Barbara Jobstmann, and MEMOCODE chairs Marly
Roncken and Fei Xie for a seamless organization. We also thank Joe Leslie-Hurd for his help in
local arrangements. We thank Boğaziçi University, Turkey for hosting the DIFTS website. We
sincerely thank the program committee members and sub reviewers for selecting the papers and
providing candid review feedbacks to the authors. Last but not least, we thank all the authors for
contributing to the workshop and to all the participants of the workshop.

Malay K. Ganai and Alper Sen
Program Chairs
DIFTS 2013

i

DIFTS13 Program Committee

General Program Chairs

Malay Ganai NEC Labs America, USA

Alper Sen Bogazici University, Turkey

Program Committee

Armin Biere Johannes Kepler University, Austria

Gianpiero Cabodi Politecnico di Torino, Italy

Franco Fummi University of Verona, Italy

Malay Ganai NEC Labs America, USA

Daniel Grosse University of Bremen, Germnay

William Hung Synopsys Inc, USA

Daniel Kroening Oxford University, UK

Alper Sen Bogazici University, Turkey

Ofer Strichman Technion - Israel Institute of Technology, Israel

Chao Wang Virginia Tech, USA

ii

DIFTS13 Additional Reviewers

Additional Reviewers

Balakrishnan, Gogul

Eldib, Hassan

Horn, Alexander

Ivrii, Alexander

Kusano, Markus

Le, Hoang

Schrammel, Peter

Sinz, Carsten

Sousa, Marcelo

Suelflow, Andre

iii

DIFTS13 Table of Contents

Table of Contents

Approximate Formal Verification using Model-based Testing . 1

Rance Cleaveland (Invited speaker)

Diagnosis and Correction of Buggy Hardware/Software with Formal Approaches 2

Masahiro Fujita (Invited speaker)

Stimulus generation, enhancement and debug in constraint random verification 3

Dhiraj Goswami (Invited speaker)

A Fast Reparameterization Procedure . 4

Niklas Een and Alan Mishchenko

LEC: Learning driven data-path equivalence checking . 9

Jiang Long, Robert Brayton and Michael Case

Trading-off Incrementality and Dynamic Restart of Multiple Solvers in IC3 19

Marco Palena, Gianpiero Cabodi and Alan Mishchenko

Lemmas on Demand for Lambdas . 28

Mathias Preiner, Aina Niemetz and Armin Biere

CHIMP: a Tool for Assertion-Based Dynamic Verification of SystemC Models 38

Sonali Dutta, Moshe Y. Vardi and Deian Tabakov

Abstraction-Based Livelock/Deadlock Checking for Hardware Verification 46

In-Ho Moon and Kevin Harer

iv

Approximate Formal Verification using Model-based Testing

Rance Cleaveland
University of Maryland, USA

Abstract: In model-based testing, (semi-)formal models of systems are used to drive the
derivation of test cases to be applied to the system-under-test (SUT). The technology has long
been a part of the traditional hardware-design workflows, and it is beginning to find application
in embedded-software development processes also. In automotive and land-vehicle control-
system design in particular, models in languages such as MATLAB® / Simulink® /Stateflow®
are used to drive the testing of the software used to control vehicle behavior, with tools like
Reactis®, developed by a team including the speaker, providing automated test-case generation
support for this endeavor. This talk will discuss how test-case generation capabilities may also be
used to help verify that models meet formal specifications of their behavior. The method we
advocate, Instrumentation-Based Verification (IBV), involves the formalizaton of behavior
specifications as models that are used to instrument the model to be verified, and the use of
coverage testing of the instrumented model to search for specification violations. The
presentation will discuss the foundations of IBV, the test-generation approach and other features
in Reactis® that are used to support IBV, and the results of several case studies involving the use
of the methods.

1

Diagnosis and Correction of Buggy Hardware/Software with
Formal Approaches

Masahiro Fujita

University of Tokyo, Japan

Abstract: There have been intensive researches on debugging hardware as well as software.
Some are very ad-hoc and based on simple heuristics, but others utilize formal methods and are
mathematically modeled. In this talk, we first review various proposals on debugging from
historical viewpoints, and then summarize the state-of-the-art in terms of both diagnosis and
automatic correction of designs. In particular we show various approaches with SAT-based
formulations of diagnosis and correction problems. We also discuss about them in relation to
manufacturing test techniques. That is, if the design errors are within the pre-determined types
and/or areas, there could be very efficient ways to formally verify, diagnosis and correction
methods with small numbers of test vectors. In the last part of the talk, future perspectives
including post-silicon issues are discussed.

2

Stimulus Generation, Enhancements and Debug in Constraint
Random Verification

Dhiraj Goswami
Synopsys, USA

Abstract: Verification cost in an IC design team occupies 60-80% of the entire working
resources and efforts. Functional verification, posed at the foremost stage of the IC design flow,
determines the customers' ability to find bugs quickly and thereby their time-to-results (TTR)
and cost-of-results (COR). Consequently, functional verification has been the focus of the EDA
industry for the last several decades.

Constrained random simulation methodologies have become increasingly popular for functional
verification of complex designs, as an alternative to directed-test based simulation. In a
constrained random simulation methodology, random vectors are generated to satisfy certain
operating constraints of the design. These constraints are usually specified as part of a testbench
program (using industry-standard testbench languages, like SystemVerilog from Synopsys, e
from Cadence, OpenVera, etc.). The testbench automation tool (TBA) is then expected to
generate random solutions for specified random variables, such that all the specified constraints
over these random variables are satisfied. These random solutions are then used to generate valid
random stimulus for the Design Under Verification (DUV). This stimulus is simulated using
industry-standard simulation tools, like VCS from Synopsys, NC-Verilog from Cadence, etc.
The results of simulation are then typically examined within the testbench program to monitor
functional coverage, which gives a measure of confidence on the verification quality and
completeness.

In this talk we will review the challenges of stimulus and configuration generation using
constraint random verification methodology. We will also explore why state-of-the-art debug
solutions are important to handle complexity and improve the quality of stimulus.

3

A Fast Reparameterization Procedure

Niklas Een, Alan Mishchenko
{een,alanmi}@eecs.berkeley.edu

Berkeley Verification and Synthesis Research Center

EECS Department

University of California, Berkeley, USA.

Abstract. Reparameterization, also known as range pre-
serving logic synthesis, replaces a logic cone by another logic
cone, which has fewer inputs while producing the same out-
put combinations as the original cone. It is expected that
a smaller circuit leads to a shorter verification time. This
paper describes an approach to reparameterization, which
is faster but not as general as the previous work. The new
procedure is particularly well-suited for circuits derived by
localization abstraction.

1 Introduction

The use of reparameterization as a circuit transformation in

the verification flow was pioneered by Baumgartner et. al.

in [1]. In their work, new positions for the primary inputs

(PIs) are determined by finding a minimum cut between

the current PI positions and the next-state variables (flop

inputs). BDDs are then used to compute the range (or im-

age) on the cut. Finally, a new logic cone with the same

range (but fewer PIs), is synthesized from the BDDs and

grafted onto the original design in place of the current logic

cone. This is a very powerful transformation, but it has po-

tential drawbacks: (i) the BDDs may blow up and exhaust

the memory, (ii) the extracted circuit may be larger than

the logic it replaces, and (iii) the runtime overhead may be

too high.

In contrast, the proposed approach is based on greedy lo-

cal transformations, capturing only a subset of optimization

opportunities. However, memory consumption is modest,

runtimes are very low, and the resulting design is always

smaller, or of the same size, as the original design. It is

shown experimentally that the proposed method leads to

sizeble reductions when applied for circuits produced by

localization abstraction [5].

2 Fast Reparameterization

The fast reparameterization algorithm is based on the fol-

lowing observation: if a node dominates1 a set of PIs, and

those PIs are sufficient to force both a zero and a one at

that node, regardless of the values given to the other PIs

and state variables, then that node can be replaced by a

new primary input, while the unused logic cone driving

1A node n dominates another node m iff every path from m to a

primary output goes through node n.

the original node can be removed. The old primary in-

puts dominated by the given node are also removed by this

procedure.

Example. Suppose a design contains inputs x1, x2,

and a gate Xor(x1, x2); and that furthermore, x1 has

no other fanouts besides this Xor-gate. Then, no mat-

ter which value x2 takes, both a zero and a one can

be forced at the output of the Xor by setting x1 ap-

propriately, and thus the Xor-gate can, for verification

purposes, be replaced by a primary input.

The proposed method to find similar situations starts by

computing all dominators of the netlist graph, then for each

candidate node dominating at least one PI the following

quantification problem is solved: “for each assignment to

the non-dominated gates, does there exist a pair of assign-

ments to the dominated PIs that results in a zero and a

one at the candidate node”. More formally, assuming that

x represents non-dominated gates (“external inputs”) and

yi represents dominated PIs (“internal inputs”), the follow-

ing is always true for the node’s function φ:

∀x ∃y0, y1 . ¬φ(x, y0) ∧ φ(x, y1)

Important features of this approach are:

(i) It is circuit based, while early work on reparameteri-

zation was based on transition relations [4].

(ii) In its simplest form, the proposed restructuring re-

places some internal nodes by new primary inputs and

remove dangling logic.

(iii) The analysis is completely combinational: no informa-

tion on the reachable state-space is used.

(iv) If the property was disproved after reparametrization,

it is straight-forward to remap the resulting counter-

example to depend on the original primary inputs.

It is important to realize that by analyzing and applying

reductions in topological order from PIs to POs, regions

amenable to reparameterization are gradually reduced to

contain fewer gates and PIs. By this process, the result of

repeatedly applying local transformations can lead to a sub-

stantial global reduction. In the current implementation,

the above formula is evaluated by exhaustive simulation of

4

&

& &

! ?

[cand]

&

! &

! ?

[cand]

&

! &

& &

[cand]

! ? ! ?

Figure 1. Example of subgraphs that can be reduced. Here “!”
denote nodes we can control (a PI dominated by the output
node); “?” denote nodes that can assume any value beyond our
control. In the above examples, the output node “[cand]” can
be forced to both a zero and a one by choosing the right values
for the “!”, regardless of the values of the “?”. In such cases,
the output node is replaced by a new PI.

the logic cone rooted in the given node while the cone is

limited to 8 inputs. Limiting the scope to cones with 8 in-

puts and simulating 256 bit patterns (or eight 32-bit words)

seems to be enough to saturate the reduction achievable on

the benchmarks where the method is applicable.

Some typical reductions are shown in Figure 1. The

graphs should be understood as sub-circuits of a netlist be-

ing reparameterized. The exclamation marks denote “inter-

nal” PIs dominated by the top-node, and hence under our

control; and the question marks denote gates with fanouts

outside the displayed logic cone, for which no assumption

on their values can be made. The full algorithm is described

in Figure 2.

Counterexample reconstruction. There are several

ways that a trace on the reduced netlist can be lifted to the

original netlist. For instance, the removed logic between

the new PIs and the old PIs can be stored in a separate

netlist. The trace on the reduced netlist can then be pro-

Fast Reparameterization

− Compute dominators. For a DAG with bounded

in-degree (such as an And-Inverter-Graph), this is a

linear operation in the number of nodes (see Figure 3).

− For each PI, add all its dominators to the set of

“candidates”.

− For each candidate c, in topological order from inputs

to outputs:

- Compute the set D of nodes dominated by c (Figure 4).

- Denote the PIs in D “internal” inputs.

- Denote any node outside D, but being a direct fanin of a
node inside D, an “external” input (may be any gate type).

- Simulate all possible assignments to the internal and ex-
ternal inputs. If for all external assignments there exists
an internal assignment that gives a 0 at c, and another in-
ternal assignment that gives a 1 at c, then substitute c by
a new primary input.

Figure 2. Steps of the reparameterization algorithm.

Compute Dominators

− Initialize all POs to dominate themselves

− Traverse the netlist in reverse topological order (from POs
to PIs), and mark the children of each node as being domi-
nated by the same dominator as yourself unless the child has
already been assigned a dominator

− For already marked children, compute the “meet” of the
two dominators, i.e. find the first common dominator. If
there is no common dominator, mark the node as dominat-
ing itself.

Figure 3. Review of the “finding direct dominators” algorithm
for DAGs. For a more complete treatment of this topic, see [8],
or for a more precise description, the source code of “compute-
Dominators()” in “ZZ/Netlist/StdLib.cc” of ABC-ZZ [11].

Compute Dominated Area

area = {w dom} – init. set of gates to the dominator
count = [0, 0, . . ., 0] – count is a map “gate → integer”
for w ∈ area:

for v ∈ faninsOf (w):
count [v]++
if count [v] == num of fanouts[v]:

area = area ∪ {v}

Figure 4. Find nodes used only by gate “w dom”. This set is
sometimes called maximum fanout free cone (MFFC). The outer
for-loop over the elements of area is meant to visit all elements
added by the inner for-loop. For this procedure, flops are treated
as sinks, i.e. having no fanins.

2 5

alpersen

jected onto the original PIs by rerunning the simulation

used to produce the reparameterized circuit, and for each

candidate pick an assignment that gives the correct value.

But even simpler, one can just put the original netlist into

a SAT solver and assert the values from the trace onto the

appropriate variables and call the SAT solver to complete

the assignment. In practice, this seems to always work well.

3 Improvements

The algorithm described in the previous section replaces

internal nodes with inputs, and thus only removes logic. If

we are prepared to forgo this admittedly nice property and

occasionally add a bit of new logic, then nodes that are

not completely controllable by their dominated inputs can

still be reparameterized by the following method: for node

with function φ(x, y), where x are external inputs and y are

internal inputs, compute the following two functions:

φ0(x) ≡ ∀y.¬φ(x, y)

φ1(x) ≡ ∀y.φ (x, y)

Using these two functions, φ can be resynthesized using a

single input ynew by the expression:

¬φ0(x) ∧ (φ1(x) ∨ ynew)

In other words, if two or more inputs are dominated by

the node φ, a reduction in the number of inputs is guar-

anteed. Depending on the shape of the original logic, and

how well new logic for φ0 and φ1 is synthesized, the num-

ber of logic gates may either increase or decrease. In our

implementation, logic for φ0 and φ1 is created by the fast

irredundant sum-of-product (“isop”) proposed by Shin-ichi

Minato in [10]. We greedily apply this extended method

for all nodes with two or more dominated PIs, even if it

leads to a blow-up in logic size. To counter such cases, fast

logic synthesis can be applied after the reparameterization.

Obviously, there are many ways to refine this scheme.

4 Future Work

Another possible improvement to the method is extending

the reparameterization algorithm to work for multi-output

cones. As an example, consider a two-output cone where

the outputs can be forced to all four combinations {00,
01, 10, 11} by choosing appropriate values for dominated

inputs. In such a case, the cone can be replaced by two

free inputs. If some of the four combinations at the out-

puts are impossible under conditions expressed in terms of

non-controllable signals, a logic cone can be constructed to

characterize these conditions and reduce the number of PIs

by adding logic similar to the case of a single-output cone.

5 Experiments

As part of the experimental evaluation, all benchmarks

from the single-property track of the HardwareModelcheck-

ing Competition 2012 were considered. Localization ab-

straction [5] was applied with a timeout of one hour to each

benchmark and the resulting models meeting the following

criteria were kept:

– At least half of the flops were removed by abstraction.

– The abstraction was accurate (no spurious counterex-

amples).

– At least one of the verification engines could prove the

property within one hour.

The sizes of benchmarks selected in this way are listed in

table Table 1. All those models were given to the reparam-

eterization engine, both in weak mode and strong mode,

the latter using the improvements described in section 3.

The reparameterized models were also post-processed with

a quick simplification method called “shrink” which is part

of the ABC package [7]. The longest runtime for weak repa-

rameterization was 16 ms, for strong reparameterization

28 ms and for the simplification phase 50 ms.2 Reductions

are listed in table Table 2.

For comparison, Table 2 also include the results of run-

ning an industrial implementation of the BDD based algo-

rithm of [1]. Because runtimes are significantly longer with

this algorithm, they are given their own column. These

results were given to us from IBM, and according to their

statement “are not tweaked as much as they could be”.

All benchmarks were given to three engines: Property Di-
rected Reachability [2, 6], BDD-based reachability [3], and

Interpolation-based Model Checking [9]. The complete table

of results is given in Table 3. A slice of this table, showing

only results for PDR, with and without (strong) reparam-

eterization, is given in Table 4 together with a scatter plot.

Analysis. Firstly, we see a speedup of 100x-1000x over

previous work in the runtime of the reparameterization al-

gorithm itself, with comparable quality of results for the

application under consideration (models resulting from lo-

calization abstraction). This means the algorithm can al-
ways be applied without the need for careful orchestration.

Secondly, we see an average speedup of 2.5x in verifica-

tion times when applying reparameterization in conjunc-

tion with PDR, which is also the best overall engine on

these examples. For two benchmarks, 6s121 and 6s150,
BDD reachability do substantially better than PDR, and

for the latter (where runtimes are meaningful) the speedup

due to reparameterization is greater than 3x. Furthermore,

for BDD reachability one can see that on several occa-

sions (6s30 in particular), reparameterization is completely

crucial for performance. Finally, interpolation based mod-

elchecking (IMC) seems to be largely unaffected by repa-

rameterization.

2Benchmarks from HWMCC’12 are quite small. For comparison:

running reparameterization on a 7 million gate design from one of our

industrial collaborators took 4.1 s.

3 6

alpersen

alpersen

Abstraction Phase

Design
∣

∣ #And #PI #FF
∣

∣ Depth

6s102
∣

∣ 6,594 72 1,121 → 56
∣

∣ 23

6s121
∣

∣ 1,636 99 419 → 110
∣

∣ 19

6s132
∣

∣ 1,216 94 139 → 113
∣

∣ 7

6s144
∣

∣ 41,862 480 3,337 → 236
∣

∣ 18

6s150
∣

∣ 5,448 146 1,044 → 323
∣

∣ 103

6s159
∣

∣ 1,469 13 252 → 18
∣

∣ 4

6s164
∣

∣ 1,095 91 198 → 93
∣

∣ 16

6s189
∣

∣ 36,851 479 2,434 → 259
∣

∣ 18

6s194
∣

∣ 12,049 532 2,389 → 198
∣

∣ 45

6s30
∣

∣ 1,043,139 32,994 1,195 → 128
∣

∣ 32

6s43
∣

∣ 7,408 30 965 → 310
∣

∣ 25

6s50
∣

∣ 16,700 1,570 3,107 → 207
∣

∣ 52

6s51
∣

∣ 16,701 1,570 3,107 → 209
∣

∣ 65

bob05
∣

∣ 18,043 224 2,404 → 146
∣

∣ 106

bob1u05cu
∣

∣ 32,063 224 4,377 → 146
∣

∣ 106

Table 1. Sizes of original designs and abstract models. Column #FF shows how many flip-flops were turned into unconstrained
inputs by localization abstraction. The removed FFs show up as PIs in the other tables. Last column shows the BMC depth used
by the abstraction engine (see [5] for more details).

Reparameterization
∣

∣ No Reparam.
∣

∣ Weak Rep.
∣

∣ Strong Rep.
∣

∣ BDD Reparam.
∣

∣

∣

∣

∣

∣

∣

∣

Design
∣

∣ #And #PI
∣

∣ #And #PI
∣

∣ #And #PI
∣

∣ #And #PI Runtime

6s102
∣

∣ 6,594 1,137
∣

∣ 1,247 331
∣

∣ 1,188 267
∣

∣ 1,283 285 71.91 s

6s121
∣

∣ 1,636 408
∣

∣ 627 120
∣

∣ 559 66
∣

∣ 732 41 0.27 s

6s132
∣

∣ 1,216 120
∣

∣ 1,108 62
∣

∣ 1,102 55
∣

∣ 2,731 36 0.80 s

6s144
∣

∣ 41,862 3,580
∣

∣ 10,172 1,038
∣

∣ 9,494 812
∣

∣ 13,259 889 60.50 s

6s150
∣

∣ 5,448 867
∣

∣ 3,062 506
∣

∣ 2,213 89
∣

∣ 2,231 46 1.81 s

6s159
∣

∣ 1,469 247
∣

∣ 116 20
∣

∣ 114 19
∣

∣ 256 13 0.02 s

6s164
∣

∣ 1,077 196
∣

∣ 661 109
∣

∣ 499 41
∣

∣ 3,413 40 11.61 s

6s189
∣

∣ 36,851 2,654
∣

∣ 10,033 1,004
∣

∣ 9,552 794
∣

∣ 12,051 814 63.11 s

6s194
∣

∣ 12,049 2,723
∣

∣ 1,366 184
∣

∣ 1,348 166
∣

∣ 1,612 121 10.37 s

6s30
∣

∣ 102,535 34,061
∣

∣ 1,508 307
∣

∣ 1,184 205
∣

∣ 603 50 0.74 s

6s43
∣

∣ 7,408 685
∣

∣ 3,451 304
∣

∣ 3,218 202
∣

∣ 17,691 101 2.07 s

6s50
∣

∣ 16,700 4,470
∣

∣ 1,841 350
∣

∣ 1,652 270
∣

∣ 4,319 752 46.57 s

6s51
∣

∣ 16,701 4,468
∣

∣ 1,828 350
∣

∣ 1,639 268
∣

∣ 1,255 62 16.34 s

bob05
∣

∣ 18,043 2,358
∣

∣ 1,618 187
∣

∣ 1,388 52
∣

∣ 1,586 43 0.31 s

bob1u05cu
∣

∣ 32,063 4,455
∣

∣ 1,618 187
∣

∣ 1,388 52
∣

∣ 1,586 43 0.33 s

Table 2. Effect of reparameterization on the abstracted models. “Weak” reparameterization refers to the basic method described
in section 2, “Strong” additionally includes the improvements discussed in section 3. Runtimes are omitted as the average CPU
time was 4-8 ms (and the longest 28 ms). However, BDD based reparameterization is not as scalable as the method presented in
this paper, and runtimes (typically between 100x-1000x longer) are listed for reference.

References

[1] J. Baumgartner and H. Mony. Maximal Input Reduc-

tion of Sequential Netlists via Synergistic Reparam-

eterization and Localization Strategies. In Proc. of
CHARME, pages 222–237, 2005.

[2] Aaron Bradley. IC3: SAT-Based Model Checking

Without Unrolling. In Proc. of VMCAI, 2011.

[3] R. E. Bryant. Graph-Based Algorithms for Boolean

Function Manipulation. In IEEE Transactions on Com-
puters, vol. c-35, no.8, Aug., 1986.

[4] Pankaj Chauhan, Edmund Clarke, and Daniel Kroening.
A SAT-Based Algorithm for Reparameterization in

Symbolic Simulation. In Proc. of DAC, 2004.

[5] N. Een, A. Mishchenko, and N. Amla. A Single-

Instance Incremental SAT Formulation of Proof-

and Counterexample-Based Abstraction. In FM-
CAD, 2010.

[6] Niklas Een, Alan Mishchenko, and Robert Brayton. Effi-

cient Implementation of Property Directed Reach-

ability. In Proc. of FMCAD, 2011.

4 7

alpersen

Verification Runtimes
∣

∣ PDR
∣

∣ BDD reach.
∣

∣ IMC
∣

∣

∣

∣

∣

∣∣

∣ NoRep. Weak Strong
∣

∣ NoRep. Weak Strong
∣

∣ NoRep. Weak Strong

6s102
∣

∣ 1.7 0.4 0.4
∣

∣ 121.2 90.2 204.3
∣

∣ – 2619.2 –

6s121
∣

∣ 64.0 12.3 5.4
∣

∣ 0.5 0.3 0.4
∣

∣ 10.2 5.8 36.0

6s132
∣

∣ 7.8 8.1 7.9
∣

∣ 2327.3 1375.5 –
∣

∣ 201.4 384.9 267.9

6s144
∣

∣ 10.3 12.4 9.6
∣

∣ – – –
∣

∣ 1177.5 942.1 1413.0

6s150
∣

∣ – 2323.7 –
∣

∣ 539.3 143.6 189.1
∣

∣ – – –

6s159
∣

∣ 0.0 0.0 0.0
∣

∣ 0.1 0.1 0.1
∣

∣ 0.1 0.1 0.1

6s164
∣

∣ 7.0 34.1 6.8
∣

∣ – 33.6 0.4
∣

∣ 4.4 8.5 3.0

6s189
∣

∣ 11.9 7.8 8.6
∣

∣ – – –
∣

∣ 738.0 396.5 366.0

6s194
∣

∣ 4.7 4.6 3.7
∣

∣ 307.5 42.5 742.2
∣

∣ 798.9 1042.8 1103.3

6s30
∣

∣ 15.9 45.3 12.3
∣

∣ – 17.6 49.2
∣

∣ – – –

6s43
∣

∣ 13.6 11.7 9.1
∣

∣ – 1191.1 1390.4
∣

∣ – – –

6s50
∣

∣ 14.7 10.8 5.4
∣

∣ 941.6 241.0 1680.8
∣

∣ 1795.6 820.0 2348.9

6s51
∣

∣ 18.7 7.1 4.1
∣

∣ 303.8 147.6 1891.2
∣

∣ 1806.8 954.8 1737.8

bob05
∣

∣ 0.3 0.3 0.3
∣

∣ 2450.5 2371.4 1253.2
∣

∣ 30.3 26.3 25.1

bob1u05cu
∣

∣ 0.3 0.2 0.3
∣

∣ – 2157.6 1088.3
∣

∣ 30.3 24.0 24.8

Table 3. Full table of results. Each design after abstraction is given to three engines: Property Directed Reachability (PDR),
BDD-based reachability (BDD), and Interpolation-based Model Checking (IMC). Each engine is run on three versions of the model
with no/weak/strong reparameterization applied. A dash represents a timeout after one hour.

Design
∣

∣ NoRep. Rep.

6s102
∣

∣ 1.66 0.40

6s121
∣

∣ 64.00 5.43

6s132
∣

∣ 7.82 7.90

6s144
∣

∣ 10.34 9.56

6s159
∣

∣ 0.04 0.03

6s164
∣

∣ 6.97 6.83

6s189
∣

∣ 11.86 8.59

6s194
∣

∣ 4.71 3.72

6s30
∣

∣ 15.92 12.29

6s43
∣

∣ 13.63 9.15

6s50
∣

∣ 14.66 5.44

6s51
∣

∣ 18.72 4.08

bob05
∣

∣ 0.33 0.26

bob1u05cu
∣

∣ 0.33 0.26
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

PD
R

 o
n

re
pa

ra
m

et
riz

ed
 a

bs
tra

ct
 m

od
el

PDR on abstract model

Table 4. Runtime improvements for PDR. Column “NoRep.” shows runtimes (in seconds) for proving the property of each
benchmark using PDR after abstraction, but without reparameterization; column “Rep.” shows runtimes after reparameterization.
The scatter plot on the right places these runtime pairs on a log-scale. The average speedup is 2.5x.

[7] Berkeley Logic Synthesis Group. ABC: A Sys-

tem for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/˜alanmi/abc/, v00127p.

[8] T. Lengauer and R.E. Tarjan. A Fast Algorithm for

Finding Dominators in a Flowgraph. In ACM Trans-
actions on Programming Languages and Systems, Vol. 1,
No. 1, July, pages 121–141, 1979.

[9] K. L McMillan. Interpolation and SAT-based Model

Checking. In Proc. of CAV, 2003.

[10] S. Minato. Fast Generation of Irredundant Sum-Of-

Products Forms from Binary Decision Diagrams. In
Proc. of SASIMI, 1992.

[11] Berkeley Verification and Synthesis Research Center.
ABC-ZZ: A C++ framework for verification & syn-

thesis. https://bitbucket.org/niklaseen/abc-zz.

5 8

alpersen

LEC: Learning-Driven Data-path Equivalence
Checking

Jiang Long∗, Robert K. Brayton∗, Michael Case†
∗EECS Department, UC-Berkeley
{jlong, brayton}@eecs.berkeley.edu

†Calypto Design Systems
{mcase}@calypto.com

Abstract—
In the LEC system, we employ a learning-driven approach for

solving combinational data-path equivalence checking problems.
The data-path logic is specified using Boolean and word-level
operators in VHDL/Verilog. The targeted application area are C-
to-RTL equivalence checking problems found in an industrial set-
ting. These are difficult because of the algebraic transformations
done on the data-path logic for highly optimized implementations.
Without high level knowledge, existing techniques in bit-level
equivalence checking and QF BV SMT solving are unable to
solve these problems effectively. It is crucial to reverse engineer
such transformations to bring more similarity between the two
sides of the logic. However, it is difficult to extract algebraic
logic embedded in a cloud of Boolean and word-level arithmetic
operators. To address this, LEC uses a compositional proof
methodology and analysis beyond the bit and word level by incor-
porating algebraic reasoning through polynomial reconstruction.
LEC’s open architecture allows new solver techniques to be
integrated progressively. It builds sub-model trees, recursively
transformating the sub-problems to simplify and expose the
actual bottleneck arithmetic logic. In addition to rewriting
rules that normalize the arithmetic operators, LEC supports
conditional rewriting, where the application of a rule is dependent
on the existence of invariants in the design itself. LEC utilizes
both functional and structural information of the data-path
logic to recognize and reconstruct algebraic transformations. A
case-study illustrates the steps used to extract the arithmetic
embedded in a data-path design as a linear sum of signed
integers, and shows the procedures that collaboratively led to
a successful compositional proof.

I. INTRODUCTION

With the increasing popularity of high-level design method-
ologies there is renewed interest in data-path equivalence
checking [3][13][18][20]. In such an application, a design
prototype is first implemented and validated in C/C++, and
then used as the golden specification. A corresponding Ver-
ilog/VHDL design is implemented either manually or au-
tomatically through high-level synthesis tool [2][4][15]. In
both cases, a miter logic for equivalence checking is formed
to prove the correctness of the generated RTL model by
comparing it against the original C/C++ implementation.

The data-path logic targeted in this paper is specified
using Verilog/VHDL. The bit and word-level operators in
Verilog/VHDL have the same semantic expressiveness as SMT
QF BV theory[5]. Table I gives a one-to-one correspondence
between Verilog and QF BV unsigned operators. Signed arith-
metic operators are also supported. The complexity of such an

equivalence problem is NP-complete. However, on the extreme
end, the complexity becomes O(1) of the size of the network
if the two designs are structurally the same. An NP-complete
problem can be tackled by using SAT-solvers as a general
procedure. To counter the capacity limitation of SAT-solving,
it is crucial to reduce the complexity by identifying internal
match points and by conducting transformations to bring in
more structural similarity between the two sides of the miter
logic.

Verilog operators SMT QF BV operators
Boolean &&, ‖, !,⊕,mux and, or, not, xor, ite
bit-wise &, |,∼,⊕,mux bvand, bvor, bvnot, bvxor, bvite

arithmetic +,−, ∗, /,% bvadd, bvsub, bvmul, bvdiv, bvmod
extract [] extract
concat {} concat

comparator <,>,≤,≥ bvugt, bvult, bvuge, bvule
shifter �,� bvshl, bvshr

TABLE I
SUPPORTED OPERATORS (UNSIGNED)

A. Motivation
The differences between the two data-path logics under

equivalence checking are introduced by various arithmetic
transformations for timing, area and power optimizations.
These optimizations are domain specific and can be very spe-
cialized towards a particular data-path design and underlying
technology. They have the following characteristics:
• The two sides of the miter logic are architecturally

different and have no internal match points.
• Many expensive operators such as adders and multipliers

are converted to cheaper but more complex implemen-
tations and the order of computations are changed. It is
not a scalable solution to rely on SAT solving on the
bit-blasted model.

• The parts of the transformed portion are embedded in
a cloud of bit and word level operators. Algebraic ex-
traction [8][26] of arithmetic logic based on structural
patterns is generally too restrictive to handle real-world
post-optimization data-path logic.

• Word-level rewriting uses local transformation. Without
high-level information, local rewriting is not able to make
the two sides of the miter logic structurally more similar.

Lacking high-level knowledge of the data-path logic, the
equivalence problems can be very difficult for gate-level equiv-

9

alence checking and general QF BV SMT solvers. Strategi-
cally, LEC views the bottleneck of such problems as having
been introduced by high-level optimizations and employs a
collaborative approach to isolate, recognize and reconstruct
the high-level transformations to simplify the miter model by
bringing in more structural similarities.

B. Contributions

The LEC system incorporates compositional proof strate-
gies, uses rewriting to normalize arithmetic operators, and
conducts analysis beyond bit and word level. The collaborating
procedures help to expose the actual bottleneck in a proof of
equivalence. The novel aspects of this system are:

1) It uses global algebraic reasoning through polynomial
reconstruction. In the case-study, it uses the functional
information of the design to reverse engineer the arith-
metic expression as a linear sum and also uses a struc-
tural skeleton of the original data-path to achieve the
equivalence proof.

2) It supports conditional rewriting and proves required
invariants as pre-conditions.

3) It uses recursive transformations that target making both
sides of the miter logic structurally more similar and
hence more amenable to bit-level SAT sweeping.

4) It has an open architecture, allowing new solver tech-
niques to be integrated progressively.

Through a case study, we demonstrate the steps that were
used to reconstruct the arithmetic embedded in a data-path
design as a linear sum of signed integers, as well as all the pro-
cedures that compositionally led to a successful equivalence
proof. The experimental results demonstrate the effectiveness
of these collaborating procedures.

C. Overview

The overall tool flow is described in Section II. Learning
techniques and system integration are presented in Section III
and IV. A case study is presented in Section V. Experimental
results is presented in Section VI followed by a comparison
with related work and conclusion.

II. TOOL FLOW

LEC takes Verilog/VHDL as the input language for the data-
path logic under comparison. Internally, a miter network, as
in Figure 2(a), is constructed comparing combinational logic
functions F and G. Figure 1 illustrates the overall tool flow.

First, the Verific RTL parser front-end[6] is used to compile
input RTL into the Verific Netlist Database. VeriABC[23]
processes the Verific netlist, flattens the hierarchy and produces
an intermediate DAG representation in static single assignment
(SSA) form, consisting of Boolean and word-level operators
as shown in Table I. Except for the hierarchical information,
the SSA is a close-to-verbatim representation of the original
RTL description. From SSA, a bit-blasting procedure generates
a corresponding bit-level network as an AIG (And-inverter
graph). Word-level simulation models can be created at the
SSA level. ABC[1] equivalence checking solvers are integrated
as external solvers.

Original
miter

Verific Parser Frontend

SSA Network

Word−level
Simulator

ABC
solvers

VeriABC

Learning−based
Transformations

Bit−level
AIG

Transformed
RTL

new miter target

UNSATSAT

Fig. 1. Overall tool flow

LEC tries to solve the miter directly using random simula-
tion on the word-level simulator or by ABC[1]’s equivalence
checking procedure dcec, which is a re-implementation of
iprove[24]. If unresolved, LEC applies transformations to the
SSA and produces sub-models in Verilog miter format from
which LEC can be recursively applied. The overall system
integration is described in Section IV.

III. LEARNING TECHNIQUES

In this section, we present the techniques implemented in
LEC. Even though some are simple and intuitive, they are
powerful when integrated together as demonstrated in the
experimental results. All techniques are essential bdecause
LEC may not achieve a final proof if any one is omitted.
Their interactions are illustrated in the case-study in Section
V.

F (x̄)

miter

input : x̄

G(x̄)

F=G

(a)miter network

red blue

F (x̄)

miter

G(x̄)

F=G

purple

input : x̄

(b)structurally hashed

red blue

F (x̄)

miter

G(x̄)

F=G

abstract input x̄'

(c)abstraction

redundant

input : x̄

kept

Fig. 2. Miter network

A. Structural information

An SSA netlist is a DAG of bit and word-level operators
annotated with bit-width and sign information. In the tool flow,
both Verific and VeriABC perform simple structural hashing
at the SSA level, merging common sub-expressions. After
merging, the miter logic is divided into three colored regions
using cone of influence (COI) relations, as in Figure 2 (b).
• Red: if the node is in the COI of F only

10

• Blue: if the node is in the COI of G only
• Purple: the node is in the COI of both sides of the miter

i.e. common logic
The purple region is the portion of the miter logic that
has been proved equivalent already, while the red and blue
regions are the unresolved ones. LEC makes progress by
reducing the red/blue regions and increasing the purple region.
The common logic constrains the logic for the red and blue
regions, which may be abstracted (see Section III-E) to reduce
redundancy and possibly expose the real bottleneck in a proof.

B. Simulation model

Two word-level simulators are generated from the SSA
network. One is a native interpreted model. The other uses
the open-source Verilator[29] for compiled simulation. From
the SSA network, LEC automatically generates C++ code for
pseudo-random input drivers and for monitoring design be-
havior. Verilator compiles the Verilog miter logic, links in the
generated C++ code and produces a simulator as a standalone
executable. Efficient and effective simulation is crucial in our
current flow in capturing potential constants and potential
internal equivalent points at the SSA level. Simulation is also
used to reduce common logic in the abstraction computation
procedure.

C. Bit-level model

As shown in Figure 1, an AIG is created from the SSA
network by bit-blasting. LEC calls ABC[1]’s SAT sweeping
procedure dcec to perform direct solving at the bit level. Using
the AIG model, the native SAT solver embedded in LEC can
be used to obtain a formal proof for a particular query. Typical
queries are for extracting constant nodes, proving suspected
equivalent pairs of points or conducting particular learning for
rewriting. Book-keeping information between the SSA nodes
and the AIG nodes allows queries to be constructed at the
word-level and verified at the bit-level. The result is then used
to simplify the SSA network.

D. Constants and Potential Equivalent Points (PEPs)

At the word-level, candidates for constants and PEPs are
identified through simulation and SAT queries are posed. Each
such SAT query is constructed and checked at the bit-level.
SAT-solving is configured at a low-effort level (run for a few
seconds) for these types of queries. Proven constants and PEPs
are used immediately to simplify the SSA network, leading
to a new sub-model of less complexity. LEC then continues
to process the sub-model. In the presence of unproven PEPs,
LEC can choose one as the next miter target, normally the
smallest in terms of the number of nodes in its COI. The proof
progresses as constants and PEPs are identified and used to
simplify the miter model.

E. Abstraction

As illustrated in Figure 2 (c), in computing an abstraction,
LEC computes a cut in the purple region (common logic), and

removes the logic between the cut and the inputs. An abstract
model is formed by replacing the cut signals with free inputs
x̄′. If this abstracted miter is UNSAT, then the original miter
is UNSAT. In our current implementation, LEC traverses the
SSA network in topological order from the inputs. As each
node is tentatively replaced with new PIs, simulation is used
to validate the replacement. If successful, the node is omitted
and replaced with the new PIs and the next node is processed
similarly.

A successful abstraction step removes irrelevant logic and
exposes a smaller unresolved region of the miter logic, al-
lowing LEC to continue using other procedures. In addition,
as seen from experimental results, the reduction of common
logic can reduce significantly the amount of complexity for
downstream SAT-solving, e.g. when common multipliers being
removed from the miter logic. An unsuccessful abstraction
when the abstract miter becomes SAT, indicates the existence
of a rare event not being captured during random simulations.
Often, this gives hints for selecting case-splitting candidates.

F. Rewriting

Similar to [20], word-level rewriting transforms an SSA
network into a structurally different but functionally equivalent
one. Through rewriting, certain equivalence checking problems
can become much simpler. In our experience, a multiplier is
often a source of difficulty in data-path equivalence checking.
If two multipliers from opposite sides of the miter are matched
exactly, LEC can simplify the miter through structural hashing
and treat them as common logic. This is most effective when
combined with the abstraction procedure as the common
multiplier can now be totally removed.

In LEC, a few rules are hard-coded through pattern match-
ing applied to the SSA network. The goal is to process
multiplications so that they can be matched exactly. This
rewriting is implementation specific; for illustration purposes,
we list a few rewriting rules in Table II using Verilog notation
and the semantics of the operators.

The first rule is the normalization of multiplier operands. If
a multiplier uses a partial product generator and a compressor
tree, switching the operands of the multiplication becomes a
very hard SAT problem because at the bit level the imple-
mentation is not symmetrical. It is almost imperative to apply
this rule whenever possible. The second and third rules use
the distributive laws of multiplication and multiplexing. Rules
4 and 5 remove the shift operator � when it is used with
extract and concat because it is hard for multiplication to
be restructured through the � operator. Rule 6 distributes
multiplication through the concat of two bit vectors using
+. It uses the fact that the concatenation {a, b[n − 1 : 0]} is
equivalent to a ∗ 2n + b[n− 1 : 0].

The following is a more complex rule that distributes + over
the extract operator. The right hand side is corrected with a
third term, which is the carry bit from adding the lower n bits
of a and b.

(a + b)[m : n] =

a[m : n] + b[m : n] + (a[n− 1 : 0] + b[n− 1 : 0])[n]
(1)

11

Before After
1 a ∗ b b ∗ a
2 mux(cond, d0, d1) ∗ c mux(cond, d0 ∗ c, d1 ∗ c)
3 mux(cond, d0, d1)[m : n] mux(cond, d0[m : n], d1[m : n])
4 a[m : 0]� n { (m-n)’b0, a[m:n] }
5 (a[m : 0]� n)[m− n : 0] a[m : n]
6 {a, b[n− 1 : 0]} ∗ c a ∗ c� n+ b[n− 1 : 0] ∗ c

TABLE II
REWRITING RULES

Repeatedly applying the above rules, LEC transforms the SSA
network and keeps only the ∗ and + operators, enhancing
the possibility of multipliers to be matched. Note that the
above rule (1) and Rule 4-6 in Table II are correct for
unsigned operators. Currently, for signed operators, due to
sign extension and the two’s complement representation of the
operands, we have not implemented a good set of rewriting
rules.

1) Conditional rewriting: The following equation

(a� c) ∗ b = (a ∗ b)� c (2)

reduces the bit-width of a multiplier on the left hand side to
a smaller one on the right. It is correct if a, b, c are integers
but incorrect in Verilog semantics, which uses modulo integer
arithmetic. However, if the following is true within the miter
model in modulo integer semantics

((a� c)� c) == a (3)

then equation (2) is valid. In such a situation, LEC identifies
the pattern on the left hand side of (2) in the SSA network
and executes a SAT query concerning (3) using the AIG model
through bit-level solvers. The transformation to the left hand
side of (2) is carried out only if the query is proven to be an
invariant. Such a transformation may produce an exact match
of a∗b afterwards, which can be crucial for achieving the final
proof.

G. Case-split

Case-splitting on a binary signal, cofactors the original
model into two sub-models. The miter is proven if both sub-
models are proven, or falsified if any sub-model is falsified. Al-
though exponential in nature, if many signals are chosen, case-
splitting can simplify the underlying bit-level SAT solving
significantly. For example, it is difficult to prove the following
miter structure directly through bit-blasting and SAT solving
at the AIG level

(x + y) ∗ (x + y) == x ∗ x + 2 ∗ x ∗ y + y ∗ y (4)

where x is a 32-bit integer and y a single binary signal.
However, it can be proven easily if case-splitting is done on
y = 0 and y = 1. After constant propagation, the bit-level
solver can prove both sub-models easily.

The current case-splitting mechanism supports cofactoring
on an input bit or input bit-vector. In verifying the test cases
experienced so far, the case splits are conducted on a bit, a
bit-vector equal to zero or not, or on the lsb or msb of a
bit-vector equals to zero or not. A heuristic procedure can be

implemented to trace back from the sel port of a mux node
through its Boolean fanins and choose the candidates that have
the highest controllability.

Another advantage of case-splitting is that the co-factored
sub-models contain new candidates for constants and PEPs,
which lead to other down-stream transformations not possible
before. Case-splitting also reduces the amount of Boolean
logic in the SSA network and exposes the data-path logic to
high-level learning such as polynomial construction.

H. Polynomial construction

Reasoning at the word-level, rewriting rules are based on
the arithmetic properties of the corresponding operators such
as the commutative law of integer multiplication. However,
rewriting applies only local transformations and does not have
a global view. In situations when the miter logic is constructed
from arithmetic optimization at the polynomial level, local
rewriting is not able to bring similarity into the miter for
further simplification. In such a situation, LEC tries to recon-
struct the polynomial of the whole miter model to establish
equivalence through arithmetic or algebraic equivalences and
then use high level transformations to prove the equivalence
of the original miter.

As a generic procedure, LEC follows four steps to prove a
miter network F (x̄) = G(x̄) where F and G are the top level
signals being compared, and x̄ is the vector of input variables
(bit-vectors):

1) Conjecture (possibly by design knowledge) about the
algebraic domain of the polynomial, e.g. signed vs.
unsigned integer, modulo integer arithmetic, the order
of the polynomial etc. These conjectures set up the
framework and semantics for polynomial reconstruction
as illustrated in the case-study of Section V.

2) Determine a polynomial f and create a logic network
F ′ such that the following can be proved formally.

F ′ implements f (5)
miter F ′ = F (6)

How f is constructed is domain and test-case dependent.
In the case-study of Section V, we use simulation
patterns to probe for the coefficients of a linear function.

3) Determine a polynomial g and create a logic network
G′ such that the following can be proved formally.

G′ implements g (7)
miter G′ = G (8)

4) Establish the following equivalence formally at the al-
gebraic level.

f = g (9)

The combination of Items 2, 3, and 4 establishes the equiva-
lence proof of the original miter model F = G. In constructing
F ′ and G′, we try to make them as structurally similar to F
and G as possible. Details are given in Section V.

12

IV. SYSTEM INTEGRATION

The above learning techniques are integrated in LEC as a set
of logically independent procedures. Each procedure produces
one or more sub-models, illustrated as a tree in Figure 3.
The root node is the current targeted Verilog miter model.
It has eight children. The simulator and AIG models are
the ones described in Figure 1. The simplified sub-model is
generated by constant propagation and merging proven PEPs.
The abstraction and rewrite sub-models are created by the
abstraction and rewrite procedures in the previous section.
The case-split sub-model consists of a set of sub-models,
corresponding to the cofactoring variables selected. In the
current implementation, the user needs to input the set of
signals to case-split on; eventually they will be selected by
heuristics. The linear-construction node has two sub-models
which will be explained in detail in Section V. When PEPs
are identified through simulation, a PEP node is create with
the set of unproven-PEPs as sub-models.

simulator

simplified

rewrite
case-split

linear-construction

PEP

case0
case1
...
casen

caseF
caseG

pep0
pep1
...
pepm

Verilog Miter Model

abstraction

AIG

LEC

Fig. 3. Branching sub-model tree

Two nodes in the sub-model tree are terminal. One is the
simulator model which can falsify the miter through random
simulation. The other is the AIG model where ABC’s bit-level
dcec procedure is applied. The rest of the leaf models (in bold
font) are generated as Verilog miter models, which have the
same format as the root node. LEC procedures can be applied
recursively to these leaf nodes to extend the sub-model trees to
simpler ones. The LEC proof process progresses by expanding
the sub-model tree. A sub-model is resolved as SAT or UNSAT
from its sub-models’ proof results.

Since there are no logical dependencies between sibling
sub-models, any branch can be chosen to continue the proof
process. Sibling sub-models can be forked in parallel from
a parent process. A node in the sub-model tree determines
its proof result from its children. Table III gives the possible
return values from the first level sub-models. SIMPLIFY is
returned by a PEP node to its parent model when at least
one of its sub-models, pepi, is proven UNSAT, notifying the
parent node to simplify further with the newly proved pepi.

Depending on the logical relationships between a parent and
its immediate sub-models, a node is either disjunctive or con-
junctive in semantics. In Figure 3, a Verilog miter model node

Sub-model Return
simulator SAT

AIG SAT/UNSAT
simplified SAT/UNSAT
abstraction UNSAT

rewrite SAT/UNSAT
case-split SAT/UNSAT

linear construction SAT/UNSAT
PEP SIMPLIFY

TABLE III
SUB MODEL RETURN VALUE

is disjunctive, which includes the root and all the leaf nodes
in bold font. The case-split and linear construction nodes
are conjunctive; a PEP node is disjunctive. The semantics,
shown in the following tables, are used to resolve the proof
result of the parent model from its immediate sub-models. To
complete the calculus, we introduced two values: CON and
BOT, where CON stands for an internal conflict indicating a
potential LEC software bug and BOT is the bottom of the
value lattice and acts like an uninitialized value.

‖ SAT UNS UNK SMP CON BOT
SAT SAT CON SAT SAT CON SAT
UNS CON UNS UNS UNS CON UNS
UNK SAT UNS UNK SMP CON UNK
SMP SAT UNS SMP SMP CON SMP
CON CON CON CON CON CON CON
BOT SAT UNS UNK SMP CON BOT

TABLE IV
DISJUNCTIONS OF MODELS

& SAT UNS UNK SMP CON BOT
SAT SAT SAT SAT n/a CON SAT
UNS SAT UNS UNK n/a CON UNS
UNK SAT UNK UNK n/a CON UNK
SMP n/a n/a n/a n/a n/a n/a
CON CON CON CON n/a CON CON
BOT SAT UNS UNK n/a CON BOT

TABLE V
CONJUNCTION OF MODELS

Tables IV and V are the truth tables for the disjunction and
conjunction semantics of the return values, in which UNS,
UNK, SMP stand for UNSAT, UNKNOWN, and SIMPLIFY.
Assuming a bug free situation, at a disjunctive node, if either
SAT or UNSAT is returned from a sub-model, this is the final
proof result for the parent. In conjunction, the parent must wait
until all sub-models are resolved as UNSAT before deciding
that its result is UNSAT, while any SAT sub-model implies
the current model is SAT. A PEP node returns SIMPLIFY
to its parent if one of its sub-models, say pepi, is proven
UNSAT. In this case, the parent model can apply another round
of simplification to obtain a new simplified sub-model by
merging the node pair in the just-proved pepi. The proof log in
Figure VI is a sample sub-model tree where only the branches
that contributed to the final proof are shown. Indentation
indicates the parent-child relationship. Recursively, the proof
result of the top level target is evaluated as UNSAT.

13

{
"case split": {

"case_0": "UNSAT by AIG"
"case_1": {

"simplified": {
"abstraction": {

"case split": {
"case_00": "UNSAT by AIG",
"case_01": "UNSAT by AIG",
"case_10": "UNSAT by AIG",
"case_11": "UNSAT by AIG"

},
},

},
},

},
}

Miter proof result: [Resolved: UNSAT]

Fig. 4. Illustration of proof log

Using this sub-model tree infrastructure, any new proce-
dures discovered in the future can be plugged into the system
easily. Also, the system is fully parallelizable in that siblings
can be executed at the same time. The proof process can be
retrieved from the expanded sub-model tree.

V. CASE STUDY

The design in this case-study is an industrial example taken
from the image processing domain. We verify specification
= implementation where the “specification” is a manually-
specified high-level description of the design. “Implemen-
tation” is a machine-generated and highly optimized RTL
implementation of the same design using[2]. The miter logic
is obtained through SLEC[3]. Therefore, the miter problem
is verifying that the high-level synthesis (HLS) tool did not
modify the design behavior.

This miter is sequential in nature, but here we examine a
bounded model checking (BMC) problem which checks the
correctness of the implementation at cycle N. This renders the
problem combinational. This is industrially relevant because
the sequential problem is too hard to solve in general, and
even the BMC problem at cycle N becomes too difficult for
industrial tools.

The original design (specification) consists of 150 lines
of C++. It went through the Calypto frontend[3] and was
synthesized into a word-level netlist in Verilog. The generated
miter model has 1090 lines of structural Verilog code with 36
input ports: 29 of which are 7 bits wide, 2 are 9 bits, 4 are
28 bits and one is a single-bit wire. The miter is comparing
two 28-bit values. We do not have knowledge about what the
design does except through structural statistics: no multipliers,
many adders, subtractors, comparators, shifters etc., together
with Boolean logic. From a schematic produced from the
Verilog, there seems to be a sorting network implemented
using comparators, but we can not tell anything further.

Figure 5 illustrates the compositional proof produced by the
LEC system by showing the sub-model tree created during
the proof process. Indentations indicate parent and sub-model
relations and are listed in the order they were created. The

three numbers on the right are the node counts in the red,
blue and purple regions (common logic) of the SSA network
as distinguished in Figure 2(a). Only those sub-models that
contributed to the final proof are shown in the figure. Others
are ignored. As seen in Figure 5, the case-split procedure is

1.original model : 366 332 776
2. case-split
3. case_0 : 366 331 844
4. AIG : UNSAT
6. case_1 : 366 332 776
7. simplified : 344 289 675
8. abstraction : 344 289 29
9. case-split
10. case_0 : 344 289 31
11. AIG : UNSAT
12. case_1 : 344 289 31
13. simplified : 343 288 27
14. PEP
15. pep_0 : 335 280 27
16. linear construction
17. case_F
18. AIG : UNSAT
19. case_G
20. AIG : UNSAT
21. simplified : 10 10 305
22. AIG : UNSAT

Fig. 5. Sub-model proof tree

applied twice, at lines 2 and 9. Both models have a single-
bit input port, which was selected for cofactoring. ABC[1]
immediately proved the first cofactored case, case 0 (3 and
10) , using the AIG model at 4 and 11. The time-out for the
dcec run was set to two seconds. Abstraction was applied at 8,
significantly reducing the common logic from 675 to 29 SSA
nodes, and effectively removing all the comparator logic. We
tried abstraction on the original model without the case-split
procedure and it failed to produce any result. The case-split at
2 removed enough Boolean logic and eliminated some corner
cases such that the abstraction procedure was able to produce
an abstract model successfully.

Model 15 is the smallest unproved PEP from model 13.
It is proved using the linear construction procedure at 16,
which we shall describe in detail in Section V-A. Model
21 is the simplified model of model 13 after merging the
just-proved pep0. After simplification, most of the logic in
model 21 became common logic through structural hashing,
leaving only 10 nodes in each of the blue and red regions.
Model 21 was proved quickly by ABC which concludes the
proof of the original miter. In this case, the linear-construction
procedure was crucial in attaining the proof. However, the
case-split, simplification, abstraction, and PEP models also are
very important because they collaborate in removing Boolean,
mux and comparator logic etc, but keeping only the part of the
original miter logic which constitutes a linear function. Only
at this point, can a proof by the linear construction procedure
succeed.

A. Linear construction
For model 15 in Figure 5, the SSA network contains many

+,−,� and� operators along with extract and concat oper-

14

ators, but contains no Boolean operators or muxes. The input
ports consist of twenty-five 7-bit or 12-bit wide ports. The
miter is comparing two 15-bit wide output ports. At this point,
simplification and abstraction can not simplify the model
further. Also, there are no good candidates for case-splitting.
The local rewriting rules can not be applied effectively without
having some global information to help converge the two sides
of the miter logic. High-level information must be extracted
and applied to prove this miter model.

After the linear construction procedure through LEC, the
miter logic is found to be implementing the following linear
sum in the signed integer domain using two’s complement
representation:

−16 ∗ x0 + 2 ∗ x1 + 2 ∗ x2 + 2 ∗ x3 + 2 ∗ x4 + 2 ∗ x5

+2 ∗ x6 + 2 ∗ x7 + 2 ∗ x7 + 2 ∗ x8 + 2 ∗ x9

+2 ∗ x10 + x11 + x12 + 2 ∗ x13 + 2 ∗ x14 + 2 ∗ x15

+2 ∗ x16 + 2 ∗ x17 + 2 ∗ x18 + 2 ∗ x19 − 2 ∗ x20 + 2 ∗ x21

+2 ∗ x22 + 2 ∗ x23 + 2 ∗ x24 + 14

One side of the miter implements the above sum as a plain
linear adder chain (Figure 6(a)), the other side is a highly op-
timized implementation using a balanced binary tree structure
(Figure 6(b)) and optimization tricks, which we don’t fully un-
derstand. This is a hard problem for bit-level engines because

(a)linear adder chain (b)balanced adder tree

...

...

Fig. 6. Addition implementation

there are no internal match points to utilize. Therefore, LEC
resorts to trying a high-level method to establish equivalence
at the polynomial level. The following are the detailed steps
for this specific case.

1) The conjecture: Assume the miter logic is F (x̄) = G(x̄)
as in Figure 2(a). LEC conjectures the following for the
arithmetic domain.

• Signed integer arithmetic. The numbers are in 2’s com-
plement representation.

• Assume F (x̄) and G(x̄) are implementing the linear sums
f and g of the forms

f(x̄) =
∑

ai · xi + b (10)

g(x̄) =
∑

a′i · xi + b′ (11)

2) Determining the coefficients of f , g and proving f = g
algebraically: Given the data-path logic F (x̄) and the linear
sum formula (10), it takes n + 1 simulation patterns on the n

input variables to compute the coefficients:

b = F (0, 0, ..., 0)

a0 = F (1, 0, ..., 0)− b

a1 = F (0, 1, ..., 0)− b

...

an−1 = F (0, 0, ..., 1)− b

Another round of random simulation on both the logic and
the polynomial can be done to increase the likelihood of the
conjecture. The same is repeated for G(x̄) to obtain g(x̄).

In integer arithmetic, f is equal to g if and only if the
coefficients match exactly for each term:

f = g <=> ∀ i ai = a′i and b = b′ (12)

So checking of f = g is trivial in this case. In other algebraic
domains, domain specific reasoning may have to be applied
to derive algebraic equivalence e.g. in [28].

3) Synthesizing implementations F ′/G′ for f (f=g), struc-
turally similar to F/G: We want to find a Verilog implemen-
tation F ′(x̄) of f such that

1) F ′ implements f
2) F ′ is structurally similar to F

To do this, all nodes in the SSA network with arithmetic
operators +, − are marked, and edges connecting single bits
are removed. A reduced graph is then created from the marked
nodes in the remaining graph maintaining the input/output
relations between marked nodes. This graph is a skeleton of
the implementation structure of F . For each of its nodes, we
annotate it with a conjectured linear sum computed in the
same way as in the above steps. The root node F is annotated
with f and internal nodes annotated with linear sums fs,
ft, etc. For illustration purposes, Figure 7(a) shows such an
annotated reduced graph for node w. For an arbitrary node w

+

+ +

++

s=f s(x̄)

t=f t(x̄)

w=f w(x̄) v=...

u=...
+

+ +

++

s=... t=...

w=cs⋅s+ct⋅t+ f st (x̄) v=...

u=...

(a)annotated reduced graph (b)substituted annotation
x̄ x̄

Fig. 7. Annotated reduced graph

in the reduced graph with inputs from nodes s and t, from the
annotation we have the following:

s = fs(x̄)

t = ft(x̄)

w = fw(x̄)

We would like to substitute fw with variable s and t, such
that w is a function of s and t in order to follow the structure
of the skeleton reduced graph. Because all the functions are
linear sums, we can compute, using algebraic division, two
constants cs and ct such that the following holds:

w = cs · s + ct · t + fst(x̄)

15

cs is the quotient of fw/fs and ct = (fw − cs · fs)/ft, while
fst is the remainder of the previous division. The substitution
is conducted in one topological traversal from the inputs to the
miter output. After substitution, the annotated reduced graph
is essentially a multi-level implementation of the above linear
sum. Because the linear sum annotated at each node in the
reduced graph is only a conjecture, it may not be exactly the
same function as in the original miter logic. However, in re-
implementing f using this structure, certain similarities are
still captured through the construction process.

This multi-level circuit is implemented by traversing the
substituted reduced graph, and creating a corresponding Ver-
ilog file for F ′. It is generated by allocating a bit-vector at
each internal node with its bit-width equivalent to output port
of F . The same can be done for G to obtain G′. The reason
why LEC goes through so much trouble to obtain separate
RTL implementations for F ′ and G′ (even though they are
both implementing f), is that we need to prove F = F ′ and
G = G′ separately next. Without the structural similarities
created through this procedure, proving equivalence with an
arbitrary F ′ and G′ would be as difficult as proving the
original F = G. Generally, only with these extra similarities
injected, can the miter model be simplified enough to allow
SAT sweeping to succeed for F = F ′ and G = G′.

4) Proving F = F ′ and G = G′ : We construct two miter
models F = F ′ and G = G′ as caseF and caseG in Figure
3, and apply LEC separately to each. By construction, each
miter should be simpler than the original F = G because of
the increased structural similarity between the two sides of the
miter. Another round of LEC might reduce this miter logic, if
not prove it directly through bit-level solvers. In the present
case, F = F ′ was proven instantly because F is a simple
linear adder chain, and so is F ′. Proving G = G′ takes more
time using ABCs dcec because G is a highly optimized imple-
mentation of f and the multi-level implementation from the
annotated reduced graph only captures part of the similarity.
But, the injected similarity was sufficient enough to reduce the
complexity to be within dcec’s capacity.

5) Proving that F ′/G′ implements f/g : To complete the
proof, we still have the proof obligation that F ′ and G′

implement f and g respectively. By construction from the
reduced graph, the generated Verilog is a verbatim translation
from the multi-level form of f . However, we need to bridge
the gap between Verilog’s bit-vector arithmetic vs. the integer
arithmetic of the linear sum. To do so, we created SVA
assertions to check that every Verilog statement captures the
integer value in full without losing precision due to underflows
or overflows.

c[n : 0] =a[n− 1 : 0] + b[n− 1 : 0];

assert (a[n− 1] & b[n− 1] =⇒ c[n])

assert (!a[n− 1] & !b[n− 1] =⇒ !c[n])

c[n : 0] =a[n : 0]/b[m : 0];

assert (a[n : 0] == (c[n : 0] ∗ b[m : 0])[n : 0])

c[m : 0] ={a[n : 0]}[m : 0];

assert a[n : 0] == {(n−m) ∗ {c[m− 1]}, c[m : 0]}

The first two sets of assertions ensure there is no overflow of
signed integer add and no non-zero remainder of division.
The third one ensures that extraction does not change the
value in two’s complement representation. The SVA checkers
are formally verified separately using the VeriABC[23] flow,
which in turn uses ABCs model checker.

From the above procedures, we established the following:

f(x̄) = g(x̄) (13)
F ′(x̄) implements f(x̄) (14)
G′(x̄) implements g(x̄) (15)

F = F ′ (16)
G = G′ (17)

Altogether they establish the proof for F = G.
Combining the above procedures into a single run, LEC took

about 10 minutes on an i7 processor to complete the full proof.
Roughly 80% of the time is spent on compiling and running
random simulation, the rest are used for SAT solving. In table
VI, we also compare this run-time against Boolector[11], z3
[16] and ABC’ iprove [24] solver, all run on the same server.
It is clear that LEC expedites the proof significantly by using
the knowledge of the linear sum formulation inside the miter
logic.

Miter Boolector Z3 iprove LEC
model 1 time-out time-out time-out 10min

TABLE VI
COMPARISON WITH OTHER SOLVES (TIME-OUT IN 24 HOURS)

In summary, polynomial reconstruction was a key tech-
nique to prove the underlying miter problem. The case-
study illustrates the major steps and the proof obligations
encountered during the process. The actual techniques used
for different domains of the underlying arithmetic would
differ. Each algebraic domain would require special purpose
heuristics and automated proof procedures to guarantee the
correctness of the reconstructions and transformations used
in the method. The goal of the linear construction procedure
was to inject increased structural similarity by using global
algebraic transformations.

VI. EXPERIMENTAL RESULTS

Table VI shows the experimental results comparing
Boolector[11], Z3[16] and iprove[24] using a 24-hour time-
out limit on an 2.6Ghz Intel Xeon processor. These models
are generated directly using SLEC[3] for checking C-to-RTL
equivalence or extracted as a sub-target from PEPs. The first
column is the miter design name. The second column is the
number of lines of Verilog for the miter model specification.
Run-time or time-out results are reported for each solver in
columns 3 to 6. Although the miter models are not big in terms
of lines of Verilog, they are quite challenging for Boolector,
Z3 and iprove. The run-time of LEC is the total CPU time

16

including Verilog compilation. It was expected that iprove
would not prove any of them because it works on the bit-
blasted model without any high-level information that the other
solvers have.

Design Lines Boolector z3 iprove LEC
mul 64 64 125 20 sec 200 sec timeout 10 sec

d1 24 time-out time-out time-out 15 sec
d2 507 time-out time-out time-out 2 min
d3 191 time-out time-out time-out 15 min
d4 473 time-out time-out time-out 60 sec

d5 pep 0 674 time-out 9 hour time-out 4 min

TABLE VII
BENCHMARK COMPARISON (TIMEOUT 24 HOURS)

The miter, mul 64 64, is comparing a 64x64 multiplier
with an implementation using four 32x32 multipliers as the
following:

{aH , aL} ∗ {bH , bL} = (aH ∗ bH) << 64 +

(aH ∗ bL + aL ∗ bH) << 32 + aL ∗ bL

where aH , aL, bH , bL are the 32-bit slices of the original
64-bit bit-vectors. Both Boolector and Z3 are able to prove it.
LEC proves it by first utilizing rewriting rules to transform
the 64x64 multiplier into four 32x32 multipliers, matching
the other four in the RHS of the miter. As they are matched
exactly, they become common logic in the miter model. LEC
then produces an abstraction and obtains a reduced model
with all the multipliers removed: the outputs of the multipliers
become free inputs in the abstract model. The abstract model
is then proven instantly by ABC’s dcec on the AIG model.

The miter d1, extracted from a PEP sub-model, is a demon-
stration of rewrite rule 6 in Table II using 32-bit multiplication.
As both Boolector and Z3 fail to prove equivalence within
the time-limit, they likely do not have this rewriting rule
implemented.

To prove d2, LEC conducts conditional rewriting using rule
(2) by first statically proving an invariant in the form of (3).
After the transformation, the multipliers are matched exactly
on both sides of the miter and removed in the subsequent
abstract model. The final miter model is proved instantly by
ABC on the bit level AIG.

The miter model d3 has part of its logic similar to
mul 64 64 embedded inside. LEC proves d3 by first applying
rewriting rules repeatedly until no more rewriting is possible.
Then, LEC computes a reduced model through abstraction. In
the reduced model, LEC conducts a case-split on a one-bit
input. The case-0 AIG model is proven instantly, while case-1
is proven in about 10 minutes by ABC.

The miter d4 is proven by first conducting a case-split of two
bit-vector inputs: cofactoring on whether the bit-vector equals
zero or not. Three of the four cofactored cases are proven
instantly. The one unresolved goes through a round of simpli-
fication and abstraction. On the then obtained sub-model, three
one-bit inputs are identified and cofactored through case-split
procedures. LEC prove all eight cases quickly within a few
seconds.

Miter d5 is extracted from model 15 in Figure 5 which
contains the purely linear sum miter described in the case-
study section. For this simpler miter, Z3 is able to prove

it in 9 hours while both iprove and Boolector time out.
This shows that LEC’s transformations through collaborating
procedures successfully reduce the surrounding logic in the
original model, which was preventing Z3 to prove it in 24
hours.

The above experiments demonstrate the effectiveness of
LEC’s collaborating procedures of simplification, rewriting,
case-splitting and abstraction computations. The LEC architec-
ture allows these procedures to be applied recursively through
a sub-model tree: the model obtained by one procedure
introduces new opportunities for applying other procedures
in the next iteration. As exemplified in miter d4, the initial
case-split gives rise to new opportunities for simplification
as new constants are introduced by cofactoring. Then a new
round of abstraction is able to remove enough common logic
and expose three one-bit inputs as case-split candidates in
the reduced model, which in turn gives rise to another case-
split transformation that leads to the final proof. None of
this is possible without the transformations being applied in
sequence.

VII. COMPARISON WITH RELATED WORK

In bit-level equivalence-checking procedures [24][25], sim-
ulation, SAT-sweeping, AIG rewriting and internal equiva-
lence identification are all relevant to data-path equivalence-
checking. In LEC, these types of procedures are conducted
at the word-level. Word-level rewriting is difficult if only a
bit-level model is available. For example, with no knowledge
of the boundary of a multiplier, normalizing its operands is
impractical at the bit-level . Although abstraction and case-
split techniques in LEC can be applied at the bit-level in
theory, these are not used due to the difficulty of comput-
ing an abstraction boundary or of finding good cofactoring
candidates.

SMT solving is relevant because a data-path is a subset
of QF BV theory. Methods such as [7][11][16][14][17][19],
are state-of-art QF BV solvers. These employ different imple-
mentations of word-level techniques in rewriting, abstraction,
case-splitting, and simplification, and interleave Boolean and
word-level reasoning via a generalized DPLL framework or
through abstraction refinements of various forms. Hector[20] is
closest to LEC in terms of technology and targeted application
domains, and has a rich set of word-level rewriting rules along
with some theorem prover [7] procedures to validate every
rewriting applied. Hector also has an orchestration of a set of
bit-level solvers using SAT and BDD engines to employ once
the bit-level miter model is constructed. Strategically, LEC
relies less on the capacity of SAT solver; instead it builds
a compositional proof infrastructure and employs iterative
transformations to finally obtain a proof through sub-model
trees. The goal of these LEC learning procedures is to reverse
engineer the embedded high-level algebraic transformations
and bring more similarity between both sides of the miter
model.

The techniques in [26] [31][33] also try to reconstruct an
algebraic model from the underlying logic, but they employ a
bottom up approach and their primitive element is a half-adder.

17

The method in [8] simplifies the algebraic construction by
solving an integer linear programming problem. The limitation
of these approaches is that they rely on the structural pattern
of the underlying logic to reconstruct the algebraic model.
On the other hand, the linear construction case-study in
Section V-A constructs the polynomial through probing with
simulation patterns. This is more general as it uses only the
functional information of the data-path logic. For different
domains, other techniques may well be more applicable such
as the bottom-up approach. The use of vanishing polynomials
and Grobner bases in [27][28] to prove equivalence between
polynomials in the modulo integer domain can be utilized once
a polynomial form is reconstructed in LEC. In many data-path
miter models, such a polynomial in a certain domain or theory
is likely embedded in other control and data-path logic. Direct
application of algebraic techniques is often not practical. Thus
the collaborating procedures in LEC are designed to bridge
this gap and isolate such polynomials so that these high level
theories can then be applied.

In conducting consistency checking between C and Verilog
RTL, the work [21] focuses on how to process a C program
to generate formal models. The tool relies on SMT solvers
[11][16][14] as the back-end solving engines.

In terms of tool architecture, [9] [10] [22], all employ
a sophisticated set of transformations to simplify the target
model during verification. These are done at the bit-level. The
LEC infrastructure allows future extension to take advantage
of multi-core parallelization as demonstrated in [30]. [12]
[32], use a dedicated data-structures to represent the proof-
obligations, while LEC relies on the sub-model tree to track
the compositional proof strategy used at each node.

VIII. CONCLUSION

In LEC, we build a system of collaborating procedures
for data-path equivalence-checking problems found from an
industrial setting. The strategy is to utilize Boolean level
solvers, conduct the transformations at the word-level and
to synthesize internal similarities by lifting the reasoning to
the algebraic level . Using a real industrial case-study, we
demonstrated the applicability of the sub-tree infrastructure for
integrating a compositional proof methodology using LEC.

REFERENCES

[1] ABC - a system for sequential synthesis and verification. Berkeley
Verification and Synthesis Research Center, http://www.bvsrc.org.

[2] Calypto R© Catapult Design Product. http://www.calypto.com.
[3] Calypto R© SLEC. http://www.calypto.com.
[4] Forte design systems. http://www.forteds.com.
[5] smtlib. http://www.smt-lib.org.
[6] Verific Design Automation: http://www.verific.com.
[7] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,

A. Reynolds, and C. Tinelli. Cvc4. In Computer Aided Verification,
pages 171–177. Springer, 2011.

[8] M. A. Basith, T. Ahmad, A. Rossi, and M. Ciesielski. Algebraic
approach to arithmetic design verification. In Formal Methods in
Computer-Aided Design (FMCAD), 2011, pages 67–71. IEEE, 2011.

[9] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen.
Scalable sequential equivalence checking across arbitrary design trans-
formations. In Computer Design, 2006. ICCD 2006. International
Conference on, pages 259–266. IEEE, 2007.

[10] R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In Computer Aided Verification, pages 24–40. Springer,
2010.

[11] R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 174–177. Springer, 2009.

[12] M. L. Case, A. Mishchenko, and R. K. Brayton. Automated extraction
of inductive invariants to aid model checking. In Formal Methods
in Computer Aided Design, 2007. FMCAD’07, pages 165–172. IEEE,
2007.

[13] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma. Non-
cycle-accurate sequential equivalence checking. In Proceedings of the
46th Annual Design Automation Conference, pages 460–465. ACM,
2009.

[14] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The mathsat5
smt solver. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 93–107. Springer, 2013.

[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for fpgas: From prototyping to deployment.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 30(4):473–491, 2011.

[16] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[17] B. Dutertre and L. De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2:2, 2006.

[18] M. Fujita. Equivalence checking between behavioral and rtl descriptions
with virtual controllers and datapaths. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 10(4):610–626, 2005.

[19] S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an efficient
smt solver for bit-vector arithmetic. In Computer Aided Verification,
pages 668–674. Springer, 2009.

[20] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology for
system-level to rtl equivalence checking. In Design, Automation & Test
in Europe Conference & Exhibition, 2009. DATE’09., pages 196–201.
IEEE, 2009.

[21] D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency of C and
Verilog programs using bounded model checking. In Proceedings of
DAC 2003, pages 368–371. ACM Press, 2003.

[22] A. Kuehlmann and J. Baumgartner. Transformation-based verification
using generalized retiming. In Computer Aided Verification, pages 104–
117. Springer, 2001.

[23] J. Long, S. Ray, B. Sterin, A. Mishchenko, and R. Brayton. Enhanc-
ing abc for ltl stabilization verification of systemverilog/vhdl models.
Ganesh Gopalakrishnan University of Utah USA, page 38, 2011.

[24] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een. Improvements to
combinational equivalence checking. In Computer-Aided Design, 2006.
ICCAD ’06. IEEE/ACM International Conference on, pages 836–843,
2006.

[25] V. Paruthi and A. Kuehlmann. Equivalence checking combining a
structural sat-solver, bdds, and simulation. In Computer Design, 2000.
Proceedings. 2000 International Conference on, pages 459–464, 2000.

[26] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch,
and G. Greuel. Stable: A new qf-bv smt solver for hard verification
problems combining boolean reasoning with computer algebra. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011, pages 1–6. IEEE, 2011.

[27] N. Shekhar, P. Kalla, and F. Enescu. Equivalence verification of
polynomial datapaths using ideal membership testing. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
26(7):1320–1330, 2007.

[28] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan. Equivalence
verification of polynomial datapaths with fixed-size bit-vectors using
finite ring algebra. In Computer-Aided Design, 2005. ICCAD-2005.
IEEE/ACM International Conference on, pages 291–296, 2005.

[29] W. Snyder, P. Wasson, and D. Galbi. Verilator: Convert verilog code to
c++/systemc, 2012.

[30] B. Sterin, N. Een, A. Mishchenko, and R. Brayton. The benefit of
concurrency in model checking. IWLS, 2011.

[31] D. Stoffel and W. Kunz. Equivalence checking of arithmetic circuits on
the arithmetic bit level. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 23(5):586–597, 2004.

[32] D. Wang and J. Levitt. Automatic assume guarantee analysis for
assertion-based formal verification. In Proceedings of the 2005 Asia
and South Pacific Design Automation Conference, pages 561–566. ACM,
2005.

[33] M. Wedler, D. Stoffel, R. Brinkmann, and W. Kunz. A normalization
method for arithmetic data-path verification. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 26(11):1909–
1922, 2007.

18

Trading-off incrementality and dynamic restart of
multiple solvers in IC3
G. Cabodi (*), A. Mishchenko (**), M. Palena (*)

(*) Dip. di Automatica ed Informatica
Politecnico di Torino - Torino, Italy

(**) Dept. of EECS, University of California, Berkeley, CA, USA

Abstract—This paper1addresses the problem of SAT solver
performance in IC3, one of the major recent breakthroughs
in Model Checking algorithms. Unlike other Bounded and
Unbounded Model Checking algorithms, IC3 is characterized
by numerous SAT solver queries on small sets of problem
clauses. Besides algorithmic issues, the above scenario poses
serious performance challenges for SAT solver configuration
and tuning. As well known in other application fields, finding
a good compromise between learning and overhead is key to
performance. We address solver cleanup and restart heuristics,
as well as clause database minimality, based on on-demand clause
loading: transition relation clauses are loaded in solver based
on structural dependency and phase analysis. We also compare
different solutions for multiple specialized solvers, and we provide
an experimental evaluation on benchmarks from the HWMCC
suite. Though not finding a clear winner, the work outlines several
potential improvements for a portfolio-based verification tool
with multiple engines and tunings.

I. I NTRODUCTION

IC3 [1] is a SAT-based invariant verification algorithm
for bit-level Unbounded Model Checking (UMC). Since its
introduction, IC3 has immediately generated strong interest,
and is now considered one of the major recent breakthroughs
in Model Checking. IC3 proved to be impressively effective on
solving industrial verification problems. Our experience with
the algorithm shows that IC3 is the single invariant verification
algorithm capable of solving the largest number of instances
among the benchmarks of the last editions of the Hardware
Model Checking Competition (HWMCC).

A. Motivations

IC3 heavily relies on SAT solvers to drive several parts of
the verification algorithm: a typical run of IC3 is characterized
by a huge amount of SAT queries. As stated by Bradley in [2],
the queries posed by IC3 to SAT solvers differ significantly
in character from those posed by other SAT-based invariant
verification algorithms (such as Bounded Model Checking [3],
k-induction [4] [5] or interpolation [6]). Most notably, SAT
queries posed by IC3 don’t involve the unrolling of the transi-
tion relation for more than one step and are thus characterized
by small-sized formulas.

IC3 can be thought as composed of two different layers:
at the top level, the algorithm itself drives the verification

1This work was supported in part by SRC Contracts No. 2012-TJ-2328 and
No. 2265.001

process by constantly refining a set of over-approximations
to forward reachable states with new inductive clauses; at the
bottom level, a SAT solving framework is exploited by the
top-level algorithm to respond to queries about the system.
As shown in [7], these two layers can be separated by means
of a clean interface.

Performance of IC3 turns out to be both highly sensitive
to the various internal behaviours of SAT solvers, and strictly
dependent on the way the top-level algorithm is integrated with
the underlying SAT solving framework.

The peculiar characteristics exposed by the SAT queries of
IC3 can thus be exploited to improve the overall performance
of the algorithm in two different manners:

1) Tuning the internal behaviours of the particular SAT
solver employed to better fit IC3 needs.

2) Defining better strategies to manage the SAT solving
work required by IC3.

In this paper we address this second issue, proposing and
comparing different implementation strategies for handling
SAT queries in IC3. The aim of this paper is to identify the
most efficient way to manage SAT solving in IC3. To achieve
this goal we experimentally compare a number of different
implementation strategies over a selected set of benchmarks
from the recent HWMCC.

The experimental work has been done by two different
research groups, on two different state-of-the-art verification
tools, ABC [8] and PdTRAV [9], that share similar architec-
tural and algorithmnic choices in their implementation of IC3.

The focus of this paper is neither on the IC3 algorithm
itself nor on the internal details of the SAT solving procedures
employed, but rather on the implementation details of the
integration between IC3 and the underlying SAT solving
framework.

B. Contributions

The main contributions of this paper are:

• A characterization of SAT queries posed by IC3.
• Novel approaches to solver allocation, loading and clean

up in IC3.
• An experimental evaluation of performance using two

verification tools.

19

C. Outline

First in Section II we introduce the notation used and give
some background on IC3. Then, in Section III we present a
systematic characterization of the SAT solving work required
by IC3. Section IV introduces the problem of handling SAT
queries posed by IC3 efficiently. Both commonly used and
novel approaches to the allocation, loading and cleaning up of
SAT solvers in IC3 are discussed in Sections V, VI and VII
respectively. Experimental data comparing these approaches
are presented in Section VIII. Finally, in Section IX we draw
some conclusions and give summarizing remarks.

II. BACKGROUND

A. Notation

Definition 1. A transition system is the tripleS = 〈M, I, T 〉
whereM is a set of boolean variables called state variables of
the system,I(M) is a boolean predicate overM representing
the set of initial states of the system andT (M,M ′) is a
predicate overM,M ′ that represents the transition relation
of the system.

Definition 2. A state of the system is represented by a
complete assignments to the state variablesM . A set of
states of the system is represented by a boolean predicate
over M . Given a boolean predicateF over M , a complete
assignements such thats satisfiesF (i.e. s |= F) represents
a state contained inF and is called anF -state. Primed
state variablesM ′ are used to represent future states and,
accordingly, a boolean predicate overM ′ represent a set of
future states.

Definition 3. A boolean predicateF is said to be stronger than
another boolean predicateG if F → G, i.e. everyF -state is
also aG-state.

Definition 4. A literal is a boolean variable or the negation of
a boolean variable. A disjunction of literals is called a clause
while a conjunction of literals is called a cube. A formula
is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses.

Definition 5. Given a transition systemS = 〈M, I, T 〉, if an
assignments, t′ satisfies the transition relationT (i.e. if s, t′ |=
T) thens is said to be a predecessor oft and t is said to be
a successor ofs. A sequence of statess0, s1, . . . , sn is said
to be a path inS if every couple of adjacent statessi, si+1,
i ≤ 0 < n satisfies the transition relation (i.e. ifsi, s′i+1 |= T).

Definition 6. Given a transition systemS = 〈M, I, T 〉, a state
s is said to be reachable inS if there exists a paths0, s1, . . . , s,
such thats0 is an initial state (i.e.s0 |= I). We denote with
Rn(S) the set of states that are reachable inS in at mostn
steps. We denote withR(S) the overall set of states that are
reachable inS. Note thatR(S) =

⋃

i≥0 Ri(S).

Definition 7. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP over M (called A safety property), the
invariant verification problem is the problem of determining if

P holds for every reachable state inS: ∀s ∈ R(S) : s |= P .
An algorithm used to solve the invariant verification problem
is called an invariant verificatio algorithm.

Definition 8. Given a transition systemS = 〈M, I, T 〉, a
boolean predicateF overM is called an inductive invariant
for S if the following two conditions hold:

• Base case:I → F

• Inductive case:F ∧ T → F ′

A boolean predicateF overM is called an inductive invariant
for S relative to another boolean predicateG if the following
two conditions hold:

• Base case:I → F

• Relative inductive case:G ∧ F ∧ T → F ′

Lemma 1. Given a transition systemS = 〈M, I, T 〉, an
inductive invariantF for S is an over-approximation to the
set of reachable statesR(S).

Definition 9. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP overM , an inductive strengthening ofP
for S is an inductive invariantF for S such thatF is stronger
thanP .

Lemma 2. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP overM , if an inductive strengthening of
P can be found, then the propertyP holds for every reachable
state ofS. The invariant verification problem can be seen as
the problem to find an inductive strengthening ofP for S.

B. IC3

Given a transition systemS = 〈M, I, T 〉 and a safety prop-
ertyP overM, IC3 aims to find an inductive strengthening of
P for S. For this purpose, it maintains a sequence of formulas
Fk = F0, F1, . . . Fk such that, for every0 ≤ i < k, Fi is an
over-approximation of the set of states reachable in at most
i steps inS. Each of these over-approximations is called a
time frameand is represented by a set of clauses, denoted by
clauses(Fi). The sequence of time framesFk is called trace
and is maintained by IC3 in such a way that the following
conditions hold throughout the algorithm:

(1) F0 = I
(2) Fi → Fi+1, for all 0 ≤ i < k

(3) Fi ∧ T → F ′
i+1, for all 0 ≤ i < k

(4) Fi → P , for all 0 ≤ i < k

Condition (1) states that the first time frame of the trace is
special and is simply assigned to the set of initial states of
S. The remaining conditions, claim that for every time frame
Fi but the last one: (2) everyFi-state is also aFi+1-state, (3)
every successor of anFi-state is anFi+1-state and (4) every
Fi-state is safe. Condition (2) is maintained syntactically,
enforcing the condition (2’)clauses(Fi+1) ⊆ clauses(Fi).

Lemma 3. Let S = 〈M, I, T 〉 be a transition system,
Fk = F0, F1, . . . Fk a sequence of boolean formulas over
M and let conditions (1-3) hold forFk. Then eachFi,
with 0 ≤ i < k, is an over-approximation to the set of states
reachable withini steps inS.

20

Lemma 4. Let S = 〈M, I, T 〉 be a transition system,P a
safety property overM, Fk = F0, F1, . . . Fk a sequence of
boolean formulas overM and let conditions (1-4) hold for
Fk. ThenP is satisfied up tok − 1 steps inS (i.e. there
doesn’t exist any counter-example toP of length less or equal
than k − 1).

The main procedure of IC3 is described in Algorithm 1 and
is composed of two nested iterations. Major iterations (lines 3-
16) try to prove thatP is satisfied up tok steps inS, for
increasing values ofk. To prove so, in minor iterations (lines 4-
9), IC3 refines the traceFk computed so far, by adding new
relative inductive clauses to some of its time frames. The
algorithm iterates until either (i) an inductive strengthening
of the property is produced (line 4), or (ii) a counter-example
to the property is found (line 7).

Input: S = 〈M, I, T 〉 ;P (M)

Output: SUCCESS or FAIL(σ), with σ counter-example
1: k ← 0

2: Fk ← I

3: repeat
4: while ∃t : t |= Fk ∧ ¬P do
5: s← Extend(t)
6: if BlockCube(s, Q, Fk) = FAIL(σ) then
7: return FAIL(σ)
8: end if
9: end while

10: Fk+1 ← ∅
11: k ← k + 1

12: Fk ← Propagate(Fk)
13: if Fi = Fi+1 for some0 ≤ i < k then
14: return SUCCESS
15: end if
16: until forever

Algorithm 1. IC3(S, P)

At major iteration k, the algorithm has computed a trace
Fk such that conditions (1-4) hold. From Lemma 4, it follows
that P is satisfied up tok − 1 steps inS. IC3 then tries to
prove thatP is satisfied up tok steps as well. This is done by
enumeratingFk-states that violateP and then trying to block
them inFk.

Definition 10. Blocking a state (or, more generally, a cube)
s in a time frameFk means provings unreachable withink
steps inS, and consequently refineFk to exclude it.

To enumerate each state ofFk that violatesP (line 4), the
algorithm poses SAT queries to the underlying SAT solving
framework in the following form:

SAT ?(Fk ∧ ¬P) (Q1)

If Q1 is SAT, a bad statet in Fk can be extracted from the
satisfying assignment. That state must be blocked inFk. To
increase performance of the algorithm, as suggested in [7],
the bad statet generated this way is first (possibly) extended

to a bad cubes. This is done by means of theExtend(t)
procedure (line 5), not reported here, that employs ternary
simulation to remove some literals fromt. The resulting cube
s includes t and violates the propertyP , it is thus abad
cube. The algorithm then tries to block the whole bad cube
s rather thant. It is showed in [7] that extending bad states
into bad cubes before blocking them dramatically improves
IC3 performance.

Once a bad cubes is found, it is blocked inFk calling
the BlockCube(s, Q, Fk) procedure (line 6). This procedure
is described in Algorithm 2.

Input: s: bad cube inFk; Q: prior ity queue;Fk: trace
Output: SUCCESS or FAIL(σ), with σ counter-example

1: add a proof-obligation(s, k) to the queueQ
2: while Q is not emptydo
3: extract(s, j) with minimal j from Q
4: if j > k or t 6|= Fj then continue;
5: if j = 0 then return FAIL(σ)
6: if ∃t, v′ : t, v′ |= Fj−1 ∧ T ∧ ¬s ∧ s′ then
7: p← Extend(t)
8: add (p, j − 1) and (s, j) to Q
9: else

10: c← Generalize(j, s,Fk)
11: Fi ← Fi ∪ c for 0 < i ≤ j
12: add (j + 1, c) to Q

13: end if
14: end while
15: return SUCCESS

Algorithm 2. BlockCube(s, Q, Fk)

Otherwise, ifQ1 is UNSAT, every bad state ofFk has been
blocked so far, conditions (1-4) hold fork + 1 and IC3 can
safely move to the next major iteration, trying to prove that
P is satisfied up tok + 1 steps. Before moving to the next
iteration, a new empty time frameFk+1 is created (line 10).
Initially, clauses(Fk+1) = ∅ and such time frame represent
the entire state space, i.e.Fk+1 = Space(S). Note that
Space(S) is a valid over-approximation to the set of states
reachable withink + 1 steps inS. Then a phase calledprop-
agation takes place (line 12). The procedurePropagate(Fk)
(Algorithm 4), which is discussed later, handles that phase.
During propagation, IC3 tries to refine every time frameFi,
with i < 0 ≤ k, by checking if some clauses of one time
frame can be pushed forward to the following time frame.
Possibly, propagation refines the outmost timeframeFk so that
Fk ⊂ Space(S). Propagation can lead to two adjacent time
frames becoming equivalent. If that happens, the algorithm
has found an inductive strengthening ofP S (equal to those
time frames), so the propertyP holds for for every reachable
state ofS and IC3 return success (line 13).

The procedureBlockCube(s, Q, Fk) (Algorithm 2) is re-
sponsible for refining the traceFk in order to block a bad cube
s found in Fk. To preserve condition (3), prior to blocking a
cube in a certain time frame, IC3 has to recursively block its

21

predecessor states in the preceding time frames. To keep track
of the states (or cubes) that must be blocked in certain time
frames, IC3 uses the formalism ofproof-obligations.

Definition 11. Given a cubes and a time frameFj , a proof-
obligation is a couple(s, j) formalizing the fact thats must
be blocked inFj .

Given a proof obligation(s, j), the cubes can either
represent a set of bad states or a set of states that can all
reach a bad state in one or more transitions. The numberj

indicates the position in the trace wheres must be proved
unreachable, or else the property fails.

Definition 12. A proof obligation (s, j) is said to be dis-
charged whens becomes blocked inFj .

IC3 maintains a priority queueQ of proof-obligations.
During the blocking of a cube, proof-obligations(s, j) are
extracted fromQ and discharged for increasing values of
j, ensuring that every predecessor of a bad cubes will be
blocked inFj (j < k) before s will be blocked inFk. In
the BlockCube(s, Q, Fk) procedure, first a proof-obligation
encoding the fact thats must be blocked inFk is added to
Q (line 1). Then proof-obligations are iteratively extracted
from the queue and discharged (lines 2-14).

Prior to discharge the proof-obligation(s, j) extracted, IC3
checks if that proof-obligation still needs to be discharged.
It is in fact possible for an enqueued proof-obligation to
become discharged as a result of the discharging of some
previously extracted proof-obligations. To perform this check,
the following SAT query is posed (line 4):

SAT ?(Fj ∧ s) (Q2)

If the result ofQ2 is SAT, then the cubes is still in Fj and
(s, j) still needs to be discharged. Otherwise,s has already
been blocked inFj and the procedure can move on to the
next iteration.

If the proof-obligation(s, j) still needs to be discharged,
then IC3 checks if the time frame identified byj is the initial
time frame (line 5). If so, the states represented bys are initial
states that can reach a violation of the propertyP . A counter-
exampleσ to P can be constructed going up the chain of
proof-obligations that led to(s, 0). In that case, the procedure
terminates with failure returning the counter-example found.

To discharge a proof-obligation(s, j), i.e. to block a cube
s in Fj , IC3 tries to derive a clausec such thatc ⊆ ¬s and
c is inductive relative toFj−1. This is done by posing the
following SAT query (line 6):

SAT ?(Fj−1 ∧ ¬s ∧ T ∧ s′) (Q3)

If Q3 is UNSAT (lines 10-12), then the clause¬s is
inductive relative toFj−1 and can be used to refineFj , ruling
out s. To pursue a stronger refinement ofFj , the inductive
clause found undergoes a process calledinductive generaliza-
tion (line 10) prior to being added toFi. Inductive gener-
alization is carried out by the procedureGeneralize(j, s,Fk)
(Algorithm 3), which tries to minimize the number of literals

in clausec = ¬s while maintaining its inductiveness relative
to Fj−1, in order to preserve condition (2). The resulting
clause is added not only toFj , but also to every time frame
Fi, 0 < i < j (line 11). Doing so discharges the proof-
obligation(s, j). In fact, this refinement rule outs from every
Fi with 0 < i ≤ j. Since the setsFi with i > j are larger
thanFj , s may still be present in one of them and(s, j + 1)

may become a new proof-obligation. To address this issue,
Algorithm 2 adds(s, j + 1) to the priority queue (line 12).

Otherwise, ifQ3 is SAT (lines 7-8), a predecessort of s
in Fj−1 can be extracted from the satisfying assignment. To
preserve condition (3), before blocking a cubes in a time
frameFj , every predecessor ofs must be blocked inFj−1. So,
the predecessort is extended with ternary simulation (line 7)
into the cubep, and then both proof-obligations(p, j−1) and
(s, j) are added to the queue (line 8).

Input: j: time frame index;s: cube such that ¬s is
inductive relative toFj−1; Fk: trace

Output: c : a sub-clause of¬s
1: c← ¬s
2: for all literals l in c do
3: try ← the clause obtained by deletingl from c

4: if 6 ∃t, v′ : t, v′ |= Fj−1 ∧ T ∧ try ∧ ¬try′ then
5: if 6 ∃t |= I ∧ ¬try then
6: c← try

7: end if
8: end if
9: end for

10: return c

Algorithm 3. Generalize(j, s,Fk)

The Generalize(j, s,Fk) procedure (Algorithm 3) tries to
remove literals from¬s while keeping it relatively inductive
to Fj−1. To do so, a clausec intialized with¬s (line 1) is used
to represent the current minimal inductive clause. For every
literal of c, the clausetry obtained by dropping that literal
from c (line 3), is checked for inductiveness relative toFj−1

by means of the following SAT query (line 4):

SAT ?(Fj−1 ∧ try ∧ T ∧ ¬try′) (Q4)

If Q4 is UNSAT, the iductive case for the reduced formula
still holds. Since dropping literals from a relatively inductive
clause can break both the inductive case and the base case, the
latter must be explicilty checked too for the reduced clause
try (line 5). This is done by posing the following SAT query:

SAT ?(I ∧ ¬try) (Q5)

If both the inductive case and the base case hold for the
reduced clausetry, the currently minimal inductive clausec
is updated withtry (line 6).

The Propagate(Fk) procedure (Algorithm 4) handles the
propagation phase. For every clausec of each time frameFj ,
with 0 ≤ j < k − 1, the procedure checks ifc can be pushed

22

Input: Fk: trace
Output: Fk: updated trace

1: for j = 0 to k − 1 do
2: for all c ∈ Fj do
3: if ∃t, v′ : t, v′ |= Fj ∧ T ∧ c′ then
4: Fj+1 ← Fj+1 ∪ {c}
5: end if
6: end for
7: end for
8: return Fk

Algorithm 4. Propagate(Fk)

forward toFj+1 (line 3). To do so, it poses the following SAT
query:

SAT ?(Fj ∧ T ∧ c′) (Q6)

If the result ofQ6 is SAT, then it is safe, with respect to
condition (3), to push clausec forward toFi+1. Otherwise,c
can’t be pushed and the procedure iterates to the next clause.

C. Related works

In [2], Aaron Bradley outlined the opportunity for SAT and
SMT researchers to directly address the problem of improving
IC3’s performance by exploiting the peculiar character of the
SAT queries it poses. A description of the IC3 algorithm,
specifically addressing implementation issues, is given in [7].

III. SAT SOLVING IN IC3

SAT queries posed by IC3 have some specific characteris-
tics:

• Small-sized formulas: they employ no more than a single
instance of the transition relation;

• Large number of calls: reasoning during the verification
process is highly localized and takes place at relatively-
small-cubes granularity;

• Separated contexts: each SAT query is relative to a single
time frame;

• Related calls: subsequent calls may expose a certain
correlation (for instance, inductive generalization calls
take place on progressively reduced formulas).

We performed an analysis of the implementation of IC3
within the academic model checking suite PdTRAV, closely
following the description of IC3 given in [7] (there called
PDR: Property Directed Reachability). The experimental anal-
ysis lead us to identify six different types of SAT queries that
the algorithm poses during its execution. These queries are
the ones already outlined in Section II-B. The type of these
queries is reported in Table I.

For each of the queries identified, we have measured the
average number of calls and the average solving time. These
statistics are reported in Table II. The results were collected by
running PdTRAV’s implementation of IC3 on the complete set
of 310 single property benchmarks of the HWMCC’12, using
time and memory limits of 900 s and 2 GB, respectively.

Such statistics can be summarized as follows:

Name Query Type Query
Q1 Target Intersection SAT ?(Fk ∧ ¬P)
Q2 Blocked Cube SAT ?(Fi ∧ s)
Q3 Relative Induction SAT ?(Fi ∧ ¬s ∧ T ∧ s′)
Q4 Inductive Generalization SAT ?(Fi ∧ c ∧ T ∧ ¬c′)
Q5 Base of Induction SAT ?(I ∧ ¬c)
Q6 Clause Propagation SAT ?(Fi ∧ T ∧ ¬c′)

Table I: SAT Queries Breakdown in IC3

• SAT calls involved in inductive generalization are by
far the most frequent ones. These are in fact the calls
that appears at the finest granularity. In the worst case
scenario, one call is posed for every literal of every
inductive clause found.

• Inductive generalization and propagation checks are the
most expensive queries in terms of average SAT solving
time required.

• Target intersection calls are very infrequent and don’t take
much time to be solved.

• Blocked cube and relative induction checks are close in
the number of calls and solving time.

Query Calls Avg Time
[Number] [%] [ms]

Q1 483 0.1 81
Q2 27891 6.8 219
Q3 31172 7.6 334
Q4 142327 34.7 575
Q5 147248 35.9 112
Q6 61114 14.9 681

Table II: SAT queries statistics in IC3: Number of calls,
percentage, and average time spent in different SAT queries
during an IC3 run.

IV. H ANDLE SAT SOLVING IN IC3

Subsequent SAT calls in IC3 are often applied to highly
different formulas. In the general case, two subsequent calls
can in fact be posed in the context of different time frames,
thus involving different sets of clauses. In addition, one of
them may require the use of the transition relation, while
the other may not, and each query can involve the use of
temporary clauses/cubes that are needed only to respond to that
particular query (e.g. the candidate inductive clause used to
check relative inductiveness during cube blocking or inductive
generalization).

In the general case, whenever a new query is posed by
IC3 to the underlying SAT solving framework, the formula
currently loaded in the solver must be modified to accomodate
the new query. For this reason, IC3 requires the use of
SAT solvers that expose an incremental SAT interface. An
incremental SAT interface for IC3 must support the following
features:

• Pushing and popping clauses to or from the formula.

23

• Specifying literal assumptions.
Many state-of-the-art SAT solvers, like MiniSAT [10], fea-

ture an incremental interface capable of pushing new clauses
into the formula and allowing literal assumptions. Removing
clauses from the current formula is a more difficult task since
one have to remove not only the single clause specified,
but also every learned clause that has been derived from
it. Although solvers such aszchaff [11] directly support
clause removal, the majority of the state-of-the-art SAT solvers
feature an interface like the one of MiniSAT, in which clause
removal can only be simulated. This is done through the use of
literal assumptions and the introduction of auxiliary variables
known asactivation variables, as described in [12]. In such
solvers, clauses aren’t actually removed from the formula
but only made redundant for the purpose of determining the
satisfiability of the rest of the formula. Since such clauses
are not removed from the formula, they still participate in
the Boolean Constraint Propagation (BCP) and, thus, degrade
the overall SAT solving performance. In order to minimize
this degradation, each solver employed by IC3 must be pe-
riodically cleaned up, i.e. emptied and re-loaded with only
relevant clauses. In this work we assume the use of a SAT
solver exposing an incremental interface similar to the one of
MiniSAT.

Once an efficient incremental SAT solving tool has been
chosen, any implementation of IC3 must face the problem
of deciding how to integrate the top-level algorithm with the
underlying SAT solving layer. Such problem can be divided
into the following three sub-problems:

• SAT solvers allocation: decide how many different SAT
solvers to employ and how to distribute workload among
them.

• SAT solvers loading: decide which clauses must be loaded
in each solver to make them capable of responding
correctly to the SAT queries posed by IC3.

• SAT solvers clean up: decide when and how often the
algorithm must clean up each solver, in order to avoid
performance degradation.

V. SAT SOLVERS ALLOCATION

We assume in this work the use of multiple SAT solvers,
one for each different time frame. Using multiple solvers, we
observed that performance is highly related to:

• Solver cleanup frequency: cleaning up the solver means
removal of incrementally loaded problem clauses and
learned clauses

• Clause loading strategy: on-demand loading of transition
relation clauses based on topological dependency

A. Specialized solvers

From the statistical results of reported in Table II it’s easy
to see that inductive generalization and clause propagation
queries are by far the most expensive ones in terms of average
SAT solving time. Inductive generalization queries, in addition
of being expensive, are also the most frequent type of query
posed.

The reason why inductive generalization calls are so ex-
pensive can be due to the fact that during the inductive
generalization of a clause, at every iteration a slightly changing
formula is queried for a satisfying assignment in increasingly
larger subspaces. Given two subsequent queries in inductive
generalization, in fact, it can be noticed that their formulas
can differ only for one literal of the present state clausetry

and one literal of the next state cube¬try. As the subspace
becomes larger solving times for those queries increases.
The average expensiveness of clause propagation calls can
be intuitively motivated by noticing that they are posed one
time for every clause of every time frame. The innermost
time frames are the ones with the largest number of clauses,
and thus require the largest number of propagation calls.
Unfortunately, given the high number of clauses in those time
frames, the CNF formulas upon which such calls act are highly
constrained and usually harder to solve. So during propagation
there are, in general, more hard queries than simple queries,
making the average SAT solving time for those queries high.

In an attempt to reduce the burden of each time frame’s SAT
solver, we have experimented the use of specialized solvers for
handling such queries. For every time frame, a second solver is
instantiated and used to respond a particular type of query (Q4

or Q6). Table III summarize the results of such experiment.

VI. SOLVER LOADING

To minimize the size of the formula to be loaded into each
solver, a common approach is to load, for every SAT call that
queries the dynamic behavior of the system, only the necessary
part of the transition relation.

It is easy to observe that every SAT call that uses the
transition relation involves a constraint on the next state
variables of the system in the form of a cubec′. Such queries
ask if there is a state of the system satisfying some constraints
on the present state, which can reach in one transition states
represented byc′. Sincec′ is a cube, the desired state must
have a successorp such thatp correspond toc′ for the value of
every variable ofc′. It’s easy to see that the only present state
variables that are relevant in determining if such a state exists,
are those in the structural support of the next state variables
of c′. It follows that the only portions of the transition relation
required to answer such queries are the logic cones of the next
state variables ofc′.

Such loading strategy, known aslazy loading of transition
relation, is commonly employed in various implementations
of IC3, as the ones of PdTRAV and ABC. We observed in
average 50% reduction in the size of the CNF formula for the
transition relation using lazy loading of transition relation.

We noticed that, for these queries, the portions of the
transition relation loaded can be further minimized employing
a CNF encoding technique, called Plaisted-Greenbaum CNF
encoding [13] (henceforth simply called PG encoding). The
AIG representation of the transition relation together with
the assumptions specified by the next state cubec′ can be
viewed as aconstrained boolean circuit[14], i.e. a boolean
circuit in which some of the outputs are constrained to assume

24

certain values. The Plaisted-Greenbaum encoding is a special
encoding that can be applied in the translation of a constrained
boolean circuit into a CNF formula.

Below we give an informal description of the PG encoding.
For a complete description refer to [13] or [14].

Given an AIG representation of a circuit, a CNF encoding
first subdivides that circuit into a set of functional blocks, i.e.
gates or group of connected gates representing certain boolean
functions, and introduces a new CNF variablea for each of
these blocks. For each functional block representing a function
f on the input variablesx1, x2, . . . , xn, a set of clauses is
derived translating into CNF the formula:

a↔ f(x1, x2, . . . , xn) (1)

The final CNF formula is obtained by the conjunction of these
sets of clauses. Different CNF encodings differ in the way the
gates are grouped together to form functional blocks and in
the way these blocks are translated into clauses. The idea of
PG encoding is to start from a base CNF encoding, and then
use both output assumptions and topological information of
the circuit to get rid of some of the derived clauses, while
still producing an equi-satisfiable CNF formula. Based on the
output constraints and the number of negations that can be
found in every path from a gate to an output node, it can be
shown that, for some gates of the circuit, an equi-satisfiable
encoding can be produced by only translating one of the two
sides of the bi-implication (1). The CNF formula produced
by PG encoding will be a subset of the one produced by the
traditional encoding.

PG encoding proves to be effective in reducing the size
of loaded formulas, but it is not certain whether it is more
efficient for SAT solving, since it may have worst propagation
behaviour [15].

We observed a 10-20% reduction in the size of the CNF
formula for the transition relation.

VII. SOLVERS CLEAN UP

A natural question arises regarding how frequently and at
what conditions SAT solvers cleanups should be scheduled.
Cleaning up a SAT solver, in fact, introduces a certain over-
head. This is because:

• Relevant clauses for the current query must be reloaded.
• Relevant inferences previously derived must be derived

again from those clauses.
A heuristic cleanup strategy is needed in order to achieve a

trade-off between the overhead introduced and the slowdown
in BCP avoided. The purpose of that heuristic is to determine
when the number of irrelevant clauses (w.r.t. the current query)
loaded in a solver becomes large enough to justify a cleanup.
To do so, a heuristic measure representing an estimate of the
number of currently loaded irrelevant clauses is compared to a
certain threshold. If that measure exceeds the threshold, then
the solver is cleaned up.

Clean up heuristics currently used in state-of-the-art tools,
like ABC and PdTRAV, rely on loose estimates of the size
of irrelevant portions of the formula loaded into each solver.

These heuristics clean up each solver as soon as the computed
estimate meets some, often static, threshold.

Our experiments with IC3 prove that the frequency of
the cleanups play a crucial role in determining the overall
verification performance. We explored the use of new cleanup
heuristics based on more precise measures of the number of
irrelevant clauses loaded and able to exploit correlation among
different SAT calls to dynamically adjust the frequency of
cleanups.

For SAT calls in IC3, notice that there are two sources of
irrelevant clauses loaded in a solver:

1) Deactivated clauses loaded for previous inductive checks
(Q3 andQ4 queries).

2) Portions of logic cones loaded for previous calls query-
ing the dynamic behavour of the system.

Cleanup heuristics commonly used, such as the ones used
in baseline versions of ABC and PdTRAV, typically take into
account only the number of deactivated clauses in the solver to
compute an estimate of the number of irrelevant clauses. We
investigated the use of a new heuristic measure taking into
account the second source of irrelevant clauses, i.e. irrelevant
portions of previously loaded cones.

Every time a new query requires to load a new portion of the
transition relation, to compute a measure of the number of the
irrelevant transition relation’s clauses, the following quantities
are computed (assuming thatc′ is the cube constraining the
next state variables for that query):

• A: the number of transition relation clauses already
loaded into the solver (before loading the logic cones
required by the current query);

• S(c′): the size (number of clauses) of the logic cones
required for solving the current query;

• L(c′): the number of clauses in the required logic cones to
be loaded into the solver (equal to the size of the required
logic cone minus the number of clauses that such cone
shares with previously loaded cones);

A measure of the number of irrelevant transition relation’s
clauses loaded forc′, denoted byu(c′), can be computed as
follows:

u(c′) = A− (S(c′)− L(c′)) (2)

Such a heuristic measure, divided by the number of clauses
loaded into the solver, indicates the percentage of irrelevant
clauses loaded in the solver w.r.t the current query. In Sec-
tion VIII we investigate the use new cleanup strategies based
on this measure. In order to take into account correlation
between subsequent SAT calls, we consider such measure
averaged on a time window of the last SAT calls.

VIII. E XPERIMENTAL RESULTS

We have compared different cleanup and clause loading
heuristics in both PdTRAV and ABC. In this section, we
briefly summarize the obtained results.

25

A. PG encoding

A first set of experiments was done on the full set of
310 HWMCC’12 benchmarks [16], with a lower timeout, of
900 seconds, in order to evaluate the use of PG encoding.
Results were controversial. A run in PdTRAV, with900
seconds timeout, showed a reduction in the number of solved
instances from79 to 63 (3 of which previously unsolved). The
percentage reduction of loaded transition relation clauses was
21.32%.

A similar run onABC, showed a more stable compari-
son, from80 to 79 solved instances (3 of which previously
unsolved). So a first conclusion is that, PG encoding was
not able to win over the standard encoding, suggesting it can
indeed suffer of worst propagation behaviour. Nonetheless, it
was very interesting to observe that the overall number of
solved problems grew from79 to 82 in PdTRAV and from80

to 85 in ABC.
Different results between the two tools in this experi-

mentation could be partially due to different light-weight
preprocessing done by default within them. We started a more
detailed comparison, in order to better understand the partially
controversial results.

B. Experiments with PdTRAV

We then focused on a subset of70 selected circuits, for
which preprocessing was done off-line, and the tools were
run on the same problem instances. In the following tables,
theP0 rows always represent the default setting of PdTRAV.
We report number of solver instances (out of70) and average
execution time (time limit900 seconds). Column labeled
New, when present, shows the number of instances not solved
by P0.

Configuration Solved [#] New [#] Avg Time [s]
P0 (baseline) 64 137.00
P1 (Q4 spec.) 66 4 144.18
P2 (Q6 spec.) 60 3 134.25

Table III: Tests on specialized solvers.

Table III shows two different implementations with special-
ized solvers (so two solvers per time frame): in the first one
(P1) the second solver handles generalization calls while in
the second one (P2) the it handles propagation calls. Overall,
we see a little improvement byP1, with two more instances
solved w.r.tP0, including4 instances not solved byP0.

The next two tables show an evaluation of different solver
cleanup heuristics. Leta be the number of activation variables
in the solver,|vars| the total number of variables in the solver,
|clauses| the total number of clauses in the solver,u(c′) the
heuristic measure discussed in Section VII andW (x, n) a
sliding window containing the values ofx for the lastn SAT
calls. The heuristics compared are the following:

• H1: a > 300;
• H2: a > 1

2 |vars|;

• H3: avg
(

W
(

u(c′)
|clause| , 1000

))

> 0.5

• H4: H2 || H3;
Heuristic H1 is the cleanup heuristic used in the baseline

versions of both PdTRAV and ABC. The static threshold of
300 activation literals was determined experimentally. Heuris-
tic H2 cleans up each solver as soon as half of its variables
are used for activation literals. It can be seen as a first simple
attempt to adopt a dynamic cleanup threshold. Heuristic H3 is
the first heuristic proposed to take into account the second
source of irrelevant clauses described in Section VII, i.e.
irrelevant portions of previously loaded cones. In H3 a solver
is cleaned up as soon as the percentage of irrelevant transition
relation’s clauses loaded, averaged on a window of the last
1000 calls, reaches 50%. Heuristic H4 takes into account both
sources of irrelevant clauses, combining H2 and H3.

Configuration Solved [#] New [#] Avg Time [s]
P0 (H1) 64 137.00
P3 (H2) 60 1 122.19
P4 (H3) 44 116.28
P5 (H4) 62 3 125.94

Table IV: Tests on clean up heuristics.

Table IV shows a comparison among H1 (rowP0), H2,
H3, and H4, in rowsP3, P4, andP5, respectively. No PG
encoding, nor specialized solvers were used. Heuristic H1,
that employs a static threshold, was able to solve the largest
number of instances. Among dynamic threshold heuristics,
both H2 and H3 take into account a single source of irrelevant
loaded clauses, respectively the deactivated clauses in H2
and the unused portions of transition relation in H3. Data
clearly indicates that H3 has worse performance. This sug-
gests that deactivated clauses play a bigger role in degrading
SAT solvers’ performance than irrelevant transition relation’s
clauses do. Taking into account only the latter source of
irrelevant clauses it’s not sufficient. It can be noticed that
heuristic H4, that takes into account both sources, outperforms
both H2 and H3. This proves that considering irrelevant
clauses arising from previoulsy loaded cones in addition to
deactivated clauses can be beneficial. In addition Table IV
shows that dynamic heuristics were able solve some instances
that can’t be solved by the static heuristic H1 and viceversa. In
terms of overall number of solved instances, the static heuristic
H1 outperformes our best dynamic heuristic H4. This can be
due to the fact that the threshold parameter of H1 results from
extensive experimentation while to determine the parameters
of H4 (window size and percentage thresholds) a narrower
experimentation has been performed.

We then focused on H4, and benchmarked it in different
setups. Results are showed in table V.

Here PG encoding was used in configurationsP6 andP8,
single solver per time frame inP6, additional specialized
solver for generalization inP7 and P8. We see that the
specialized solver configuration appears to perform worse
with PG encoding. Also, adding a specialized solver for
generalization to the dynamic heuristic H4 doesn’t seem to
be as effective as it is when using the static heuristic H1.

26

Configuration Solved [#] New [#] Avg Time [s]
P0 (baseline) 64 137.00

P6 (PG) 59 3 208.85
P7 (Q4 spec) 58 1 111.59

P8 (PG+Q4 spec) 50 1 178.56

Table V: Tests on mixed strategies for cleanup heuristic H4.

This canbe due to the fact that irrelevant clauses arising from
generalization calls are not taken into account to schedule the
clean up of the main solver that, in turn, is cleaned up less
frequently.

C. Experiments with ABC

The70 selected circuits were also benchmarked with ABC,
with same pre-processing used in PdTRAV: Table VI report in
row A0 the default setting of ABC. RowA1 shows the variant
with PG encoding, rowA2 shows a run without dynamic TR
clause loading. RowA3 finally shows a different period for
solver cleanup (1000 variables instead of300).

Configuration Solved [#] New [#] Avg Time [s]
A0 64 138.66
A1 63 1 152.18
A2 63 2 158.75
A3 64 138.45

Table VI: Tests on ABC with different strategies.

Overall, results show little variance among different settings,
which could suggest lesser sensitivity of ABC to different
tunings. Nonetheless, a further experimentation with ABC on
the full set of310 benchmarks (with300 seconds time limit),
showed a 14% improvement in the number of solved problems
(from 71 to 81), which indicate a potential improvement for
a portfolio-based tool, able to concurrently exploit multiple
settings.

IX. CONCLUSIONS

The paper shows a detailed analysis and characterization of
SAT queries posed by IC3. We also discuss new ideas for
solver allocation/loading/restarting. The experimental evalu-
ation done on two different state-of-the-art academic tools,
shows lights and shadows, as no breakthrough or clear winner
emerges from the new ideas.

PG encoding showed to be less effective than expected.
This is probably because the benefits introduced in terms of
loaded formula size will be overwhelmed by the supposed
worst propagation behaviour of that formula.

The use of specialized solvers seems to be effective when a
static cleanup heuristic is used, less effective when combined
with PG encoding or a dynamic heuristic.

Our experiments showed that, when a dynamic cleanup
heuristic is used, IC3’s performance can be improved by taking
into account both deactivated clauses and irrelevant portions of
previously loaded cones. Even if a parameter configuration for
H4 that is able to outperform the currently used, well-rounded

static heuristic H1 hasn’t been found yet, we believe that a
more extensive experimentation could lead to better results.

Nonetheless, the results are more interesting if we consider
them from the standpoint of a portfolio-based tool, since the
overall coverage (by the union of all setups) is definitely
higher.

So we believe that more effort in implementation, experi-
mentation, and detailed analysis of case sudies, needs to be
done. We also deem that this work contributes to the discussion
of new developments in the research related to IC3.

REFERENCES

[1] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, Austin, Texas, Jan. 2011, pp. 70–87.

[2] A. R. Bradley, “Understanding IC3,” inSAT, ser. Lecture Notes in
Computer Science, A. Cimatti and R. Sebastiani, Eds., vol. 7317.
Springer, 2012, pp. 1–14.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking using SAT procedures instead of BDDs,” inProc. 36th
Design Automation Conf. New Orleans, Louisiana: IEEE Computer
Society, Jun. 1999, pp. 317–320.

[4] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT Solver,” inProc. Formal Methods in
Computer-Aided Design, ser. LNCS, W. A. Hunt and S. D. Johnson,
Eds., vol. 1954. Austin, Texas, USA: Springer, Nov. 2000, pp. 108–
125.

[5] P. Bjesse and K. Claessen, “SAT–Based Verification without State Space
Traversal,” in Proc. Formal Methods in Computer-Aided Design, ser.
LNCS, vol. 1954. Austin, TX, USA: Springer, 2000.

[6] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. Computer Aided Verification, ser. LNCS, vol. 2725. Boulder,
CO, USA: Springer, 2003, pp. 1–13.

[7] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” inFMCAD, 2011, pp. 125–134.

[8] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-
cation, http://www.eecs.berkeley.edu/∼alanmi/abc/,” 2005.

[9] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,”Formal Methods
in System Design, vol. 39, no. 2, pp. 205–227, 2011.

[10] N. Eén and N. S̈orensson, “The Minisat SAT Solver, http://minisat.se,”
Apr. 2009.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” inProc. 38th Design Automation
Conf. Las Vegas, Nevada: IEEE Computer Society, Jun. 2001.

[12] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

[13] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,”J. Symb. Comput., vol. 2, no. 3, pp. 293–304, 1986.

[14] M. Järvisalo, A. Biere, and M. Heule, “Simulating circuit-level simpli-
fications on CNF,”J. Autom. Reasoning, vol. 49, no. 4, pp. 583–619,
2012.

[15] N. Eén, “Practical SAT: a tutorial on applied satisfiability solving,”Slides
of invited talk at FMCAD, 2007.

[16] A. Biere and T. Jussila, “The Model Checking Competition Web Page,
http://fmv.jku.at/hwmcc.”

27

Lemmas on Demand for Lambdas
Mathias Preiner, Aina Niemetz, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract—We generalize the lemmas on demand de-
cision procedure for array logic as implemented in
Boolector to handle non-recursive and non-extensional
lambda terms. We focus on the implementation aspects
of our new approach and discuss the involved algorithms
and optimizations in more detail. Further, we show how
arrays, array operations and SMT-LIB v2 macros are
represented as lambda terms and lazily handled with
lemmas on demand. We provide experimental results that
demonstrate the effect of native lambda support within
an SMT solver and give an outlook on future work.

I. INTRODUCTION

The theory of arrays as axiomatized by Mc-
Carthy [14] enables us to reason about memory (com-
ponents) in software and hardware verification, and
is particularly important in the context of deciding
satisfiability of first order formulas w.r.t. first order
theories, also known as Satisfiability Modulo Theories
(SMT). However, it is restricted to array operations on
single array indices and lacks support for efficiently
modeling operations such as memory initialization and
parallel updates (memset and memcpy in the standard
C library).

In 2002, Seshia et al. [4] introduced an approach to
overcome these limitations by using restricted λ -terms
to model array expressions (such as memset and mem-
cpy), ordered data structures and partially interpreted
functions within the SMT solver UCLID [17]. The
SMT solver UCLID employs an eager SMT solving
approach and therefore eliminates all λ -terms through
β -reduction, which replaces each argument variable
with the corresponding argument term as a preliminary
rewriting step. Other SMT solvers that employ a lazy
SMT solving approach and natively support λ -terms
such as CVC4 [1] or Yices [8] also treat them eagerly,
similarly to UCLID, and eliminate all occurrences of
λ -terms by substituting them with their instantiated
function body (cf. C-style macros). Eagerly eliminating
λ -terms via β -reduction, however, may result in an
exponential blow-up in the size of the formula [17].
Recently, an extension of the theory of arrays was

This work was funded by the Austrian Science Fund (FWF)
under NFN Grant S11408-N23 (RiSE).

proposed [10], which uses λ -terms similarly to UCLID.
This extension provides support for modeling memset,
memcpy and loop summarizations. However, it does
not make use of native support of λ -terms provided
by an SMT solver. Instead, it reduces instances in the
theory of arrays with λ -terms to a theory combination
supported by solvers such as Boolector [3] (without
native support for λ -terms), CVC4, STP [12], and
Z3 [6].

In this paper, we generalize the decision procedure
for the theory of arrays with bit vectors as intro-
duced in [3] to lazily handle non-recursive and non-
extensional λ -terms. We show how arrays, array op-
erations and SMT-LIB v2 macros are represented in
Boolector as λ -terms and introduce a lemmas on de-
mand procedure for lazily handling λ -terms in Boolec-
tor in detail. We summarize an experimental evaluation
and compare our results to solvers with SMT-LIB v2
macro support (CVC4, MathSAT [5], SONOLAR [13]
and Z3) and finally, give an outlook on future work.

II. PRELIMINARIES

We assume the usual notions and terminology of first
order logic and are mainly interested in many-sorted
languages, where bit vectors of different bit width cor-
respond to different sorts and array sorts correspond to a
mapping (τi⇒ τe) from index sort τi to element sort τe.
Our approach is focused primarily on the quantifier-free
first order theories of fixed size bit vectors, arrays and
equality with uninterpreted functions, but not restricted
to the above.

We call 0-arity function symbols constant symbols
and a, b, i, j, and e denote constants, where a and b are
used for array constants, i and j for array indices, and
e for an array value. For each bit vector of size n, the
equality =n is interpreted as the identity relation over bit
vectors of size n. We further interpret the if-then-else bit
vector term iten as ite(>, t,e) =n t and ite(⊥, t,e) =n e.
As a notational convention, the subscript might be
omitted in the following. We identify read and write
as basic operations on array elements, where read(a, i)
denotes the value of array a at index i, and write(a, i,e)

28

denotes the modified array a overwritten at position i
with value e. The theory of arrays (without extensional-
ity) is axiomatized by the following axioms, originally
introduced by McCarthy in [14]:

i = j→ read(a, i) = read(a, j) (A1)
i = j→ read(write(a, i,e), j) = e (A2)

i 6= j→ read(write(a, i,e), j) = read(a, j) (A3)
The array congruence axiom A1 asserts that accessing
array a at two equal indices i and j produces the
same element. The read-over-write Axioms A2 and A3
ensure a basic characteristic of arrays: A2 asserts that
accessing a modification to an array a at the index it
has most recently been updated (i), produces the value it
has been updated with (e). A3 captures the case when
a modification to an array a is accessed at an index
other than the one it has most recently been updated at
(j), which produces the unchanged value of the original
array a at position j. Note that we assume that all
variables a, i, j and e in axioms A1, A2 and A3 are
universally quantified.

From the theory of equality with uninterpreted func-
tions we primarily focus on the following axiom:

∀x̄, ȳ.
n∧

i=1

xi = yi→ f (x̄) = f (ȳ) (EUF)

The function congruence axiom (EUF) asserts that a
function evaluates to the same value for the same
argument values.

We only consider a non-recursive λ -calculus, as-
suming the usual notation and terminology, includ-
ing the notion of function application, currying and
β -reduction. In general, we denote a λ -term λx as
λx.t(x), where x is a variable bound by λx and t(x)
is a term in which x may or might not occur. We
interpret t(x) as defining the scope of bound variable
x. Without loss of generality, the number of bound
variables per λ -term is restricted to exactly one. Func-
tions with more than one parameter are transformed
into a chain of nested λ -terms by means of currying
(e.g. f (x,y) := x+ y is rewritten as λx . λy . x+ y). As
a notational convention, we will use λx̄ as a shorthand
for λx0 . . .λxk . t(x0, . . . ,xk) for k ≥ 0. We identify the
function application as an explicit operation on λ -terms
and interpret it as instantiating a bound variable (all
bound variables) of a λ -term (a curried λ -chain). We
interpret β -reduction as a form of function application,
where all formal parameter variables (bound variables)
are substituted with their actual parameter terms. We
will use λx̄[x0\a0, . . . ,xn\an] to indicate β -reduction of
a λ -term λx̄, where the formal parameters x0, . . . ,xn are
substituted with the actual argument terms a0, . . . ,an.

III. λ -TERMS IN BOOLECTOR

In contrast to λ -term handling in other SMT solvers
such as e.g. UCLID or CVC4, where λ -terms are
eagerly eliminated, in Boolector we provide a lazy λ -
term handling with lemmas on demand. We generalized
the lemmas on demand decision procedure for the
extensional theory of arrays introduced in [3] to handle
lemmas on demand for λ -terms as follows.

In order to provide a uniform handling of arrays
and λ -terms within Boolector, we generalized all arrays
(and array operations) to λ -terms (and operations on λ -
terms) by representing array variables as uninterpreted
functions (UF), read operations as function applica-
tions, and write and if-then-else operations on arrays
as λ -terms. We further interpret macros (as provided
by the command define-fun in the SMT-LIB v2 format)
as (curried) λ -terms. Note that in contrast to [3], our
implementation currently does not support extensional-
ity (equality) over arrays (λ -terms).

We represent an array as exactly one λ -term with
exactly one bound variable (parameter) and define its
representation as λ j . t(j). Given an array of sort (τi⇒
τe) and its λ -term representation λ j . t(j), we require
that bound variable j is of sort index τi and term t(j) is
of sort element τe. Term t(j) is not required to contain
j and if it does not contain j, it represents a constant λ -
term (e.g. λ j . 0). In contrast to SMT-LIB v2 macros,
it is not required to represent arrays with curried λ -
chains, as arrays are accessed at one single index at a
time (cf. read and write operations on arrays).

We treat array variables as UF with exactly one
argument and represent them as fa for array variable a.

We interpret read operations as function applica-
tions on either UF or λ -terms with read index i as
argument and represent them as read(a, i)≡ fa(i) and
read(λ j . t(j), i)≡ (λ j . t(j))(i), respectively.

We interpret write operations as λ -terms model-
ing the result of the write operation on array a
at index i with value e, and represent them as
write(a, i,e)≡ λ j . ite(i = j,e, fa(j)). A function appli-
cation on a λ -term λw representing a write operation
yields value e if j is equal to the modified index
i, and the unmodified value fa(j), otherwise. Note
that applying β -reduction to a λ -term λw yields the
same behaviour described by array axioms A2 and
A3. Consider a function application on λw(k), where
k represents the position to be read from. If k = i
(A2), β -reduction yields the written value e, whereas if
k 6= i (A3), β -reduction returns the unmodified value of
array a at position k represented by fa(k). Hence, these

29

axioms do not need to be explicitly checked during
consistency checking. This is in essence the approach
to handle arrays taken by UCLID [17].

We interpret if-then-else operations on arrays
a and b as λ -terms, and represent them as
ite(c,a,b)≡ λ j . ite(c, fa(j), fb(j)). Condition c yields
either function application fa(j) or fb(j), which repre-
sent the values of arrays a and b at index j, respectively.

In addition to the base array operations introduced
above, λ -terms enable us to succinctly model array
operations like e.g. memcpy and memset from the
standard C library, which we previously were not able
to efficiently express by means of read, write and ite
operations on arrays. In particular, both memcpy and
memset could only be represented by a fixed sequence
of read and write operations within a constant index
range, such as copying exactly 5 words etc. It was
not possible to express a variable range, e.g. copying n
words, where n is a symbolic (bit vector) variable.

With λ -terms however, we do not require a sequence
of array operations as it usually suffices to model a par-
allel array operation by means of exactly one λ -term.
Further, the index range does not have to be fixed and
can therefore be within a variable range. This type of
high level modeling turned out to be useful for applica-
tions in software model checking [10]. See also [17] for
more examples. For instance, the memset with signature
memset (a, i,n,e), which sets each element of array a
within the range [i, i+n[to value e, can be represented
as λ j . ite(i≤ j∧ j < i+n,e, fa(j)). Note, n can be
symbolic, and does not have to be a constant. In the
same way, memcpy with signature memcpy (a,b, i,k,n),
which copies all elements of array a within the range
[i, i+n[to array b, starting from index k, is represented
as λ j . ite(k ≤ j∧ j < k+n, fa(i+ j− k), fb(j)). As a
special case of memset, we represent array initialization
operations, where all elements of an array are initialized
with some (constant or symbolic) value e, as λ j . e.

Introducing λ -terms does not only enable us to model
arrays and array operations, but further provides support
for arbitrary functions (macros) by means of currying,
with the following restrictions: (1) functions may not
be recursive and (2) arguments to functions may not be
functions. The first restriction enables keeping the im-
plementation of λ -term handling in Boolector as simple
as possible, whereas the second restriction limits λ -term
handling in Boolector to non-higher order functions.
Relaxing these restrictions will turn the considered λ -
calculus to be Turing-complete and in general render
the decision problem to be undecidable. As future work
it might be interesting to consider some relaxations.

2

2 2

2

2

1

1 2

2

1

1

1

1

1

2

2

1

3

1

lambda

ite

applyj

args

applyi

args eq

eq

var
j

param
x

var
i

lambda

param
y

apply

args

slt

const

Fig. 1: DAG representation of formula ψ1.

In contrast to treating SMT-LIB v2 macros as C-style
macros, i.e., substituting every function application with
the instantiated function body, in Boolector, we directly
translate SMT-LIB v2 macros into λ -terms, which are
then handled lazily via lemmas on demand. Formulas
are represented as directed acyclic graphs (DAG) of
bit vector and array expressions. Further, in this paper,
we propose to treat arrays and array operations as λ -
terms and operations on λ -terms, which results in an
expression graph with no expressions of sort array (τi⇒
τe). Instead, we introduce the following four additional
expression types of sort bit vector:
• a param expression serves as a placeholder variable

for a variable bound by a λ -term
• a lambda expression binds exactly one param ex-

pression, which may occur in a bit vector expression
that represents the body of the λ -term

• an args expression is a list of function arguments
• an apply expression represents a function application

that applies arguments args to a lambda expression
Example 1: Consider ψ1 ≡ f (i) = f (j)∧ i 6= j with

functions f (x) := ite(x < 0,g(x),x), g(y) :=−y as de-
picted in Fig. 1. Both functions are represented as λ -
terms, where function g(y) returns the negation of y
and is used in function f (x), which computes the abso-
lute value of x. Dotted nodes indicate parameterized
expressions, i.e., expressions that depend on param
expressions, and serve as templates that are instantiated
as soon as β -reduction is applied.

In order to lazily evaluate λ -terms in Boolector we
implemented two β -reduction approaches, which we
will discuss in the next section in more detail.

IV. β -REDUCTION

In this section we discuss how concepts from the
λ -calculus have been adapted and implemented in

30

our SMT solver Boolector. We focus on reduction
algorithms for the non-recursive λ -calculus, which is
rather atypical for the (vast) literature on λ -calculus.
In the context of Boolector, we distinguish between
full and partial β -reduction. They mainly differ in
their application and the depth up to which λ -terms
are expanded. In essence, given a function application
λx̄(a0, . . . ,an) partial β -reduction reduces only the top-
most λ -term λx̄, whereas full β -reduction reduces λx̄
and every λ -term in the scope of λx̄.

Full β -reduction of a function application on λ -term
λx̄ consists of a series of β -reductions, where λ -term
λx̄ and every λ -term λȳ within the scope of λx̄ are in-
stantiated, substituting all formal parameters with actual
parameter terms. Since we do not allow partial function
applications, full β -reduction guarantees to yield a term
which is free of λ -terms. Given a formula with λ -terms,
we usually employ full β -reduction in order to eliminate
all λ -terms by substituting every function application
with the term obtained by applying full β -reduction
on that function application. In the worst case, full β -
reduction results in an exponential blow-up. However,
in practice, it is often beneficial to employ full β -
reduction, since it usually leads to significant simplifi-
cations through rewriting. In Boolector, we incorporate
this method as an optional rewriting step. We will use
λx̄[x0\a0, . . . ,xn\an]f as a shorthand for applying full
β -reduction to λx̄ with arguments a0, . . . ,an.

Partial β -reduction of a λ -term λx̄, on the other
hand, essentially works in the same way as what is
referred to as β -reduction in the λ -calculus. Given a
function application λx̄(a0, . . . ,an), partial β -reduction
substitutes formal parameters x0, . . . ,xn with the actual
argument terms a0, . . . ,an without applying β -reduction
to other λ -terms within the scope of λx̄. This has the
effect that λ -terms are expanded function-wise, which
we require for consistency checking. In the following,
we use λx̄[x0\a0, . . . ,xn\an]p to denote the application
of partial β -reduction to λx̄ with arguments a0, . . . ,an.

A. Full β -reduction

Given a function application λx̄(a0, . . . ,an) and a
DAG representation of λx̄. Full β -reduction of λx̄
consecutively substitutes formal parameters with actual
argument terms while traversing and rebuilding the
DAG in depth-first-search (DFS) post-order as follows.
1) Initially, we instantiate λx̄ by assigning arguments

a0, . . . ,an to the formal parameters x0, . . . ,xn.
2) While traversing down, for any λ -term λȳ in the

scope of λx̄, we need special handling for each
function application λȳ(b0, . . . ,bm) as follows.

2

1

3
1

2

2
1

2

1

1

2

2

2

3

2

2

1

1

1

2

2

1

2

1

2

1

2

2

1

1

1

1

args

apply

eq

ite

lambda

lambda

apply

const

var
j

var
i

var
l

var
k

param
x

var
e

param
y

param
x

args

args

eq mul

lambda

ite

args

apply

ult

apply

(a) Original formula ψ2.

3

1 2 1

1

1

1

2

3

3

1

1

2

1
2

1
2

2

2

1

2

1

2
2

2

3

1

2 22
1

1

ite

and

eq mul mul

ite ite

eq

ite

ult

eq

const
var
j

var
i

var
l

var
k

mul
var
e

eq ult

(b) Formula ψ ′2 after full β -reduction of ψ2.

Fig. 2: Full β -reduction of formula ψ2.

a) Visit arguments b0, . . . ,bm first, and obtain rebuilt
arguments b′0, . . . ,b

′
m.

b) Assign rebuilt arguments b′0, . . . ,b
′
m to λȳ and

apply β -reduction to λȳ(b′0, . . . ,b
′
m).

This ensures a bottom-up construction of the β -
reduced DAG (see step 3.), since all arguments
b′0, . . . ,b

′
m passed to a λ -term λȳ are β -reduced and

rebuilt prior to applying β -reduction to λȳ.
3) During up-traversal of the DAG we rebuild all

visited expressions bottom-up and require special
handling for the following expressions:
• param: substitute param expression yi with cur-

rent instantiation b′i
• apply: substitute expression λȳ(b0, . . . ,bm) with

λȳ[y0\b′0, . . . ,ym\b′m]f

31

We further employ following optimizations to improve
the performance of the full β -reduction algorithm.

• Skip expressions that do not need rebuilding
Given an expression e within the scope of a λ -term
λx̄. If e is not parameterized and does not contain
any λ -term, e is not dependent on arguments passed
to λx̄ and may therefore be skipped.

• λ -scope caching
We cache rebuilt expressions in a λ -scope to prevent
rebuilding parameterized expressions several times.

Example 2: Given a formula ψ2 ≡ f (i, j) = f (k, l)
and two functions g(x) := ite(x = i,e,2∗ x) and
f (x,y) := ite(y < x,g(x),g(y)) as depicted in Fig. 2a.
Applying full β -reduction to formula ψ2 yields formula
ψ ′2 as illustrated in Fig. 2b. Function application f (i, j)
has been reduced to ite(j ≥ i∧ i 6= j,2∗ j,e) and f (k, l)
to ite(l < k, ite(k = i,e,2∗ k), ite(l = i,e,2∗ l)).

B. Partial β -reduction

Given a function application λx̄(a0, . . . ,an) and a
DAG representation of λx̄. The scope of a partial β -
reduction βp(λx̄) is defined as the sub-DAG obtained
by cutting off all λ -terms in the scope of λx̄. Assume
that we have an assignment for arguments a0, . . . ,an,
and for all non-parameterized expressions in the scope
of βp(λx̄). The partial β -reduction algorithm substi-
tutes param expressions x0, . . . ,xn with a0, . . . ,an and
rebuilds λx̄. Similar to full β -reduction, we perform a
DFS post-order traversal of the DAG as follows.

1) Initially, we instantiate λx̄ by assigning arguments
a0, . . . ,an to the formal parameters x0, . . . ,xn.

2) While traversing down the DAG, we require special
handling for the following expressions:
• function applications λȳ(b0, . . . ,bm)

a) Visit arguments b0, . . . ,bm, obtain rebuilt ar-
guments b′0, . . . ,b

′
m.

b) Do not assign rebuilt arguments b′0, . . . ,b
′
m to

λȳ and stop down-traversal at λȳ.
• ite(c, t1, t2)

Since we have an assignment for all non-
parameterized expressions within the scope of
βp(λx̄), we are able to evaluate condition c. Based
on that we either select t1 or t2 to further traverse
down (the other branch is omitted).

3) During up-traversal of the DAG we rebuild all
visited expressions bottom-up and require special
handling for the following expressions:
• param: substitute param expression yi with cur-

rent instantiation b′i

2 1

1

2

2
2

2

1

2

3

13

1

1

1

2
1

1

1 2

2

1

2

21

3

2

ult

ite

eq

const

var
j

var
i

var
l

var
k

param

var
emul

args

ite

eq

apply

lambda

apply

args

ite

ult

apply

args

Fig. 3: Partial β -reduction of formula ψ2.

• if-then-else: substitute expression ite(c, t1, t2) with
t1 if c =>, and t2 otherwise

For partial β -reduction, we have to modify the first of
the two optimizations introduced for full β -reduction.
• Skip expressions that do not need rebuilding

Given an expression e in the scope of partial β -
reduction βp(λx̄). If e is not parameterized, in the
context of partial β -reduction, e is not dependent
on arguments passed to λx̄ and may be skipped.

Example 3: Consider ψ2 from Ex. 2. Applying partial
β -reduction to ψ2 yields the formula depicted in Fig. 3,
where function application f (i, j) has been reduced to
ite(j < i,e,g(j)) and f (k, l) to ite(l < k,g(k),g(l)).

V. DECISION PROCEDURE

The idea of lemmas on demand goes back to [7]
and actually represents one extreme variant of the lazy
SMT approach [16]. Around the same time, a related
technique was developed in the context of bounded
model checking [9], which lazily encodes all-different
constraints over bit vectors (see also [2]). In constraint
programming the related technique of lazy clause gen-
eration [15] is effective too.

In this section, we introduce lemmas on demand for
non-recursive λ -terms based on the algorithm intro-
duced in [3]. A top-level view of our lemmas on demand
decision procedure for λ -terms (DPλ) is illustrated in
Fig. 4 and proceeds as follows. Given a formula φ ,
DPλ uses a bit vector skeleton of the preprocessed
formula π as formula abstraction αλ (π). In each itera-
tion, an underlying decision procedure DPB determines
the satisfiability of the formula abstraction refined by
formula refinement ξ , i.e., in DPB, we eagerly encode
the refined formula abstraction Γ to SAT and determine

32

procedure DPλ (φ)
π ← preprocess(φ)
ξ ←>
loop

Γ← αλ (π)∧ξ

(r,σ)← DPB(Γ)
i f r = unsatisfiable re turn unsatisfiable
i f consistentλ (π,σ) re turn satisfiable
ξ ← ξ ∧αλ (lemmaλ (π,σ))

Fig. 4: Lemmas on demand for λ -terms DPλ .

its satisfiability by means of a SAT solver. As Γ is
an over-approximation of φ , we immediately conclude
with unsatisfiable if Γ is unsatisfiable. If Γ is satisfiable,
we have to check if the current satisfying assign-
ment σ (as provided by procedure DPB) is consistent
w.r.t. preprocessed formula π . If σ is consistent, i.e., if
it can be extended to a valid satisfying assignment for
the preprocessed formula π , we immediately conclude
with satisfiable. Otherwise, assignment σ is spurious,
consistentλ (π,σ) identifies a violation of the function
congruence axiom EUF, and we generate a symbolic
lemma lemmaλ (π,σ) which is added to formula re-
finement ξ in its abstracted form αλ (lemmaλ (π,σ)).

Note that in φ , in contrast to the decision procedure
introduced in [3], all array variables and array opera-
tions in the original input have been abstracted away
and replaced by corresponding λ -terms and operations
on λ -terms. Hence, various integral components of the
original procedure (αλ , consistentλ , lemmaλ) have been
adapted to handle λ -terms as follows.

VI. FORMULA ABSTRACTION

In this section, we introduce a partial formula ab-
straction function αλ as a generalization of the ab-
straction approach presented in [3]. Analogous to [3],
we replace function applications by fresh bit vector
variables and generate a bit vector skeleton as for-
mula abstraction. Given π as the preprocessed input
formula φ , our abstraction function αλ traverses down
the DAG structure starting from the roots, and generates
an over-approximation of π as follows.
1) Each bit vector variable and symbolic constant is

mapped to itself.
2) Each function application λx̄(a0, . . . ,an) is mapped

to a fresh bit vector variable.
3) Each bit vector term t(y0, . . . ,ym) is mapped to

t(αλ (y0), . . . ,αλ (ym)).
Note that by introducing fresh variables for function
applications, we essentially cut off λ -terms and UF
and therefore yield a pure bit vector skeleton, which
is subsequently eagerly encoded to SAT.

2 211

αλ (applyj)

eq

αλ (applyi)

eq

var
i

var
j

Fig. 5: Formula abstraction αλ (ψ1).

Example 4: Consider formula ψ1 from Ex. 1, which
has two roots. The abstraction function αλ performs a
consecutive down-traversal of the DAG from both roots.
The resulting abstraction is a mapping of all bit vector
terms encountered during traversal, according to the
rules 1-3 above. For function applications (e.g. applyi)
fresh bit vector variables (e.g. αλ (applyi)) are intro-
duced, where the remaining sub-DAGs are therefore cut
off. The resulting abstraction αλ (ψ1) is given in Fig. 5.

VII. CONSISTENCY CHECKING

In this section, we introduce a consistency checking
algorithm consistentλ as a generalization of the con-
sistency checking approach presented in [3]. However,
in contrast to [3], we do not propagate so-called access
nodes but function applications and further check axiom
EUF (while applying partial β -reduction to evaluate
function applications under a current assignment) in-
stead of checking array axioms A1 and A2. Given a
satisfiable over-approximated and refined formula Γ,
procedure consistentλ determines whether a current
satisfying assignment σ (as provided by the under-
lying decision procedure DPB) is spurious, or if it
can be extended to a valid satisfying assignment for
the preprocessed input formula π . Therefore, for each
function application in π , we have to check both if
the assignment of the corresponding abstraction vari-
able is consistent with the value obtained by applying
partial β -reduction, and if axiom EUF is violated. If
consistentλ does not find any conflict, we immediately
conclude that formula π is satisfiable. However, if
current assignment σ is spurious w.r.t. preprocessed
formula π , either axiom EUF is violated or partial β -
reduction yields a conflicting value for some function
application in π . In both cases, we generate a lemma
as formula refinement. In the following we will equally
use function symbols f , g, and h for UF symbols and
λ -terms.

In order to check axiom EUF, for each λ -term and UF
symbol we maintain a hash table ρ , which maps λ -
terms and UF symbols to function applications. We
check consistency w.r.t. π by applying the following
rules.
I: For each f (ā), if ā is not parameterized,

add f (ā) to ρ(f)

33

C: For any pair s := g(ā), t := h(b̄) ∈ ρ(f) check
n∧

i=0

σ(αλ (ai)) = σ(αλ (bi))→ σ(αλ (s)) = σ(αλ (t))

B: For any s := λȳ(a0, . . . ,an) ∈ ρ(λx̄) with
t := λx̄[x0\a0, . . . ,xn\an]p,
check rule P, if P fails, check eval(t) = σ(αλ (s))

P: For any s := λȳ(a0, . . . ,an) ∈ ρ(λx̄) with
t := g(b0, . . . ,bm) = λx̄[x0\a0, . . . ,xn\an]p,

if n = m ∧
n∧

i=0

ai = bi, propagate s to ρ(g)

Given a λ -term (UF symbol) f and a correspond-
ing hash table ρ(f). Rule I, the initialization rule,
initializes ρ(f) with all non-parameterized function
applications on f . Rule C corresponds to the function
congruence axiom and is applied whenever we add
a function application g(a0, . . . ,an) to ρ(f). Rule B
is a consistency check w.r.t. the current assignment
σ , i.e., for every function application s in ρ(f), we
check if the assignment of σ(αλ (s)) corresponds to
the assignment evaluated by the partially β -reduced
term λx̄[x0\a0, . . . ,xn\an]p. Finally, rule P represents a
crucial optimization of consistentλ , as it avoids unnec-
essary conflicts while checking B. If P applies, both
function applications s and t have the same arguments.
As function application s ∈ ρ(λx̄), rule C implies
that s = λx̄(a0, . . . ,an). Therefore, function applications
s and t must produce the same function value as
t := λx̄[x0\a0, . . . ,xn\an]p = λȳ[x0\a0, . . . ,xn\an]p, i.e.,
function application t must be equal to the result of
applying partial β -reduction to function application s.
Assume we encode t and add it to the formula. If DPB
guesses an assignment s.t. σ(αλ (t)) 6= σ(αλ (s)) holds,
we have a conflict and need to add a lemma. However,
this conflict is unnecessary, as we know from the start
that both function applications must map to the same
function value in order to be consistent. We avoid this
conflict by propagating s to ρ(g).

Figure 6 illustrates our consistency checking algo-
rithm consistentλ , which takes the preprocessed input
formula π and a current assignment σ as arguments, and
proceeds as follows. First, we initialize stack S with all
non-parameterized function applications in formula π

(cf. nonparam_apps(π)) and order them top-down,
according to their appearance in the DAG represen-
tation of π . The top-most function application then
represents the top of stack S, which consists of tuples
(g, f (a0, . . . ,an)), where f and g are initially equal and
f (a0, . . . ,an) denotes the function application propa-
gated to function g. In the main consistency checking

procedure consistentλ (π,σ)
S← nonparam_apps (π)
whi le S 6= /0

(g, f (a0, . . . ,an))← pop (S)
encode (f (a0, . . . ,an))
/∗ check r u l e C ∗ /
i f not congruent (g, f (a0, . . . ,an))

re turn ⊥
add (f (a0, . . . ,an), ρ(g))
i f is_UF (g) c o n t in u e
encode (g)
/∗ check r u l e B ∗ /
t← g[x0\a0, . . . ,xn\an]p
i f assigned (t)

i f σ(t) 6= σ(αλ (f (a0, . . . ,an)))
re turn ⊥

e l i f t = h(a0, . . . ,an) /∗ check r u l e P ∗ /
push (S, (h, f (a0, . . . ,an)))
c o n t in u e

e l s e
apps← f resh apps(t)
f o r a ∈ apps

encode (a)
i f eval (t) 6= σ(αλ (f (a0, . . . ,an)))

re turn ⊥
f o r h(b0, . . . ,bm) ∈ apps

push (S, (h, h(b0, . . . ,bm)))
re turn >

Fig. 6: Procedure consistentλ in pseudo-code.

loop, we check rules C and B for each tuple as follows.
First we check if f (a0, . . . ,an) violates the function con-
gruence axiom EUF w.r.t. function g and return⊥ if this
is the case. Note that for checking rule C, we require an
assignment for arguments a0, . . . ,an, hence we encode
them on-the-fly. If rule C is not violated and function f
is an uninterpreted function, we continue to check the
next tuple on stack S. However, if f is a λ -term we
still need to check rule B, i.e., we need to check if the
assignment σ(αλ (f (a0, . . . ,an))) is consistent with the
value produced by g[x0\a0, . . . ,xn\an]p. Therefore, we
first encode all non-parameterized expressions in the
scope of partial β -reduction βp(g) (cf. encode(g))
before applying partial β -reduction with arguments
a0, . . . ,an, which yields term t. If term t has an as-
signment, we can immediately check if it differs from
assignment σ(αλ (f (a0, . . . ,an))) and return ⊥ if this is
the case. However, if term t does not have an assign-
ment, which is the case when t has been instantiated
from a parameterized expression, we have to compute
the value for term t. Note that we could also encode
term t to get an assignment σ(t), but this might add a
considerable amount of superfluous clauses to the SAT
solver. Before computing a value for t we check if rule
P applies and propagate f (a0, . . . ,an) to h if applicable.
Otherwise, we need to compute a value for t and
check if t contains any function applications that were
instantiated and not yet encoded (cf. fresh_apps(t))
and encode them if necessary. Finally, we compute

34

the value for t (cf. eval(t)) and compare it to the
assignment of αλ (f (a0, . . . ,an)). If the values differ,
we found an inconsistency and return ⊥. Otherwise,
we continue consistency checking the newly encoded
function applications apps. We conclude with >, if all
function applications have been checked successfully
and no inconsistencies have been found.

A. Lemma generation

Following [3], we introduce a lemma generation
procedure lemmaλ , which generates a symbolic lemma
whenever our consistency checker detects an inconsis-
tency. Depending on whether rule C or B was violated,
we generate a symbolic lemma as follows. Assume
that rule C was violated by function applications s :=
g(a0, . . . ,an), t := h(b0, . . . ,bn) ∈ ρ(f). We first collect
all conditions that lead to the conflict as follows.
1) Find the shortest possible propagation path ps (pt)

from function application s (t) to function f .
2) Collect all ite conditions cs

0, . . . ,c
s
j (ct

0, . . . ,c
t
l) on

path ps (pt) that were > under given assignment σ .
3) Collect all ite conditions cs

0, . . . ,c
s
k (ct

0, . . . ,c
t
m) on

path ps (pt) that were ⊥ under given assignment σ .
We generate the following (in general symbolic)
lemma:

j∧
i=0

cs
i ∧

k∧
i=0

¬cs
i ∧

l∧
i=0

ct
i ∧

m∧
i=0

¬ct
i ∧

n∧
i=0

ai = bi→ s = t

Assume that rule B was violated by a function
application s := λȳ(a0, . . . ,an) ∈ ρ(λx̄). We obtained
t := λx̄[x0\a0, . . . ,xn\an]p and collect all conditions that
lead to the conflict as follows.
1) Collect ite conditions cs

0, . . . ,c
s
j and cs

0, . . . ,c
s
k for s

as in steps 1-3 above.
2) Collect all ite conditions ct

0, . . . ,c
t
l that evaluated to

> under current assignment σ when partially β -
reducing λx̄ to obtain t.

3) Collect all ite conditions ct
0, . . . ,c

t
m that evaluated

to ⊥ under current assignment σ when partially β -
reducing λx̄ to obtain t.

We generate the following (in general symbolic)
lemma: j∧

i=0

cs
i ∧

k∧
i=0

¬cs
i ∧

l∧
i=0

ct
i ∧

m∧
i=0

¬ct
i → s = t

Example 5: Consider formula ψ1 and its prepro-
cessed formula abstraction αλ (ψ1) from Ex. 1. For the
sake of better readability, we will use λx and λy to
denote functions f and g, and further use ai and a j
as a shorthand for αλ (applyi) and αλ (applyj). Assume

we run DPB on αλ (ψ1) and it returns a satisfying
assignment σ such that σ(i) 6= σ(j), σ(ai) = σ(a j),
σ(i) < 0 and σ(ai) 6= σ(−i). First, we check con-
sistency for λx(i) and check rule C, which is not
violated as σ(i) 6= σ(j), and continue with checking
rule B. We apply partial β -reduction and obtain term
t := λx[x/i]p = λy(i) (since σ(i)< 0) for which rule P
is applicable. We propagate λx(i) to λy, check if λx(i)
is consistent w.r.t. λy, apply partial β -reduction, obtain
t := λy[y/i]p =−i and find an inconsistency according
to rule B: σ(ai) 6= σ(−i) but we obtained σ(ai) =
σ(−i). We generate lemma i < 0→ ai = −i. Assume
that in the next iteration DBP returns a new satisfying
assignment σ such that σ(i) 6= σ(j), σ(ai) = σ(a j),
σ(i)< 0, σ(ai) = σ(−i) and σ(j)> σ(−i). We first
check consistency for λx(i), which is consistent due to
the lemma we previously generated. Next, we check
rule C for λx(j), which is not violated since σ(i) 6=
σ(j), and continue with checking rule B. We apply
partial β -reduction and obtain term t := λx[x/ j]p = j
(since σ(j)> σ(−i) and σ(i)< 0) and find an incon-
sistency as σ(ai) = σ(−i), σ(ai) = σ(a j) and σ(j)>
σ(−i), but σ(a j) = σ(j). We then generate lemma
j > 0→ a j = j.

VIII. EXPERIMENTS

We applied our lemmas on demand approach for
λ -terms on three different benchmark categories: (1)
crafted, (2) SMT’12, and (3) application. For the crafted
category, we generated benchmarks using SMT-LIB v2
macros, where the instances of the first benchmark set
(macro blow-up) tend to blow up in formula size if
SMT-LIB v2 macros are treated as C-style macros.
The benchmark sets fisher-yates SAT and fisher-yates
UNSAT encode an incorrect and correct but naive im-
plementation of the Fisher-Yates shuffle algorithm [11],
where the instances of the fisher-yates SAT also tend
to blow up in the size of the formula if SMT-LIB
v2 macros are treated as C-style macros. The SMT’12
category consists of all non-extensional QF AUFBV
benchmarks used in the SMT competition 2012. For
the application category, we considered the instantia-
tion benchmarks1 generated with LLBMC as presented
in [10]. The authors also kindly provided the same
benchmark family using λ -terms as arrays, which is
denoted as lambda.

We performed all experiments on 2.83GHz Intel Core
2 Quad machines with 8GB of memory running Ubuntu
12.04.2 setting a memory limit of 7GB and a time limit
for the crafted and the SMT’12 benchmarks of 1200
seconds. For the application benchmarks, as in [10]

1http://llbmc.org/files/downloads/vstte-2013.tgz

35

http://llbmc.org/files/downloads/vstte-2013.tgz

Solver Solved TO MO Time Space
[103s] [GB]

m
ac

ro
bl

ow
-u

p Boolector 100 0 0 24.2 9.4
Boolectornop 100 0 0 18.2 8.4
Boolectorβ 28 49 23 91.5 160.0
CVC4 21 0 79 95.7 551.6
MathSAT 51 2 47 64.6 395.0
SONOLAR 26 74 0 90.2 1.7
Z3 21 0 79 95.0 552.2

fis
he

r-
ya

te
s

SA
T

Boolector 7 10 1 14.0 7.5
Boolectornop 4 13 1 17.3 7.0
Boolectorβ 6 1 11 15.0 76.4
CVC4 5 1 12 15.7 83.6
MathSAT 6 10 2 14.7 17.3
SONOLAR 3 14 1 18.1 6.9
Z3 6 12 0 14.8 0.2

fis
he

r-
ya

te
s

U
N

SA
T

Boolector 5 13 1 17.4 7.1
Boolectornop 4 14 1 18.2 6.9
Boolectorβ 9 0 10 12.1 72.0
CVC4 3 4 12 19.2 82.1
MathSAT 6 11 2 15.9 14.7
SONOLAR 3 15 1 19.2 6.8
Z3 10 9 0 11.2 2.2

TABLE I: Results crafted benchmark.

we used a time limit of 60 seconds. We evaluated
four different versions of Boolector: (1) our lemmas
on demand for λ -terms approach DPλ (Boolector),
(2) DPλ without optimization rule P (Boolectornop),
(3) DPλ with full β -reduction (Boolectorβ), and (4)
the version submitted to the SMT competition 2012
(Boolectorsc12). For comparison we used the following
SMT solvers: CVC4 1.2, MathSAT 5.2.6, SONOLAR
2013-05-15, STP 1673 (svn revision), and Z3 4.3.1.
Note that we limited the set of solvers to those which
currently support SMT-LIB v2 macros and the theory
of fixed-size bit vectors. As a consequence, we did not
compare our approach to UCLID (no bit vector support)
and Yices, which both have native λ -term support, but
lack support for the SMT-LIB v2 standard.

As indicated in Tables I, II and III, we measured the
number of solved instances (Solved), timeouts (TO),
memory outs (MO), total CPU time (Time), and total
memory consumption (Space) required by each solver
for solving an instance. If a solver ran into a timeout,
1200 seconds (60 seconds for category application)
were added to the total time as a penalty. In case of a
memory out, 1200 seconds (60 seconds for application)
and 7GB were added to the total CPU time and total
memory consumption, respectively.

Table I summarizes the results of the crafted bench-
mark category. On the macro blow-up benchmarks,
Boolector and Boolectornop benefit from lazy λ -term
handling and thus, outperform all those solvers which
try to eagerly eliminate SMT-LIB v2 macros with a
very high memory consumption as a result. The only
solver not having memory problems on this bench-

Solver Solved TO MO Time Space
[103s] [GB]

SM
T

’1
2 Boolector 139 10 0 19.9 14.8

Boolectornop 134 15 0 26.3 14.5
Boolectorβ 137 11 1 21.5 22.7
Boolectorsc12 140 9 0 15.9 10.3

TABLE II: Results SMT’12 benchmark.

mark set is SONOLAR. However, it is not clear how
SONOLAR handles SMT-LIB v2 macros. Surprisingly,
on these benchmarks Boolectornop performs better than
Boolector with optimization rule P, which needs fur-
ther investigation. On the fisher-yates SAT benchmarks
Boolector not only solves the most instances, but re-
quires 107 seconds for the first 6 instances, for which
Boolectorβ , MathSAT and Z3 need more than 300
seconds each. Boolectornop does not perform as well
as Boolector due to the fact that on these benchmarks
optimization rule P is heavily applied. In fact, on these
benchmarks, rule P applies to approx. 90% of all prop-
agated function applications on average. On the fisher-
yates UNSAT benchmarks Z3 and Boolectorβ solve the
most instances, whereas Boolector and Boolectornop do
not perform so well. This is mostly due to the fact
that these benchmarks can be simplified significantly
when macros are eagerly eliminated, whereas partial
β -reduction does not yield as much simplifications.
We measured overhead of β -reduction in Boolector on
these benchmarks and it turned out that for the macro
blow-up and fisher-yates UNSAT instances the overhead
is negligible (max. 3% of total run time), whereas for
the fisher-yates SAT instances β -reduction requires over
50% of total run time.

Table II summarizes the results of running all
four Boolector versions on the SMT’12 benchmark
set. We compared our three approaches Boolector,
Boolectornop, and Boolectorβ to Boolectorsc12, which
won the QF AUFBV track in the SMT competition
2012. In comparison to Boolectorβ , Boolector solves 5
unique instances, whereas Boolectorβ solves 3 unique
instances. In comparison to Boolectorsc12, both solvers
combined solve 2 unique instances. Overall, on the
SMT’12 benchmarks Boolectorsc12 still outperforms
the other approaches. However, our results still look
promising since none of the approaches Boolector,
Boolectornop and Boolectorβ are heavily optimized yet.
On these benchmarks, the overhead of β -reduction in
Boolector is around 7% of the total run time.

Finally, Table III summarizes the results of the appli-
cation category. We used the benchmarks obtained from
the instantiation-based reduction approach presented
in [10] (instantiation benchmarks) and compared our

36

Solver Solved TO MO Time Space
[s] [MB]

in
st

an
tia

tio
n Boolector 37 8 0 576 235

Boolectornop 35 10 0 673 196
Boolectorβ 44 1 0 138 961
Boolectorsc12 39 6 0 535 308
STP 44 1 0 141 3814

la
m

bd
a

Boolector 37 8 0 594 236
Boolectornop 35 10 0 709 166
Boolectorβ 45 0 0 52 676
Boolectorsc12 - - - - -
STP - - - - -

TABLE III: Results application benchmarks.

new approaches to STP, the same version of the solver
that outperformed all other solvers on these benchmarks
in the experimental evaluation of [10]. On the instanti-
ation benchmarks Boolectorβ and STP solve the same
number of instances in roughly the same time. However,
Boolectorβ requires less memory for solving those
instances. Boolector, Boolectornop and Boolectorsc12
did not perform so well on these benchmarks because
in contrast to Boolectorβ and STP, they do not ea-
gerly eliminate read operations, which is beneficial on
these benchmarks. The lambda benchmarks consist of
the same problems as instantiation, using λ -terms for
representing arrays. On these benchmarks, Boolectorβ

clearly outperforms Boolector and Boolectornop and
solves all 45 instances within a fraction of time.
Boolectorsc12 and STP do not support λ -terms as arrays
and therefore were not able to participate on this bench-
mark set. By exploiting the native λ -term support for
arrays in Boolectorβ , in comparison to the instantiation
benchmarks we achieve even better results. Note that on
the lambda (instantiation) benchmarks, the overhead in
Boolectorβ for applying full β -reduction was around
15% (less than 2%) of the total run time.

Benchmarks, binaries of Boolector and all log files
of our experiments can be found at: http://fmv.jku.at/
difts-rev-13/lloddifts13.tar.gz.

IX. CONCLUSION

In this paper, we introduced a new decision procedure
for handling non-recursive and non-extensional λ -terms
as a generalization of the array decision procedure
presented in [3]. We showed how arrays, array op-
erations and SMT-LIB v2 macros are represented in
Boolector and evaluated our new approach with 3
different benchmark categories: crafted, SMT’12 and
application. The crafted category showed the benefit
of lazily handling SMT-LIB v2 macros where eager
macro elimination tends to blow-up the formula in size.
We further compared our new implementation to the
version of Boolector that won the QF AUFBV track

in the SMT competition 2012. With the application
benchmarks, we demonstrated the potential of native
λ -term support within an SMT solver. Our experiments
look promising even though we employ a rather naive
implementation of β -reduction in Boolector and also
do not incorporate any λ -term specific rewriting rules
except full β -reduction.

In future work we will address the performance
bottleneck of the β -reduction implementation and will
further add λ -term specific rewriting rules. We will
analyze the impact of various β -reduction strategies on
our lemmas on demand procedure and will further add
support for extensionality over λ -terms. Finally, with
the recent and ongoing discussion within the SMT-LIB
community to add support for recursive functions, we
consider extending our approach to recursive λ -terms.

X. ACKNOWLEDGEMENTS

We would like to thank Stephan Falke, Florian Merz
and Carsten Sinz for sharing benchmarks and Bruno
Duterte for explaining the implementation and limits
of lambdas in SMT solvers, and more specifically in
Yices.

REFERENCES

[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanovic, T. King, A. Reynolds, and C. Tinelli. CVC4. In
CAV, volume 6806 of LNCS, pages 171–177. Springer, 2011.

[2] A. Biere and R. Brummayer. Consistency Checking of All
Different Constraints over Bit-Vectors within a SAT Solver.
In FMCAD, pages 1–4. IEEE, 2008.

[3] R. Brummayer and A. Biere. Lemmas on Demand for the
Extensional Theory of Arrays. JSAT, 6(1-3):165–201, 2009.

[4] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and
Verifying Systems Using a Logic of Counter Arithmetic with
Lambda Expressions and Uninterpreted Functions. In CAV,
volume 2404 of LNCS, pages 78–92. Springer, 2002.

[5] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
The MathSAT5 SMT Solver. In TACAS, volume 7795 of
LNCS, pages 93–107. Springer, 2013.

[6] L. De Moura and N. Bjørner. Z3: an efficient SMT solver.
In Proc. ETAPS’08, pages 337–340, 2008.

[7] L. M. de Moura, H. Rueß, and M. Sorea. Lazy Theorem
Proving for Bounded Model Checking over Infinite Domains.
In CADE, volume 2392 of LNCS. Springer, 2002.

[8] B. Dutertre and L. de Moura. The Yices SMT solver. Tool
paper at http://yices.csl.sri.com/tool-paper.pdf, Aug. 2006.

[9] N. Eén and N. Sörensson. Temporal induction by incremental
SAT solving. ENTCS, 89(4):543–560, 2003.

[10] S. Falke, F. Merz, and C. Sinz. Extending the Theory of
Arrays: memset, memcpy, and Beyond. In Proc. VSTTE’13.

[11] R. Fisher and F. Yates. Statistical tables for biological,
agricultural and medical research. Oliver and Boyd, 1953.

[12] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-
Vectors and Arrays. In Proc. CAV’07. Springer-Verlag, 2007.

[13] F. Lapschies, J. Peleska, E. Gorbachuk, and T. Mangels.
SONOLAR SMT-Solver. System Desc. SMT-COMP’12. http:
//smtcomp.sourceforge.net/2012/reports/sonolar.pdf, 2012.

[14] J. McCarthy. Towards a Mathematical Science of Computa-
tion. In IFIP Congress, pages 21–28, 1962.

[15] O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via
lazy clause generation. Constraints, 14(3):357–391, 2009.

[16] R. Sebastiani. Lazy Satisability Modulo Theories. JSAT, 3(3-
4):141–224, 2007.

[17] S. A. Seshia. Adaptive Eager Boolean Encoding for Arith-
metic Reasoning in Verification. PhD thesis, CMU, 2005.

37

http://fmv.jku.at/difts-rev-13/lloddifts13.tar.gz
http://fmv.jku.at/difts-rev-13/lloddifts13.tar.gz
http://yices.csl.sri.com/tool-paper.pdf
http://smtcomp.sourceforge.net/2012/reports/sonolar.pdf
http://smtcomp.sourceforge.net/2012/reports/sonolar.pdf

CHIMP: a Tool for Assertion-Based Dynamic
Verification of SystemC Models

Sonali Dutta
Rice University

Email:Sonali.Dutta@rice.edu

Deian Tabakov
Schlumberger

Email:deian@dtabakov.com

Moshe Y. Vardi
Rice University

Email:vardi@cs.rice.edu

Abstract—CHIMP is a tool for assertion-based dynamic
verification of SystemC models. The various features of
CHIMP include automatic generation of monitors from
temporal assertions, automatic instrumentation of the
model-under-verification (MUV), and three-way commu-
nication among the MUV, the generated monitors, and the
SystemC simulation kernel during the monitored execution
of the instrumented MUV. Empirical results show that
CHIMP puts minimal runtime overhead on the monitored
execution of the MUV.

A newly added path in CHIMP results in a significant
(over 75%) reduction of average monitor generation and
compilation time. The average size of the monitors is re-
duced by over 60%, without increasing runtime overhead.

I. INTRODUCTION

SystemC (IEEE Standard 1666-2005) has emerged as
a de facto standard for modeling of hardware/software
systems [4], supporting different levels of abstraction,
iterative model refinement, and execution of the model
during each design stage. SystemC is implemented as
a C++ library with macros and base classes for mod-
eling processes, modules, channels, signals, ports, and
the like, while an event-driven simulation kernel allows
efficient simulation of concurrent models. Thus, on one
hand, SystemC leverages the natural object-oriented en-
capsulation, data hiding, and well-defined inheritance
mechanism of C++, and, on the other hand, it allows
modeling and efficient simulation of hardware/software
designs by its simulation kernel and predefined hardware-
specific macros and classes. The SystemC code is avail-
able as open source, including a single-core reference
simulation kernel, referred to as the OSCI kernel; see
http://www.accellera.org/downloads/standards/systemc.

Work supported in part by NSF grants CNS 1049862 and CCF-
1139011, by NSF Expeditions in Computing project ”ExCAPE:
Expeditions in Computer Augmented Program Engineering”, by BSF
grant 9800096, and by gift from Intel.

The growing popularity of SystemC has motivated
research aimed at assertion-based dynamic verification
(ABDV) of SystemC models [9]. ABDV involves two
steps: generating run-time monitors from input asser-
tions [8], and executing the model-under-verification
(MUV) while running the monitors along with the model.
The monitors observe the execution of the MUV and
report if the observed behavior is consistent with the
specified behavior. For discussion of related work in
ABDV of SystemC see [7].

CHIMP, available as an open-source tool1, imple-
ments the monitoring framework for temporal SystemC
properties described in [9]–see discussion below. CHIMP
consists of (1) off-the-self components, (2) modified com-
ponents, and (3) an original component. CHIMP has
two off-the-self components: (1) spot-1.1.1 [3], a
C++ library used for LTL-to-Büchi conversion , and (2)
AspectC++-1.1 [6], a C++ aspect compiler that is
used for instrumentation of the MUV. CHIMP has two
modified components: (1) a patched version of the OSCI
kernel-2.2 to facilitate communication between the
kernel and the monitors [9], and (2) an extension of
Automaton-1.11 [5], a Java tool used for deter-
minization and minimization of finite automata, with the
ability to read automata descriptions from file. Finally,
the original component is MONASGEN, a C++ tool for
automatic generation of monitors from assertions [8] and
for automatic generation of an aspect advice file for
instrumentation [11]. Fig. 1 shows the five components of
CHIMP as described above. The component Automaton-
1.11 is dotted because a newly added improved path
in CHIMP has been able to remove the dependency of
CHIMP on Automaton-1.11 (explained in Section V).

CHIMP takes the MUV and a set of temporal as-
sertions about the behavior of that MUV as inputs,

1www.sourceforge.net/projects/chimp-rice

38

Fig. 1. CHIMP components

and outputs “FAILED” or “NOT FAILED”, for each
assertion. CHIMP performs white-box validation of user
code and black-box validation of library code. (If a user
wishes to do white-box validation of library code, it can
be accomplished by treating the library code as part of
the user code.) The two main features of CHIMP are: (1)
CHIMP generates C++ monitors, one for each assertion
to be verified, and (2) CHIMP automatically instruments
the user model [11] to expose the user model’s states and
syntax to the monitors. CHIMP puts nominal overhead
on the runtime of the MUV, supports a rich set of
assertions, and can handle a wide array of abstractions,
from statement level to system level.

A recently added path in CHIMP from LTL to
monitor can bypass the old performance bottleneck,
Automaton-1.1, and improves the monitor generation and
compilation time by a significant amount. It also reduces
the size of the generated monitors notably. This entirely
removes the dependency of CHIMP on Automaton-1.1.

The theoretical and algorithmic foundations of
CHIMP were described in [8]–[11]. In this paper we
describe the architecture, usage, and recent evolution
of CHIMP. The rest of the paper is organized as fol-
lows. Section II describes the syntax and semantics of
assertions. Section III presents an overall picture about
the usage, implementation and performance of CHIMP.
Section IV describes the C++ monitor generated by
CHIMP. Section V describes the new improved path in
CHIMP and its improved performance. Finally, Section
VI presents a summary and talks about future work.

II. ASSERTIONS: SYNTAX AND SEMANTICS

CHIMP accepts input assertions, defined using the
temporal specification framework for SystemC described
in [10], where a temporal assertion consists of a linear
temporal formula accompanied by a Boolean expression
serving as a clock. This supports assertions written at
different levels of abstraction with different temporal
resolutions. The framework of [10] proposes a set of
SystemC-specific Boolean variables that refer to Sys-
temC’s software features and its simulation semantics;
see examples below. Input assertions in CHIMP are of the
form “〈LTL formula〉@〈clock expression〉”, where
the LTL formula expresses a temporal property and the
clock expression denotes when CHIMP should sample
the execution trace of the MUV.

Several of the additional Boolean variables pro-
posed in [10] refer to the simulation phases. Accord-
ing to SystemC’s formal semantics, there are 18 pre-
defined kernel phases. CHIMP has Boolean variables
that enable referring to these phases. For example
MON DELTA CYCLE END denotes the end of each
delta cycle and MON THREAD SUSPEND denotes the
suspension moment of each thread. By using these vari-
ables as clock expressions, we can sample the execu-
tion trace at different temporal resolutions. (By default,
CHIMP samples at each kernel phase.) Other Boolean
variables refer to SystemC events, which are key ele-
ments of SystemC’s event-driven simulation semantics.
CHIMP is also able to sample the execution at various
key locations, e.g., function calls and function returns.
This gives the user the flexibility to write assertions at
different levels of abstraction, from the level of individual
C++ statements to the level of SystemC kernel phases.

The Boolean primitives supported by CHIMP are
summarized below; see, [10] and [11] for further details:

Function primitives: Let f() be a C++ function in the
user or library code. The Boolean primitives f:call and
f:return refer to locations in the source code that contain
the function call, and to locations immediately after
the function call, respectively. The primitives f:entry
and f:exit refer to the locations immediately before the
first executable statement and immediately after the last
executable statement in f(), respectively. If f() is a
library function then the entry and exit primitives are not
supported (black-box verification model for libraries).

Value primitives: If a function f() has k arguments,
CHIMP defines variables f : 1, . . . , f : k, where the
value and type of f : i are equal to the value and type

39

of the ith parameter of function f() before executing
the first statement in the definition of f(). CHIMP
also defines the variable f : 0, whose value and type
are equal to the value and type of the object that f()
returns. For example, if the function int divide(int
dividend, int divisor) is defined in the MUV,
then the formula G (division:entry -> “division:2 !=
0”) asserts that the divisor is nonzero whenever division
function starts execution.

Phase primitives: The user can refer to the 18 pre-
defined kernel states [10] in the assertions to spec-
ify when the state of the MUV should be sam-
pled. For example, the assertion G (“p == 0”) @
MON DELTA CYCLE END requires the value of vari-
able p to be zero at the end of every delta cycle.

Event primitives: For each SystemC event E, CHIMP
provides a Boolean primitive E.notified that is true
only when the OSCI kernel actually notifies E. For ex-
ample, the assertion G (s.value changed event().notified)
@MON UPDATE PHASE END says that the signal s
changes value at the end of every update phase.

III. USAGE, IMPLEMENTATION AND PERFORMANCE

Running CHIMP consists of three steps: (1) In the
first step, the user writes a configuration file containing
all assertions to be verified, as well as other necessary
information. The user can also provide inputs through
command-line switches. For each LTL assertion in the
configuration file, MONASGEN first generates a non-
deterministic Büchi automaton on words (NBW) using
SPOT, then converts that NBW to a minimal deter-
ministic finite automaton on words (DFW), using the
Automaton-1.11 tool for determinization and minimiza-
tion. Then, MONASGEN generates the C++ monitors
from the DFW, one monitor for each assertion (Fig. 2).
(2) MONASGEN produces an aspect-advice file that is
then used by AspectC++ to generate the instrumented
MUV (Fig. 3). (3) Finally, the monitors and the instru-
mented MUV are compiled together and linked to the
patched OSCI kernel, and the code is then run to execute
the simulation with inputs provided by user. The inputs
can be generated using any standard stimuli-generation
technique. For every assertion, CHIMP produces output
indicating if the assertion held or failed for that particular
input (Fig. 4).

For experimental evaluation we used a SystemC
model with about 3,000 LOC, implementing a system
for reserving and purchasing airplane tickets. The users

Fig. 2. Monitor generation flow

Fig. 3. MUV instrumentation flow

of the system submit requests and the system uses a
randomly generated flight database to find a direct flight
or a sequence of up to three connecting flights. Those are
returned to the user for approval, payment and booking.
This model is intended to run forever. It is inspired
by actual request/grant subsystems currently used in
hardware design.

We used a patched version of the 2.2.0 OSCI kernel
and compiled it using the default settings in the Makefile.
The empirical results below were measured on a Pentium
4, 3.20GHz CPU, 1 GB RAM machine running GNU

40

Fig. 4. Running instrumented MUV with monitors using patched
OSCI kernel

Linux. To assess runtime overhead imposed by the mon-
itors, we measured the effect of running with different
assertions and also increasing number of assertions [9].
In each case we first ran the model without monitors and
user-code instrumentation to establish the baseline, and
then ran several simulations with instrumentation and an
increasing number of copies of the same monitor. The
results report runtime overhead per monitor as a per-
centage of the baseline. (For these experiments monitors
were constructed manually.)

The first property we checked is a safety
property asserting that whenever the event
new requests nonfull is notified, the corresponding
queue new planning requests must have space for at
least one request.

G "new_planning_requests.size() < capacity"
@ new_requests_nonfull.notified (1)

The second property says that the system must propa-
gate each request through each channel (or through each
module) within 5 cycles of the slow clock. This property
is a conjunction of 16 bounded liveness assertions similar
to the one shown here.

...
// Propagate through module within 5 clock ticks
ALWAYS (io_module_receive_transaction($1) ->
(within [5 slow_clock.pos()]
io_module_send_to_master($2) & ($1 == $2)

) AND ... (2)

Fig. 5 presents the runtime overhead of monitoring

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of monitors

O
v
e

rh
e

a
d

 p
e

r
m

o
n

it
o

r
(%

 o
f

b
a

s
e

lin
e

)

ARS: Overhead per monitor for Properties (1) and (2)

Property 1 (safety)

Property 2 (liveness)

Both properties

Fig. 5. Run time overhead for monitoring Properties (1) and
(2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

Number of monitor calls

P
e

rc
e

n
ta

g
e

 o
v
e

rh
e

a
d

 p
e

r
c
a

ll

Fig. 6. Instrumentation overhead per monitor call
as a percentage of the baseline run time. Y axis
is ((instrumentation overhead − baseline)/(baseline ×
number of monitors))× 100%

the above two properties as a percentage of the baseline.
Checking Property 2 is relatively expensive because it
requires a lot of communication from the model to the
monitor. It is shown in [1] that the finite state monitors
have less runtime overhead than transaction-based moni-
tors generated by tools like Synopsys VCS.

We also evaluated the cost of instrumentation sepa-
rately by simulating one million SystemC clock cycles
with focus on the overhead of instrumentation [11]. The
average wall-clock execution time of the system over 10
runs without instrumentation was 33 seconds. We call
this “baseline execution”. Fig. 6 shows the cost of the
instrumentation per monitor call, as a percentage of the

41

baseline execution. The data suggest that there is a fixed
cost of the instrumentation, which, when amortized over
more and more calls, leads to lower average cost. The
average cost per call stabilizes after 300,000 calls, and is
less than 0.5× 10−4%.

Another testbench we used is an Adder model that
implements the squaring function by repeated increment
by 1. It uses all three kinds of event notifications. It is
scalable as it spawns a SystemC thread for each addition
in the squaring function. We monitored several properties
of the Adder model using CHIMP.

To study the effect of monitor encoding on runtime
overhead, Tabakov and Vardi [8] describes 33 different
monitor encodings, and shows that front det switch en-
coding with state minimization and no alphabet mini-
mization is the best in terms of runtime overhead. The
downside is that this flow suffers from a rather slow
monitor generation and compilation time. This led us to
develop a new flow for the tool, as described below.

IV. CHIMP MONITORS

In CHIMP, the LTL formula in every assertion
〈LTL formula〉 @ 〈clock expression〉 is converted
into a C++ monitor class. Each C++ monitor has a step()
function that implements the transition function of the
DFW generated from the LTL formula (as described
in Fig. 9). This step() function is called at every sam-
pling point defined by clock expression. The monitor.h
and monitor.cc files, generated by MONASGEN, contains
one monitor class for every assertion and a class called
local_observer that is responsible for invoking the
callback function, which invokes step() function of the ap-
propriate monitor class at the right sampling point during
the monitored simulation. Different encodings have been
explored for writing the monitor’s step() function. For the
new flow of CHIMP (described below), Fig. 13 shows that
front det ifelse encoding is the best among all of them
in terms of runtime overhead.

In front det ifelse encoding, the C++ monitor pro-
duced is deterministic in terms of transitions. This means
from one state, either one or no transition is possible. If
no transition is possible from a state, the monitor rejects
and outputs ”FAILED”. Else, the monitor keeps executing
until the end of simulation and outputs ”NOT FAILED”.
In front det ifelse encoding, each state of the monitor
is encoded as an integer, from 0 upto the total number of
states. The step() function of the monitor uses an outer
if-elseif statement block to determine the next state. The

Fig. 7. The DFW generated by MONASGEN from the LTL
formula G(a → Xb). All the states are accepting. The DFW
rejects bad prefixes by no available transition. State 0 is the
initial state.

possible transitions from each state are encoded using an
inner if-elseif block, the condition statement being the
guard on a transition.

As a running example, we show how the monitor step()
function is encoded for an assertion G(a → Xb) @ clk.
clk here is some boolean expression specifying when the
step() function needs to be called during the simulation.
This assertion asserts that, always, if a is true, then in the
next clock cycle b has to be true. The DFW generated by
CHIMP for this assertion is shown in Fig. 7.

Listing 1 shows the step() function of the C++ monitor
generated by CHIMP for the assertion G(a → Xb) @
clk. The variables current_state and next_state
are member variables of the monitor class and store the
current automaton state and next automaton state respec-
tively. If next state becomes −1 after the execution of the
step() function, it means that no transition can be made
from the current state. In this case, the monitor outputs
”FAILED”. The initial state 0 of the monitor is assigned
to the variable current_state inside the constructor
of the monitor class as shown in Listing 2.

Listing 1. The step() function of the monitor for G(a→ Xb)

/∗ ∗
∗ S i m u l a t e a s t e p o f t h e m o n i t o r .
∗ /
void
m o n i to r 0 : : s t e p () {

/ / I f t h e p r o p e r t y has n o t f a i l e d y e t
i f (s t a t u s == NOT FAILED) {

/ / number o f s t e p s e x e c u t e d so f a r
num steps ++;
/ / a s s i g n n e x t s t a t e t o c u r r e n t s t a t e
c u r r e n t s t a t e = n e x t s t a t e ;
/ / make n e x t s t a t e i n v a l i d
n e x t s t a t e = −1;

42

i f (c u r r e n t s t a t e == 0) {
i f (! (a))
{ n e x t s t a t e = 0 ; }

e l s e i f ((a))
{ n e x t s t a t e = 1 ; }

} / / i f (c u r r e n t s t a t e == 0)

e l s e i f (c u r r e n t s t a t e == 1) {
i f ((b) && ! (a))
{ n e x t s t a t e = 0 ; }

e l s e i f ((a) && (b))
{ n e x t s t a t e = 1 ; }

} / / i f (c u r r e n t s t a t e == 1)

/ / FAILED i f no t r a n s i t i o n p o s s i b l e
bool n o t s t u c k = (n e x t s t a t e != −1);
i f (! n o t s t u c k) {

p r o p e r t y f a i l e d () ;
}

} / / i f (s t a t u s == NOT FAILED)
} / / s t e p ()

Listing 2. The constructor of the monitor for G(a→ Xb)

/∗ ∗
∗ The c o n s t r u c t o r
∗ /

m o n i to r 0 : : m o n i t o r 0 (. . .) :
s c c o r e : : mon pro to type () {

n e x t s t a t e = 0 ; / / i n i t i a l s t a t e i d
c u r r e n t s t a t e = −1;
s t a t u s = NOT FAILED ;
num steps = 0 ;
. . .

} / / C o n s t r u c t o r

The sampling points can be kernel phases, e.g.,
MON DELTA CYCLE END, or event notification, e.g.,
E.notified (E is an event). In such cases, the OSCI kernel
needs to communicate with the local_observer at
the right time (when a delta cycle ends or when event E
is notified) to call the step() function of the monitor. This
communication is done by the patch, put on OSCI ker-
nel. This patch contains a class called mon_observer,
which communicates with the local_observer class
on behalf of the OSCI kernel.

V. EVOLUTION OF CHIMP

Fig. 8 shows the old path of generating C++ monitor
from an LTL property in CHIMP. First, MONASGEN

Fig. 8. Old LTL to monitor path in CHIMP

Fig. 9. New LTL to monitor path in CHIMP

uses SPOT to convert the LTL formula to a nondeter-
ministic Büchi Automaton (NBW). Then MONASGEN
prunes the NBW to remove all states that do not lead to
any accepting state, and generate the corresponding non-
deterministic finite automaton (NFW), see [2]. MONAS-
GEN then uses the Automaton Tool to determinize and
minimize the NFW to generate minimal deterministic
finite automaton (DFW). Finally MONASGEN converts
the DFW to C++ monitor.

The main bottleneck in this flow was minimization
and determination of NFW using the Automaton tool as
it consumes 90% of total monitor generation and com-
pilation time. Also, the Automaton tool may generate
multiple edges between two states, resulting in quite large
monitors. The newest version of CHIMP introduces a
new path as shown in Fig. 9, which bypasses Automaton
tool completely and uses only SPOT. So the component
Automaton-1.11 in Fig. 1 is not needed by CHIMP any-
more. This new path leverages the new functionality of
SPOT-1.1.1 to convert an LTL formula to a minimal DFW
that explicitly rejects all bad prefixes.

After replacing the Automaton Tool by SPOT to con-
vert the NBW to minimal DFW, the improvement in
compilation time and monitor size is evident. This new
flow results in 75.93% improvement in monitor genera-
tion and compilation time. To evaluate the performance of
the revised CHIMP, we use the same set of 162 pattern
formulas and 1200 random formulas as mentioned in [8].
The scatter plot on Fig. 10 shows the comparison of
monitor generation and compilation time of the new flow
vs the old flow. Most of the points are above the line with
slope 1, which indicates that for most of the monitors, the

43

generation and compilation time by old CHIMP is more
than by new CHIMP. Fig. 10 - Fig. 14 are all scatter plots2

and interpreted in the same way.

The new flow also merges multiple edges between
two states into one edge guarded by the disjunction of
the guards on all edges between the states. In this way
the average reduction in monitor size in bytes is 61.27%.
Fig. 11 shows the comparison of the size in bytes of the
monitors generated by the new flow vs the old flow.

Since the main focus of CHIMP has always been
minimizing runtime overhead, we need to ensure that this
new flow does not incur more runtime overhead compared
to the old flow as a cost of reduced monitor generation and
compilation time. So we ran the same set of 162 pattern
formulas and 1200 random formulas as mentioned above,
to compare the runtime overhead incurred by the new flow
vs the old flow. Fig. 12 shows that the runtime overhead
of CHIMP using the new flow has been reduced compared
to the old flow. The reduction is 7.97% on average.

As CHIMP has evolved to follow a different and more
efficient path and the monitors have been reduced in size,
it was not clear a priori which monitor encoding is the
best. We conducted the same experiment as in [8] with
the same set of formulas, 162 pattern formulas and 1200
random formulas, to identify the best encodings in terms
of both runtime overhead and monitor generation and
compilation time. We identified two new best encodings.
Fig. 13 shows that the new best encoding in terms of
runtime overhead is now front det ifelse. Fig. 14 shows
that the new best encoding in terms of monitor genera-
tion and compilation time is back ass alpha. CHIMP
now provides two configurations for monitor generation,
best runtime, which has minimum runtime overhead
and best compiletime, which has minimum monitor
generation and compilation time. Since the bigger concern
is usually runtime overhead, best runtime is the default
configuration, given that its monitor generation and com-
pilation time is very close to that of best compiletime.

VI. CONCLUSION

We present CHIMP, an Assertion-Based Dynamic Ver-
ification tool for SystemC models, and show that it puts
minimal overhead on the runtime of the MUV. We show
how the new path in CHIMP results in significant re-
duction of monitor generation and compilation time and
monitor size, as well as runtime overhead. In the future

2http://en.wikipedia.org/wiki/Scatter plot

Fig. 10. Comparison of monitor generation and compilation
time of the old CHIMP vs new CHIMP

Fig. 11. Comparison of monitor size (bytes) generated by the
old CHIMP vs new CHIMP

we plan to look at the possibility of verifying parametric
properties, for example G(send(id) → F (receive(id)))
where one can pass a parameter (here id), to the variables
in the LTL formula of the assertion. The above property
means that always if the message with ID id is sent, it
should be received eventually. Also at present the user
needs to know the system architecture to declare an asser-
tion. We would like to make CHIMP work with assertions
that are declared in the elaboration phase.

44

Fig. 12. Comparison of runtime overhead incurred by old
CHIMP vs new CHIMP

REFERENCES

[1] R. Armoni, D. Korchemny, A. Tiemeyer, M. Vardi, and Y. Zbar.
Deterministic dynamic monitors for linear-time assertions. In
Proc. Workshop on Formal Approaches to Testing and Run-
time Verification, volume 4262 of Lecture Notes in Computer
Science. Springer, 2006.

[2] M. d’Amorim and G. Ro̧su. Efficient monitoring of ω-
languages. In Proc. 17th International Conference on Com-
puter Aided Verification, pages 364–378, 2005.

[3] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model
checking library using transition-based generalized Büchi au-
tomata. Modeling, Analysis, and Simulation of Computer
Systems, 0:76–83, 2004.

[4] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy.
Automatic generation of schedulings for improving the test
coverage of Systems-on-a-Chip. In FMCAD ’06: Proceedings
of the Formal Methods in Computer Aided Design, pages 171–
178, Washington, DC, USA, 2006. IEEE Computer Society.

[5] A. Møller. dk.brics.automaton.
http://www.brics.dk/automaton/, 2004.

[6] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++:
an aspect-oriented extension to the C++ programming lan-
guage. In CRPIT ’02: Proceedings of the Fortieth Interna-
tional Conference on Tools Pacific, pages 53–60, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society, Inc.

[7] D. Tabakov. Dynamic Assertion-Based Verification for Sys-
temC. PhD thesis, Rice University, Houston, 2010.

[8] D. Tabakov, K. Rozier, and M. Y. Vardi. Optimized temporal
monitors for SystemC. Formal Methods in System Design,
41(3):236–268, 2012.

[9] D. Tabakov and M. Vardi. Monitoring temporal SystemC
properties. In Proc. 8th Int’l Conf. on Formal Methods and
Models for Codesign, pages 123–132. IEEE, July 2010.

Fig. 13. Comparison of runtime overhead of front det ifelse
encoding vs all other encodings

Fig. 14. Comparison of monitor generation time and com-
pile time overhead of back ass alpha encoding vs all other
encodings

[10] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman. A
temporal language for SystemC. In FMCAD ’08: Proc. Int.
Conf. on Formal Methods in Computer-Aided Design, pages
1–9. IEEE Press, 2008.

[11] D. Tabakov and M. Y. Vardi. Automatic aspectization of
SystemC. In Proceedings of the 2012 workshop on Modularity
in Systems Software, MISS ’12, pages 9–14, New York, NY,
USA, 2012. ACM.

45

Abstraction-Based Livelock/Deadlock Checking for
Hardware Verification

In-Ho Moon and Kevin Harer
Synopsys Inc.

{mooni, kevinh}@synopsys.com

ABSTRACT
Livelock/deadlock is a well known and important problem
in both hardware and software systems. In hardware verifi-
cation, a livelock is a situation where the state of a design
changes within only a smaller subset of the states reachable
from the initial states of the design. Deadlock is a special
case in which there is only one state in a livelock. However,
livelock/deadlock checking has never been actively used in
hardware verification in practice, mainly due to the com-
plexity of the computation which involves finding strongly
connected components.
This paper presents a practical abstraction-based live-

lock/deadlock checking algorithm for hardware verification.
The proposed livelock/deadlock checking works on FSMs
rather than the whole design. For each FSM, we make an
abstract machine of manageable size from the cone of influ-
ence of the FSM. Once a livelock is found on an abstract
machine, the livelock is justified on the concrete machine
with trace concretization. Experimental results shows that
the proposed abstraction-based livelock checking finds real
livelock errors in industrial designs.

1. INTRODUCTION
Livelock/deadlock is a well known and important problem

in both hardware and software systems. In hardware verifi-
cation, a livelock is a situation where the state of a design
changes within only a subset of the states reachable from
the initial states of the design. In a state transition graph, a
livelock is a set of states from which there is no path going
to any other states that are reachable from the initial state.
Since deadlock is a special case in which there is only one
state in a livelock, deadlock checking can be done by livelock
checking. Thus, livelock implies both livelock and deadlock
in this paper. However, livelock checking1 has never been
actively used in hardware verification in practice, mainly due
to the complexity of the computation which involves find-
ing SCCs (Strongly Connected Components). Thus, livelock
checking has been on hardware designer’s wish list to verify
their designs.
There have been many approaches on finding SCCs [13,

27, 28, 3, 20, 12]. Among these work, Xie and Beeral pro-
posed a symbolic method finding terminal SCCs (in short,
TSCCs) using BDDs (Binary Decision Diagrams [4]) in [27].
In a state transition graph, a TSCC is an SCC that does
not have any outgoing edges to any state outside the SCC.
Thus, a TSCC becomes a livelock group when the TSCC

1Livelock checking is different from liveness checking and
the difference will be explained in Section 2.3.

has any incoming edges to the SCC in the state transi-
tion graph representing a hardware design. However, even
though the method in [27] is an improved method from its
previous work [13] in symbolic approaches, it is still infea-
sible to apply the method to the industrial designs, simply
due to the capacity problem of symbolic methods. In gen-
eral, any BDD-based method can handle only up to several
hundred latches without any abstraction or approximation
techniques, whereas there can be millions of latches in in-
dustrial designs.

In this paper, we first present an improved BDD-based
algorithm finding TSCCs from[27] in the following aspects.
First, initial state is taken into account in finding TSCCs.
Especially, the improved algorithm handles multiple initial
states efficiently. Secondly, unreachable TSCCs are distin-
guished from reachable TSCCs which are more interesting to
designers. Thirdly, we provide more intuitive state classifi-
cation as main, transient, and livelock groups as opposed to
transient and recurrence classes in [27]. In our classification,
a set of transient states is further classified into main and
transient groups. Recurrence class in [27] is mapped into
livelock group in our classification. Main group is an SCC
that contains the initial state. Transient group is a set of
states that belong to neither main nor livelock group. There
is one or zero main group in a design per one initial state.

This paper also presents a practical approach for checking
livelock using abstraction techniques. The proposed live-
lock checking works on FSMs(Finite State Machines)2 rather
than the whole design. For each FSM, we make an abstract
machine (by localization reduction [15]) of manageable size
by the improved BDD method from the COI(Cone of Influ-
ence) of the FSM. Once a livelock is found on an abstract
machine, the livelock is justified on the concrete machine
with trace concretization using SAT (Satisfiability[9]) and
simulation. When there is no livelock on the abstract ma-
chine, there is no guarantee for no livelock on the concrete
machine. However, the bigger the abstract size is, the more
confidence we have that no livelock exists on the concrete
machine. The key benefit of this abstraction-based livelock
checking is that it enables finding real livelock groups that
cannot be found by tackling whole design directly.

Once an FSM is given, its COI is first computed. Then,
an abstract machine is computed by finding N influential
latches from the COI. Influential latches are the latches that
are likely related with the FSM. N is either pre-defined or a
user-defined number of latches in the abstract machine, or

2FSMs are either automatically extracted [26] or any sets of
sequential elements that are user-specified.

46

gradually increased. In general, N is up to a few hundred
latches. Influential latches are computed mainly by approx-
imate state decomposition [6]. However, in many cases, the
size of COIs is too big for even approximate state decom-
position. Thus, a structural abstraction is applied by using
connectivity and sequential depth before approximate state
decomposition. This structural abstraction reduces the COI
to a manageable size by approximate state decomposition.
There is another important hardware property called tog-

gle deadlock. A state variable has a toggle deadlock if the
state variable initially toggles and the state variable becomes
a constant after a certain number of transitions. However,
notice that this is not a constant variable since it initially
toggles. Toggle deadlock may or may not happen depending
on input stimuli in simulation. Therefore, toggle deadlock is
also an important property to check with formal approaches.
Experimental results shows that the proposed abstraction-

based approach finds real livelock and toggle deadlock errors
from industrial designs.
The contributions of this paper are in the three aspects.

• Improved algorithm for livelock checking
The proposed algorithm improved the existing algo-
rithm [27] in many aspects, such as providing new
state classification with initial state, handling multi-
ple initial states, refining the search space efficiently
with care states, early termination, and trimming out
transient states.

• Abstraction-based livelock checking
This paper presents theories and an implementation
on abstraction-based livelock checking to handle large
designs in practice.

• Toggle deadlock checking
To the best of our knowledge, this paper presents the
first method to solve toggle deadlock problem.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly recapitulates finding SCCs and TSCCs, and
describes related work. Section 3 describes our improved al-
gorithm for finding TSCCs. Section 4 explains how livelock
is checked on FSM using abstraction. Section 5 describes
how to check toggle deadlocks. Experimental results are
presented and discussed in Section 6. We conclude with
Section 7.

2. PRELIMINARIES
2.1 Finding SCCs
Given a graph, G = (V,E) whereG is an infinite transition

system of the Kripke structure [8], V is a finite set of states
and E ⊆ V × V is the set of edges, a strongly connected
component (SCC) is a maximal set of state U ⊆ V such
that for every pair (u, v) ∈ U , u and v are reachable from
each other, that is, u is reachable from v and v is reachable
from u [27, 28].
Finding SCCs has a variety of applications in formal ver-

ification such as Buchi emptiness [11], LTL model check-
ing [25], CTL model checking with fairness constraints [10],
Liveness checking [16, 1], and so on.
The traditional approach to find SCCs is to use Tarjan’s

method [23]. Since this method manipulates the states of the
graph explicitly, even though it runs in linear time in the size
of the graph, the size of the graph grows exponentially as
the number of state variables grows.
To overcome this state explosion problem in explicit al-

gorithms, there have been many publications on symbolic

algorithms. Ravi et al. [20] provided a taxonomy of those
symbolic algorithms. One is SCC-hull algorithms (without
enumerating SCCs) [11, 14, 24], and the other is SCC enu-
meration algorithms [28, 3, 12, 20]. The details are in [20].

2.2 Finding TSCCs
Even though TSCCs are a subset of SCCs in the states of a

design, the algorithms for finding TSCCs can be significantly
optimized since not all SCCs are of interest.

This section recapitulates the work on finding TSCCs by
Xie and Beeral [27]. This algorithm classifies all states into
either recurrence or transient class. Recurrence class is a set
of TSCCs and the rest belongs to transient class. Let S be
the set of states. With i, j ∈ S, i → j denotes that there is
at least one path from i to j. Definition 1 defines forward
set and backward set of a state.

Definition 1. The forward set of state i ∈ S, denoted by
F (i), is the set of states that have a path from i. That is,
F (i) = {j ∈ S | i→ j}. Similarly, the backward set of state
i, denoted by B(i), is the set of states that have a path to i.
That is, B(i) = {j ∈ S | j → i}.

Lemma 1. Let i, j ∈ S. If j ∈ F (i), then F (j) ⊆ F (i).
Similarly, if j ∈ B(i), then B(j) ⊆ B(i).

Theorem 1. A state i ∈ S is recurrent if and only if
F (i) ⊆ B(i). In other words, i is transient if and only if
F (i) * B(i).

Theorem 2. If state i ∈ S is transient, then states in
B(i) are all transient. If state i is recurrent, on the other
hand, states in F (i) are all recurrent. In the latter case, set
F (i) is a recurrence class, and set B(i)\F (i) (if not empty)
contains only transient states.

Lemma 1, Theorem 1 and 2 are from [27]. Lemma 1 shows
a subset relation between two forward sets as well as two
backward sets when j is in either F (i) or B(i). Theorem 1
and 2 show how a state is determined whether the state
belongs to either recurrence or transient class. Based on
Theorem 1 and 2, all TSCCs can be found by performing
forward and backward reachability iteratively. The detailed
algorithm can be found in [27] and our improved algorithm is
described in Section 3.2 with the comparisons to the original
algorithm.

2.3 Related work
There are two types of properties in model checking; safety

and liveness properties [16]. A safety property represents
’something bad never happens’, whereas a liveness property
represents ’something good eventually happens’. Liveness
checking with a liveness property can be performed by find-
ing SCCs [20]. Liveness checking can also be performed by
safety checking with proper transformations [1].

Livelock checking is different from liveness checking in the
sense that liveness checking requires a liveness property to
work on a design, whereas livelock checking does not require
any property and works on a design directly.

There have been many publications on finding all SCCs [24,
28, 3, 12]. Even though all TSCCs can be found by any of
these approaches on finding all SCCs, it is not necessary to
find all SCCs for finding all TSCCs since we are interested
in finding only all TSCCs for livelock checking.

Hachtel et al. [13] proposed a symbolic approach to find
all recurrence classes concurrently identifying all TSCCs by
computing transitive closure [17] on the transition graph

47

with the Markov chain. Due to the complexity of transi-
tive closure, this approach takes significantly more time and
memory than a reachability-based approach does.
Qadeer et al. [19] proposed an algorithm to find single

TSCC in the context of safe replacement in sequential equiv-
alence checking [21, 22]. In this approach, multiple TSCCs
are not considered.
Xie and Beeral proposed a reachability-based algorithm

to find all TSCCs iteratively [27]. This is also a symbolic
approach that outperforms the method in [13]. However,
this approach does not consider initial states.
None of the above previous work on finding TSCCs was

used in real designs in practice, due to the design sizes. Our
abstraction-based approach is the first in publication to han-
dle large designs in practice.
Case et al. [5] proposed a method finding transient sig-

nals using ternary simulation. A transient signal is a toggle
deadlock on over-approximate reachable states. The toggle
deadlock checking in this paper finds transients signals in
exact reachable states.

3. IMPROVED LIVELOCK CHECKING
3.1 State Classification
The state classification in [27] consists of one transient

class and one or more recurrence classes. However, in hard-
ware verification, initial states are given to verify the hard-
ware behavior only in reachable state space. One problem of
the state classification in [27] is that there is no distinction
between reachable TSCCs and unreachable TSCCs from the
initial states. Also, the reachable TSCCs may vary depend-
ing on initial states.
We propose a new state classification that is shown in Fig-

ure 1, assuming that there is one single initial state. Han-
dling multiple initial states is explained in Section 3.3.

Definition 2. STSCC is a sink TSCC that has incoming
edges from any states outside the TSCC.

We first define sink TSCC (in short, STSCC) in Defini-
tion 2. The new state classification consists of main group,
transient group, livelock groups (reachable STSCCs) and
unreachable TSCCs for a given initial state. The transient
class in [27] is further classified into main group or tran-
sient group. Main group is an SCC containing the initial
state and there exists either one or no main group. The
recurrence classes in [27] are further classified into livelock
groups (reachable STSCCs) and unreachable TSCCs. When
there is no livelock, there exists only one SCC which is the
main group.

a

g

n

c

eb d f h

i

k l m

j o
Reachable States

Unreachable TSCC

Main Group
Livelock Group

Transient Group (Reachable STSCC)

Figure 1: State classification.

In Figure 1, there are states a through o and a is the
initial state that is marked with thick circle. Among all

states, the reachable states are a through i inside the dot-
ted rectangle. The unreachable states are j through o out-
side the dotted rectangle. There are five SCCs that are
{a, b, c}, {e, f, g}, {h, i}, {j, k, l}, and{m,n, o}. Since a is the
initial state, {a, b, c} becomes the main group. {h, i} and
{m,n, o} are TSCCs and only {h, i} is a livelock group (reach-
able STSCC) since it is reachable from a. {m,n, o} is called
an unreachable TSCC. The rest states, {d, e, f, g, j, k, l}, be-
long to the transient group in which the states are contained
in neither the main group nor the TSCCs.

3.2 Finding Livelock
We first define transition relation in Definition 3 to explain

our algorithms to check livelock.

Definition 3. Let x = {x1, . . . , xn}, y = {y1, . . . , yn},
and w = {w1, . . . , wp} be sets of variables ranging over B =
{0, 1}. A (finite state) machine is a pair of boolean functions
⟨Q(x,w, y), I(x)⟩, where Q : B2n+p → B is 1 if and only if
there is a transition from the state encoded by x to the state
encoded by y under the input encoded by w. I : Bn → B is
1 if the state encoded by x is an initial state. Q(x,w, y) is
called transition relation. The sets x, y, and w are called the
present state, next state, and input variables, respectively.

The procedure ComputeForwardSet in Figure 2 is a mod-
ified version of the procedure forward set in [27] in order
to compute forward set of a given state s only within the
given care states careSet in the procedure and to perform
early termination when stop is not ZERO (empty BDD). ⇓
represents a restrict operator [7] that is used to minimize
the transition relation with respect to careSet in Line 2.
The minimized transition relation is denoted by Q̃. In Line
7, y ← x represents that y variables are replaced by x vari-
ables by BDD substitution. Early termination is another
big difference from forward set in [27] and is used in Fig-
ure 3. This is to bail out computing forward set as soon as
any newly reached state intersects with the states in stop
as in Line 11. BddIteConstant is a BDD ITE(if-then-else)
operation without creating a new BDD node. O is an array
of states to store newly reached states at each iteration and
O is called onion rings. These onion rings are used later in
Section 3.3. ComputeForwardSet returns the forward set
F (s) and the onion rings O.

ComputeForwardSet(Q, careSet, s, stop) {
1 F (s) = ZERO;

2 Q̃(x,w, y) = Q(x,w, y) ⇓ careSet;
3 frontier(x) = s;
4 Put s in O;
5 while (frontier(x) ̸= ZERO) {
6 image(y) = ∃x,w. Q̃(x,w, y) ∧ frontier(x);
7 image(x) = image(y)|y←x;
8 F (s) = F (s) ∨ image(x);
9 frontier = image(x) ∧ ¬F (s);
10 Put frontier in O;
11 if (BddIteConstant(frontier, stop, ZERO) != ZERO)
12 break;
13 }
14 return (F (s), O);

}
Figure 2: Computing forward set.

ComputeBackwardSet is a dual procedure to Compute
ForwardSet, except not using stop and not computing the
onion rings O.

Figure 3 is a procedure for finding TSCCs from the given
set of states S. The procedure FindTSCCs is a modified
version of the procedure State classification in [27]. The
modified procedure utilizes care states careSet, assuming S

48

is not necessarily all state space. T is a set of transient states
in S, and R is an array of TSCCs in S. PickOneState in
Line 5 picks a random state from careSet as a seed state to
find a TSCC. In Line 7, early termination is used in comput-
ing the forward set F (s), by setting stop in Figure 2 as the
negation of B(s). This is because while we compute F (s)
within B(s) for the state s, once any state outside B(s)
is reachable from s, all states in B(s) are transient. An-
other big difference is trimming transient states in Line 12
and 16. TrimTransient(Q, careSet, T, dir) trims out the
transient states from the current care states by the given
direction (dir) that is either PREFIX, SUFFIX, or BOTH.
PREFIX(SUFFIX) means to trim out the lasso prefix(suffix)
states. This is the same technique used in finding SCCs [20].
Finally, FindTSCCs returns R (a set of TSCCs) and T (a
set of transient states).

FindTSCCs(Q, S) {
1 R = { };
2 T = ZERO;
3 careSet = S;
4 while (careSet ̸= ZERO) {
5 s = PickOneState(careSet);
6 B(s) = ComputeBackwardSet(Q, careSet, s);
7 F (s) = ComputeForwardSet(Q, careSet, s, ¬B(s));
8 if (F (s) ⊆ B(s)) {
9 R = R ∪ F (s);
10 T = T ∨ (B(s) ∧ ¬F (s));
11 careSet = careSet ∧ ¬B(s);
12 TrimTransient(Q, careSet, T , PREFIX);
13 } else {
14 T = T ∨ (s ∨ B(s));
15 careSet = careSet ∧ ¬(s ∨ B(s));
16 TrimTransient(Q, careSet, T , BOTH);
17 }
18 }
19 return (R, T);

}
Figure 3: Finding TSCCs.

FindLivelock(Q, S, s) {
1 (F (s), O) = ComputeForwardSet(Q, S, s, ZERO);
2 B(s) = ComputeBackwardSet(Q, S, s);
3 reached = F (s) ∨ s;
4 if (F (s) ⊆ B(s)) {
5 M = F (s);
6 R = { };
7 T = ZERO;
8 } else {
9 M = F (s) ∧ B(s);
10 careSet = F (s) ∧ ¬(M ∨ s);
11 TrimTransient(Q, careSet, T , PREFIX);
12 (R, TR) = FindTSCCs(Q, careSet);
13 if (s /∈ M)
14 TR = TR ∨ s;
15 TU = B(s) ∧ ¬M ;
16 T = TR ∨ TU ;
17 }
18 return (M,R, T, reached,O);

}
Figure 4: Finding livelock.

Figure 4 shows the procedure to perform our new state
classification. As explained in Section 3.1, we find main
group (M), transient group (T), and livelock groups (R)
from the given initial state (s) within the given care states
(S). FindLivelock starts computing forward set F (s) and
backward set B(s) in Line 1 and 2. In Line 3, reached is the
reached states from s in S. If F (s) ⊆ B(s) in Line 4, there
is no livelock in S. In this case, F (s) becomes the main
group and both R and T are set to empty in Line 5-7. If
F (s) * B(s) in Line 8, there must exist at least one livelock
group. In this case, M is computed by intersecting F (s) and
B(s) in Line 9. careSet is set to a subset of F (s) in Line
10. The lasso prefix states in careSet are trimmed out in

Line 11. TR represents the set of transient states that are
reachable from s. In Line 12, R and TR are computed by
calling FindTSCCs with careSet. If s /∈ M (means that
the main group is empty), s is added to TR in Line 13-14.
TU represents the set of transient states that are unreachable
from s and TU is computed in Line 15. T is computed by
union of TR and TU in Line 16.

3.3 Multiple Initial States
It is possible for a design to have multiple initial states

when some of the state variables do not have concrete initial
values. In the presence of multiple initial states, finding
livelock groups has to be devised correctly to avoid false
positives and redundant computations.

Figure 5 shows an example with multiple initial states.
In this example, there are six states, S = {a, b, c, d, e, f}.
There are two SCCs, {a, b, c} and {d, e, f}. We can see
that {d, e, f} is a TSCC. a and d are initial states, I =
{a, d}, as shown with thick circles. Suppose that we com-
pute livelock by calling FindLivelock(Q,S, I). Then, we
get F (I) = B(I) = M = {a, b, c, d, e, f} and R = {} which
is not correct since there is a reachable TSCC. Now, let
us try to call FindLivelock for each single initial state.
First for the initial state a, we get F (a) = {a, b, c, d, e, f}
and B(a) = {a, b, c}. This gives us Ma = {a, b, c} and
Ra = {d, e, f}. There is a livelock group Ra for the initial
state a. Now, for the initial state d, F (d) = {d, e, f} and
B(d) = {a, b, c, d, e, f}. This gives us Md = {d, e, f} and
Rd = {} and TU = {a, b, c}. There is no livelock group for
the initial state d. Therefore, we can see that livelock check-
ing has to be applied for each single initial state separately
in the presence of multiple initial states.

a

c

b d e

f

Figure 5: Multiple initial states.

Theorem 3. When there are two initial states (i0 and
i1), if i1 is included in the reached states from i0, the livelock
groups from i1 are a subset of the livelock groups from i0.

Proof. Since i1 is included in the reached states from
i0, i1 is in either main, transient, or livelock groups from
i0. When i1 is in the main group, the same livelock groups
from i1 are obtained. When i1 is in the transient group, all
or a subset of the livelock groups i1 is obtained. When i1
is in one of the livelock groups, the livelock group including
i1 becomes the main group from i1, and no livelock group
exists from i1 since the other livelock groups from i0 become
unreachable TSCCs from i1. From the above three cases, no
new livelock group is obtained from i1 compared to the ones
from i0. Therefore, the livelock groups from i1 are a subset
of the livelock groups from i0.

Theorem 3 says that when there is large number of initial
states, we can skip livelock checking for any initial states
that are already in the forward sets of other initial states.
In Figure 5, livelock checking for the initial state d can be
skipped because of d ∈ F (a), assuming that a is used first.
However, there is an order dependency on which initial state
is used first. If d is used first, we still need to run live-
lock checking with a. In practice, the number of calls to

49

FindLivelock is greatly reduced because of Theorem 3 in
the presence of multiple initial states.
Figure 6 is the top-level procedure that checks livelock

with multiple initial states. CheckLivelock takes transition
relation(Q), a set of states(S), a set of initial states(I), and
a concrete machine(C) as procedure inputs. The use of C
is explained in Section 4. CheckLivelock first finds live-
lock groups in the reachable states in Line 1-17 and then it
finds TSCCs in the unreachable states in Line 18-23. The
while loop (Line 6-17) performs livelock checking for a cur-
rent initial state s until all initial states are covered with
iteration index k. For this, remaining is initially set to
I in Line 3 and updated by eliminating the newly reached
states reachedk from remaining in Line 13. reached is the
reached states from all initial states. reached is initially set
to ZERO in Line 1 and updated by adding reachedk that is
the reached states from s in Line 12. Then, the next initial
state is chosen from remaining in Line 15. TU is the union
of unreachable transient states from each initial state. TU is
initially set to ZERO in Line 2 and updated by adding the
unreachable states of Tk in Line 14. For the current initial
state s, FindLivelock is called in Line 7. |Rk| represents
the number of livelock groups in Rk in Line 8. For each
Rj

k, a trace tracejk is generated in Line 9 and the livelock
is reported with the trace in Line 10. Generating trace is
explained in Section 4.2 and reporting livelock is explained
in Section 4.3.

CheckLivelock(Q, S, I, C) {
1 reached = ZERO;
2 TU = ZERO;
3 remaining = I;
4 k = 0;
5 s = PickOneState(I);
6 while (s ̸= ZERO) {
7 (Mk, Rk, Tk, reachedk, Ok) = FindLivelock(Q, S, s);
8 for (j = 0; j < |Rk|; j++) {
9 tracejk = GenerateTrace(C, Rj

k, s, Ok);

10 ReportLivelock(s, Mk, R
j
k, Tk, trace

j
k);

11 }
12 reached = reached ∨ reachedk;
13 remaining = remaining ∧ ¬reachedk;
14 TU = TU ∨ (Tk ∧ ¬reachedk);
15 s = PickOneState(remaining);
16 k++;
17 }
18 careSet = ¬(reached ∨ TU);
19 if (careSet ̸= ZERO) {
20 Rk = FindTSCCs(Q, careSet);
21 for (j = 0; j < |Rk|; j++)

22 ReportUnreachLivelock(Rj
k);

23 }
}

Figure 6: Checking livelock.

Once all reachable livelock groups are found, we next find
unreachable TSCCs. We set the care states careSet to the
negation of all visited states so far in Line 18, then call
FindTSCCs with careSet in Line 20. If there is any un-
reachable TSCC, the TSCC is reported in Line 22.

4. LIVELOCK CHECKING ON FSM
To check whether a livelock exists in a design or not, the

checking should be done on the whole design. However, this
is infeasible due to the size of the design in practice. Thus,
we propose a practical method for checking livelock on FSMs
on the design.
Even when we check livelock on an FSM, the entire COI

logic of the FSM must be considered in order to get an ex-
act result on livelock. However, this is still computationally
very expensive or not feasible, in most real designs. Thus, we

propose a framework for abstraction-based livelock checking
on an abstracted COI of the FSM. Once we find a livelock on
the abstract machine, we justify whether the livelock exists
on the concrete machine. Notice that a livelock on the ab-
stract machine can be mapped into more than one livelock
on the concrete machine.

Figure 7 shows how an abstract machine is obtained from
the COI of an FSM. Suppose an FSM that has two state
variables f and g. Then, we compute the COI of the FSM.
Suppose that there are state variables {a, b, c, d, e} in the
COI of the FSM. The size of the abstract machine is pre-
defined and let us suppose that the size is N . Then, a set
of influential latches from the COI is computed from the
FSM variables. The minimum abstract machine is the FSM
itself and the maximum abstract machine is the concrete
machine. In this example, N=4 and we get the abstract
machine {f, g, d, e}.

g
f

Concrete Machine

FSM
d

e

Abstract Machine

a

b
c

COI of FSM

Figure 7: Abstract machine.

Theorem 4. If any state in a livelock group on an ab-
stract machine is reachable from the initial state on the con-
crete machine, the livelock exists on the concrete machine.

Proof. Since the abstraction is an over-approximation,
the set of all transitions on the abstract machine is a superset
of the set of all transitions on the concrete machine. Since
there is no path from any state in the livelock group to any
state in the main group on the abstract machine, there is
still no path from any projected states of the livelock group
on the concrete machine to any projected states of the main
group on the concrete machine. Now, suppose that the live-
lock does not exist on the concrete machine. In order for the
livelock not to exist on the concrete machine, the only con-
dition is that there is no path from the projected main group
to the projected livelock group on the concrete machine. In
other words, the projected livelock group has to be unreach-
able from the initial state. However, this contradicts the
assumption that any state of the livelock group is reachable
from the initial state on the concrete machine. Therefore,
the livelock group still exists on the concrete machine.

Thanks to Theorem 4, this abstraction-based livelock finds
a livelock on small abstract machine using BDD-based sym-
bolic method, then justifies the existence of the livelock on
the concrete machine by trace concretization in Section 4.2,
by using SAT techniques that can handle large designs. The
abstraction-based livelock checking is an incomplete method
in the sense that it does not provide the proof of no livelock
unless the checking is performed on a concrete machine. No
livelock on an abstract machine does not guarantee no live-
lock on the concrete machine. However, the abstraction-
based livelock checking enables finding real livelock errors
on industrial large designs.

4.1 Causality Checking
Let V be the set of state variables in an abstract machine

for livelock checking. Suppose that R(V) is the reached
states in the abstract machine and L(V) is a livelock group

50

containing a TSCC. Also, suppose that v is a state variable
in V . We are interested in whether v contributes to the
livelock as in Definition 4. This is called variable causality.

Definition 4. When a livelock exists in the abstract ma-
chine, a variable v in V contributes to the livelock if the live-
lock disappears by eliminating v from the abstract machine.
In other words, there is no livelock in another abstract ma-
chine that is composed of the variables, V \v.

Equation 1 shows a condition for existence of livelock.

L(V) ⊂ R(V) (1)

Now, let R̃ be the quantified reached states and L̃ be the
quantified livelock states with respect to a state variable v,
as shown in Equation 2 and 3.

R̃(V \v) = ∃v . R(V) (2)

L̃(V \v) = ∃v . L(V) (3)

Then, it is determined by Equation 4 to check whether
the variable v contributes to the livelock. Theorem 5 says
that if Equation 4 holds, v contributes to the livelock.

L̃(V \v) ⊂ R̃(V \v) (4)

Theorem 5. When a livelock group is found on an ab-
stract machine (L(V) ⊂ R(V)), if L̃(V \v) ⊂ R̃(V \v) holds
for a variable v, the variable v contributes to the livelock.

Proof. Let M1 be the machine consisting of V and sup-
pose that a livelock group exists in M1. Let M2 be the ma-
chine consisting of (V \v) by eliminating v from M1. Also,
let T1 (T2) be the set of transitions in M1 (M2), respectively.
Since M2 is an over-approximated machine from M1, M2 has
more transitions than M1 (T1 ⊂ T2). Let Td be the differ-
ence between T1 and T2. If there is any transition (in Td)
that makes a path from any state in the livelock to any state
in the main group in M2, the livelock group merges into the
main group and both groups become a single SCC, yielding
L̃(V \v) = R̃(V \v). Thus, M2 becomes a machine without
the livelock. This means that v is a necessary variable to
have the livelock in M1. Therefore, if L̃(V \v) = R̃(V \v), v
contributes to the livelock.

This causality checking can also be applied to a set of
variables, especially with FSM variables, in order to report
whether the livelocks are related with the FSM. Let F be the
set of variables in an FSM and C be the set of variables in the
COI of the FSM. Suppose that R(F,C) is the reached states
in the abstract machine and L(F,C) is a livelock group con-
taining a TSCC. The quantified reached states and the quan-
tified livelock states are computed in Equation 5 and 6 with
respect to the FSM variables, respectively.

R̃(C) = ∃F . R(F,C) (5)

L̃(C) = ∃F . L(F,C) (6)

Then, Equation 7 shows the causality checking with the
FSM variables to check whether the FSM variables con-
tribute to the livelock.

L̃(C) = R̃(C) (7)

4.2 Trace concretization
Once a livelock group is found on an abstract machine, we

need to justify whether the livelock group is reachable on the
concrete machine. This can be done by the following three
steps. The first step is to pick a target state in the livelock
group. The target state is chosen randomly from the livelock
group, but is one of the closest states to the initial states by

using the onion rings Ok in Figure 6. The second step is to
generate an abstract trace. Starting from the target state,
an abstract trace can be computed by applying BDD-based
pre-image computation iteratively until the initial state is
reached. The third step is to generate a concrete trace by
making a BMC (Bounded Model Checking [2]) problem from
the abstract trace, in order to see whether the livelock group
is reachable on the concrete machine. An efficient approach
for concretization was proposed in [18]

4.3 Reporting Livelock
Once a concrete trace is generated for a livelock group,

the livelock is real on the concrete machine. We report the
livelock group with the state classification mentioned in Sec-
tion 3.1. A livelock group is reported with its initial state,
the main group, transient group, and the unreachable states
in terms of the number of states and the percentage in each
group on the abstract machine.

By looking at the transient and livelock groups, we can
see what fraction of the state space is in problematic zone.
A good design is expected to have only one main group per
one initial state without any transient and livelock groups,
unless the design has an intended reset sequence to a normal
mode.

5. TOGGLE DEADLOCK CHECKING
There is another important design property, called toggle

deadlock that is related to livelock. A livelock may occur for
multiple state variables of a design, whereas a toggle dead-
lock may occur on a single state variable. A state variable
has a toggle deadlock if the variable initially toggles, but
the variable gets stuck at a constant value after a certain
number of cycles.

Figure 8 shows an example of toggle deadlock. There are
two state variables {a, b} and four states {s0, s1, s2, s3} as in
the example. Provided that s0 is the initial state, the main
group is {s0, s1} and the livelock group is {s2, s3}. Once the
state transition reaches to s2 that is a state in the livelock
group, the value of b gets stuck at 1, whereas a still toggles.
Thus, we say that b has a toggle deadlock.

s s1 2

a=0, b=0 a=0, b=1
0 3ss

a=1, b=0 a=1, b=1

Figure 8: Toggle deadlock.

Theorem 6. If there is no STSCC in a design, there is
no toggle deadlock on any variable.

Proof. To be a toggle deadlock, a variable is supposed to
toggle at a cycle and to hold the value forever from the cycle.
No STSCC implies that there is only main group in the
design. If a variable appears as constant in the main group,
the variable is a constant. However, the main group does not
have any prefix behavior. This means it is not possible for
the variable to get toggled before the main group. Therefore,
no STSCC implies no toggle deadlock.

Theorem 6 shows that toggle deadlock occurs in the pres-
ence of a livelock. It is also possible that there is no toggle
deadlock on a design that has a livelock. Thus, toggle dead-
lock on a state variable can be computed by two steps. First,

51

Statistics Results
Design L I F T COI N Llk Dlk New1 New2 TraceGen

Time Mem Ops Time Mem Ops Time Len

D1 1163 1330 7 - 632 30 0 - 16:20 107.1 44 15:31 107.9 41 - -
60 0 - 41:11 136.7 66 41:31 137.7 66 - -
90 0 - 2:30:33 224.1 81 2:24:50 224.3 81 - -

120 - - time-out (> 24h) time-out (> 24h) - -
D2 385 352 25 - 68 30 0 - 0:01 21.0 12 0:01 21.1 12 - -

60 0 - 0:40 38.7 28 0:40 38.7 28 - -
68 12032 - 4:47:52 95.7 386439 0:53:58 96.5 70329 - -

D3-F1 32541 912 2 - 28941 30 1 - 0:49 140.4 54 0:49 140.5 55 6:37 66
D3-F2 32541 912 4 - 28930 4 1 - 0:09 129.1 9 0:09 129.1 12 1:54 14

- 4 28930 30 - 1 1:31 132.8 168 1:31 132.8 172 2:11 14

Table 1: Experimental results.

we find STSCCs on an abstract machine from the state vari-
able. The abstract machine is made in the same way as in
livelock checking on FSM. Secondly, we evaluate the value
of the state variable in the livelock if the livelock exists.
Figure 9 shows the procedure that checks toggle deadlock

on a given state variable t. CheckToggleDeadlock takes
transition relation (Q), a set of states (S), a set of initial
states (I), a concrete machine (C), and the state variable
(t) as procedure inputs. CheckToggleDeadlock is similar
to CheckLivelock in Figure 6. For each reachable livelock
group Rj

k in Line 6, TestToggleDeadlock checks whether the
value of t toggles or not in the livelock group and returns dlk
and c in Line 7. dlk represents whether the state variable is
in toggle deadlock or not, and c is the constant value (0 or
1) in the case of toggle deadlock.

CheckToggleDeadlock(Q, S, I, C, t) {
1 remaining = I;
2 k = 0;
3 s = PickOneState(I);
4 while (s ̸= ZERO) {
5 (Rk, reachedk, Ok) = FindLivelock(Q, S, s);
6 for (j = 0; j < |Rk|; j++) {
7 (dlk, c) = TestToggleDeadlock(Rj

k, t);
8 if (dlk) {
9 tracejk = GenerateTrace(C, Rj

k, s, Ok);

10 ReportToggleDeadlock(s, Rj
k, trace

j
k, c);

11 }
12 }
13 remaining = remaining ∧ ¬reachedk;
14 s = PickOneState(remaining);
15 k++;
16 }

}
Figure 9: Checking toggle deadlock.

6. EXPERIMENTAL RESULTS
We have implemented the proposed livelock checking and

toggle deadlock checking algorithms. Table 1 shows our ex-
perimental results on livelock and toggle deadlock checking,
generated on a 1.4 GHz Intel processor machine with 4 GB
memory running Red Hat Linux.
The first column lists the design names. The next five

columns present the statistics on the designs, in terms of the
number of latches (L), the number of inputs (I), the number
of latches in FSM (F), the number of toggle signals to check
(T), and the number of latches in the COI of either FSM
and a toggle signal (COI). The next three columns show the
results on livelock and toggle deadlock checking. The col-
umn with N shows how many latches were in the abstract
machine. The column with Llk shows how many livelock
groups are found and the column with Dlk shows how many
toggle deadlock are found. The next six columns compare
the performance between two methods (New1 and New2),
in terms of time(T ime), memory(Mem), and the number of

image/pre-image computations(Ops). New1 is the proposed
method without the trimming technique, whereas New2 is
the proposed method with the trimming technique. The
times are in the form of hh:mm:ss and the memory con-
sumptions are in M-byte. The final two columns(TraceGen)
show the results on trace generation on concrete machine for
the livelock or toggle deadlock found by New2, and T ime
shows the time spent for trace generation and Len shows
the trace length.

We have chosen 3 industrial designs (D1, D2, and D3).
For each design, we have run livelock or toggle deadlock
checking on several sizes of abstract machines with the mul-
tiples of 30 latches. We have set the maximum run time to
24 CPU hours.

In D1, there is one FSM automatically extracted. The
FSM consists of 7 latches and contains 632 latches in its COI.
We can see that the run time is exponentially increased,
depending on the size of the abstract machine. On this
design, the livelock checking became infeasible whenN=120.

In D2, there is also one FSM that was user-specified. The
FSM consists of 25 latches and contains only 68 latches in
its COI. This design has a livelock group. However, the
livelock was not detected when N=30 and N=60. The live-
lock was detected only when all the latches in the COI were
included in the abstract machine. In other words, the ab-
stract machine is the concrete machine at the FSM point of
view. Since the livelock was found on the concrete machine,
trace concretization is not required since the abstract trace
in Section 4.2 is already a concrete trace.

D2 is the only design showing a significant performance
difference between New1 and New2 in the table. This is be-
cause this design has many transient states as well as many
livelock groups. In this case, the trimming technique signif-
icantly reduced the number of image/pre-image operations
from 386K to 70K (5.5X reduction) that gave big speed-up
from 5 hours to 1 hour (5X speed-up). This shows that the
trimming technique helps the performance when there are
many transient states. When there is no transient states,
the trimming technique becomes a pure overhead as shown
in D3. However, the overhead is almost negligible from the
experiment.

In D3, there are two FSMs (F1 and F2). F1 is composed
of 2 latches and a livelock was found with N=30 within 49
seconds. The livelock was justified by trace concretization
that took 397 seconds, and the trace length was 66. F2 is
composed of 4 latches and a livelock was found with N=4
(the FSM itself) in 9 seconds. The livelock was also justi-
fied by trace concretization that took 114 seconds, and the
trace length was 14. We have also tried the toggle dead-

52

lock checking on F2 separately from the livelock checking.
A toggle deadlock was found in 90 seconds and the concrete
trace was generated in 131 seconds. D3 shows the value of
abstraction-based livelock and toggle deadlock checking.
Table 2 shows a comparison on finding all SCCs with four

algorithms (XB [28], Lockstep [3], Skeleton [12], IXB [20])
on the design D2 from Table 1. In this design, the number of
recurrent states is 2.07e8 and the number of transient states
is 1.2e6 that is only 0.6% of all states. However, it turned out
that how to handle these transient states efficiently is the key
factor in the performance. One main difference between XB
and IXB is that IXB trims out those transient states as much
as possible. This trimming technique makes the IXB method
outperform on this design: faster in time (more than 15X)
and fewer number of image operations (more than 10X) than
the other methods. This explains why New2 outperformed
onD2 in Table 1. Table 2 also shows why livelock checking is
done by finding TSCCs instead of SCCs. Finding all livelock
groups took 54 minutes, whereas finding all SCCs took 100
minutes (2X) even with IXB.

Method Time Memory Ops SCCs States

XB 84:07:56 98.2 1013333
Lockstep 45:55:53 237.3 2590724 19458 2.08e8
Skeleton 26:01:54 266.5 2609008
IXB 1:39:47 92.5 102990

Table 2: Finding all SCCs in D2.

7. CONCLUSIONS
We have presented a framework for abstraction-based live-

lock and toggle deadlock checking, in order to handle large
designs in practice. Since exact livelock and toggle deadlock
checking is infeasible on real designs directly, our approach
is to check livelock and toggle deadlock on abstract machine
of either an FSM or a toggle signal. Once we find a livelock
or toggle deadlock, we justify the livelock or toggle deadlock
on the concrete machine by concretizing the abstract trace
on the concrete machine.
Even though the proposed approach does not prove the

non-existence of livelock or toggle deadlock on a design un-
less the design is small enough to handle, this approach finds
livelocks or toggle deadlocks on the design if there exists.
To the best of our knowledge, it is the first approach to

use the abstraction-based livelock checking and also the first
approach for checking toggle deadlock. The experimental re-
sults showed that the abstraction-based approach finds live-
lock errors on the real designs.
As future work, we are interested in improving the con-

cretization, finding more accurate influential latches, and
optimizing the computations with multiple FSMs or toggle
signals by considering the overlaps in their COIs.

8. REFERENCES
[1] A. Biere, C. Artho, and V. Schuppan. Liveness checking as

safety checking. In International Workshop in Formal
Methods for Industrial Critical Systems, pages 160–177, 2002.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Fifth International Conference on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS’99), pages 193–207, Amsterdam, The
Netherlands, Mar. 1999. LNCS 1579.

[3] R. Bloem, H. Gabow, and F. Somenzi. An algorithm for
strongly connected component analysis in n log n symbolic
steps. In Formal Methods in Computer Aided Design, pages
37–54, 2000.

[4] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers,
C-35(8):677–691, Aug. 1986.

[5] M. Case, H. Mony, J. Baumgartner, and R. Kanzelman.
Enhanced verification by temporal decomposition. In Formal
Methods in Computer Aided Design, pages 37–54, 2009.

[6] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi.
Automatic state space decomposition for approximate fsm
traversal based on circuit analysis. IEEE Transactions on
Computer-Aided Design, 15(12):1451–1464, Dec. 1996.

[7] O. Coudert and J. C. Madre. A unified framework for the
formal verification of sequential circuits. In Proceedings of the
International Conference on Computer-Aided Design, pages
126–129, Nov. 1990.

[8] O. G. E. M. Clarke and D. Peled. Model Checking. The MIT
Press, 1999.

[9] N. Een and N. Sorensson. MiniSat.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat.

[10] E. A. Emerson and C. Lei. Modalities for model checking:
Branching time logic strikes back. Science of Computer
Programming, 8:275–306, 1987.

[11] E. A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositional mu-calculus. In Proceedings of
the First Annual Symposium of Logic in Computer Science,
pages 267–278, June 1986.

[12] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly
connected components in a linear number of symbolic steps. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 573–582, 2003.

[13] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian
analysis of large finite state machines. IEEE Transactions on
Computer-Aided Design, 15(12):1479–1493, Dec. 1996.

[14] R. Hojati, H. Touati, R. P. Kurshan, and R. K. Brayton.
Efficient ω-regular language containment. In Computer Aided
Verification, pages 371–382, Montréal, Canada, June 1992.

[15] R. P. Kurshan. Computer-Aided Verification of Coordinating
Processes. Princeton University Press, Princeton, NJ, 1994.

[16] L. Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering,
SE-3(2):125–143, Mar. 1977.

[17] Y. Matsunaga, P. C. McGeer, and R. K. Brayton. On
computing the transitive closure of a state transition relation.
In Proceedings of the Design Automation Conference, pages
260–265, June 1993.

[18] K. Nanshi and F. Somenzi. Constraints in one-to-many
concretization for abstraction refinement. In Proceedings of the
Design Automation Conference, pages 569–574, 2009.

[19] S. Qadeer, R. K. Brayton, V. Singhal, and C. Pixley. Latch
redundancy removal without global reset. In Proceedings of the
International Conference on Computer Design, pages
432–439, 1996.

[20] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of
symbolic algorithms for the computation of fair cycles. In
W. A. Hunt, Jr. and S. D. Johnson, editors, Formal Methods
in Computer Aided Design, pages 143–160. Springer-Verlag,
Nov. 2000. LNCS 1954.

[21] V. Singhal. Design replacements for sequential circuits. Ph.D.
dissertation, University of California at Berkeley, 1996.

[22] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton. Theory of
safe replacements for sequential circuits. IEEE Transactions
on Computer-Aided Design, 20(2):249–265, Feb. 2001.

[23] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing, 1:146–160, 1972.

[24] H. J. Touati, R. K. Brayton, and R. P. Kurshan. Testing
language containment for ω-automata using BDD’s.
Information and Computation, 118(1):101–109, Apr. 1995.

[25] M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First
Symposium on Logic in Computer Science, pages 322–331,
Cambridge, UK, June 1986.

[26] T.-H. Wang and T. Edsall. Practical FSM analysis for verilog.
In IVC-VIUF ’98: Proceedings of the International Verilog
HDL Conference and VHDL International Users Forum,
pages 52–58, 1998.

[27] A. Xie and P. A. Beeral. Efficient state classification of
finite-state markov chains. IEEE Transactions on
Computer-Aided Design, 17(12):1334–1339, Dec. 1998.

[28] A. Xie and P. A. Beeral. Implicit enumeration of strongly
connected components and an application to formal
verification. IEEE Transactions on Computer-Aided Design,
19(10):1225–1230, Oct. 2000.

53

DIFTS13 Keyword Index

Keyword Index

abstraction 4

abstraction-based 46

assertion 38

Boolector 28

Data-path equivalence checking 9

deadlock checking 46

dynamic verification 38

IC3 19

Lambda 28

Lemmas on Demand 28

livelock checking 46

Model Checking 19

modelchecking 4

Polynomial equivalence checking 9

QF BV SMT solving 9

reparameterization 4

SAT solver 19

SMT 28

synthesis 4

systemC 38

verification 4

DIFTS13 Author Index

Author Index

Biere, Armin 28

Brayton, Robert 9

Cabodi, Gianpiero 19

Case, Michael 9

Cleaveland, Rance 1

Dutta, Sonali 38

Een, Niklas 4

Fujita, Masahiro 2

Goswami, Dhiraj 3

Harer, Kevin 46

Long, Jiang 9

Mishchenko, Alan 4, 19

Moon, In-Ho 46

Niemetz, Aina 28

Palena, Marco 19

Preiner, Mathias 28

Tabakov, Deian 38

Vardi, Moshe Y. 38

	frontpage
	Preface
	difts13Proceedings
	frontpage
	Preface
	pc
	reviewers
	toc
	invited_paper_1
	invited_paper_2
	invited_paper_3
	paper_1
	paper_3
	paper_5
	paper_7
	Introduction
	Preliminaries
	-terms in Boolector
	-reduction
	Full -reduction
	Partial -reduction

	Decision Procedure
	Formula Abstraction
	Consistency Checking
	Lemma generation

	Experiments
	Conclusion
	Acknowledgements
	References

	paper_8
	paper_10
	keyword_index
	author_index

