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Abstract—We generalize the lemmas on demand de-
cision procedure for array logic as implemented in
Boolector to handle non-recursive and non-extensional
lambda terms. We focus on the implementation aspects
of our new approach and discuss the involved algorithms
and optimizations in more detail. Further, we show how
arrays, array operations and SMT-LIB v2 macros are
represented as lambda terms and lazily handled with
lemmas on demand. We provide experimental results that
demonstrate the effect of native lambda support within
an SMT solver and give an outlook on future work.

I. INTRODUCTION

The theory of arrays as axiomatized by Mc-
Carthy [14] enables us to reason about memory (com-
ponents) in software and hardware verification, and
is particularly important in the context of deciding
satisfiability of first order formulas w.r.t. first order
theories, also known as Satisfiability Modulo Theories
(SMT). However, it is restricted to array operations on
single array indices and lacks support for efficiently
modeling operations such as memory initialization and
parallel updates (memset and memcpy in the standard
C library).

In 2002, Seshia et al. [4] introduced an approach to
overcome these limitations by using restricted λ -terms
to model array expressions (such as memset and mem-
cpy), ordered data structures and partially interpreted
functions within the SMT solver UCLID [17]. The
SMT solver UCLID employs an eager SMT solving
approach and therefore eliminates all λ -terms through
β -reduction, which replaces each argument variable
with the corresponding argument term as a preliminary
rewriting step. Other SMT solvers that employ a lazy
SMT solving approach and natively support λ -terms
such as CVC4 [1] or Yices [8] also treat them eagerly,
similarly to UCLID, and eliminate all occurrences of
λ -terms by substituting them with their instantiated
function body (cf. C-style macros). Eagerly eliminating
λ -terms via β -reduction, however, may result in an
exponential blow-up in the size of the formula [17].
Recently, an extension of the theory of arrays was
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proposed [10], which uses λ -terms similarly to UCLID.
This extension provides support for modeling memset,
memcpy and loop summarizations. However, it does
not make use of native support of λ -terms provided
by an SMT solver. Instead, it reduces instances in the
theory of arrays with λ -terms to a theory combination
supported by solvers such as Boolector [3] (without
native support for λ -terms), CVC4, STP [12], and
Z3 [6].

In this paper, we generalize the decision procedure
for the theory of arrays with bit vectors as intro-
duced in [3] to lazily handle non-recursive and non-
extensional λ -terms. We show how arrays, array op-
erations and SMT-LIB v2 macros are represented in
Boolector as λ -terms and introduce a lemmas on de-
mand procedure for lazily handling λ -terms in Boolec-
tor in detail. We summarize an experimental evaluation
and compare our results to solvers with SMT-LIB v2
macro support (CVC4, MathSAT [5], SONOLAR [13]
and Z3) and finally, give an outlook on future work.

II. PRELIMINARIES

We assume the usual notions and terminology of first
order logic and are mainly interested in many-sorted
languages, where bit vectors of different bit width cor-
respond to different sorts and array sorts correspond to a
mapping (τi⇒ τe) from index sort τi to element sort τe.
Our approach is focused primarily on the quantifier-free
first order theories of fixed size bit vectors, arrays and
equality with uninterpreted functions, but not restricted
to the above.

We call 0-arity function symbols constant symbols
and a, b, i, j, and e denote constants, where a and b are
used for array constants, i and j for array indices, and
e for an array value. For each bit vector of size n, the
equality =n is interpreted as the identity relation over bit
vectors of size n. We further interpret the if-then-else bit
vector term iten as ite(>, t,e) =n t and ite(⊥, t,e) =n e.
As a notational convention, the subscript might be
omitted in the following. We identify read and write
as basic operations on array elements, where read(a, i)
denotes the value of array a at index i, and write(a, i,e)



denotes the modified array a overwritten at position i
with value e. The theory of arrays (without extensional-
ity) is axiomatized by the following axioms, originally
introduced by McCarthy in [14]:

i = j→ read(a, i) = read(a, j) (A1)
i = j→ read(write(a, i,e), j) = e (A2)

i 6= j→ read(write(a, i,e), j) = read(a, j) (A3)
The array congruence axiom A1 asserts that accessing
array a at two equal indices i and j produces the
same element. The read-over-write Axioms A2 and A3
ensure a basic characteristic of arrays: A2 asserts that
accessing a modification to an array a at the index it
has most recently been updated (i), produces the value it
has been updated with (e). A3 captures the case when
a modification to an array a is accessed at an index
other than the one it has most recently been updated at
( j), which produces the unchanged value of the original
array a at position j. Note that we assume that all
variables a, i, j and e in axioms A1, A2 and A3 are
universally quantified.

From the theory of equality with uninterpreted func-
tions we primarily focus on the following axiom:

∀x̄, ȳ.
n∧

i=1

xi = yi→ f (x̄) = f (ȳ) (EUF)

The function congruence axiom (EUF) asserts that a
function evaluates to the same value for the same
argument values.

We only consider a non-recursive λ -calculus, as-
suming the usual notation and terminology, includ-
ing the notion of function application, currying and
β -reduction. In general, we denote a λ -term λx as
λx.t(x), where x is a variable bound by λx and t(x)
is a term in which x may or might not occur. We
interpret t(x) as defining the scope of bound variable
x. Without loss of generality, the number of bound
variables per λ -term is restricted to exactly one. Func-
tions with more than one parameter are transformed
into a chain of nested λ -terms by means of currying
(e.g. f (x,y) := x+ y is rewritten as λx . λy . x+ y). As
a notational convention, we will use λx̄ as a shorthand
for λx0 . . .λxk . t(x0, . . . ,xk) for k ≥ 0. We identify the
function application as an explicit operation on λ -terms
and interpret it as instantiating a bound variable (all
bound variables) of a λ -term (a curried λ -chain). We
interpret β -reduction as a form of function application,
where all formal parameter variables (bound variables)
are substituted with their actual parameter terms. We
will use λx̄[x0\a0, . . . ,xn\an] to indicate β -reduction of
a λ -term λx̄, where the formal parameters x0, . . . ,xn are
substituted with the actual argument terms a0, . . . ,an.

III. λ -TERMS IN BOOLECTOR

In contrast to λ -term handling in other SMT solvers
such as e.g. UCLID or CVC4, where λ -terms are
eagerly eliminated, in Boolector we provide a lazy λ -
term handling with lemmas on demand. We generalized
the lemmas on demand decision procedure for the
extensional theory of arrays introduced in [3] to handle
lemmas on demand for λ -terms as follows.

In order to provide a uniform handling of arrays
and λ -terms within Boolector, we generalized all arrays
(and array operations) to λ -terms (and operations on λ -
terms) by representing array variables as uninterpreted
functions (UF), read operations as function applica-
tions, and write and if-then-else operations on arrays
as λ -terms. We further interpret macros (as provided
by the command define-fun in the SMT-LIB v2 format)
as (curried) λ -terms. Note that in contrast to [3], our
implementation currently does not support extensional-
ity (equality) over arrays (λ -terms).

We represent an array as exactly one λ -term with
exactly one bound variable (parameter) and define its
representation as λ j . t( j). Given an array of sort (τi⇒
τe) and its λ -term representation λ j . t( j), we require
that bound variable j is of sort index τi and term t( j) is
of sort element τe. Term t( j) is not required to contain
j and if it does not contain j, it represents a constant λ -
term (e.g. λ j . 0). In contrast to SMT-LIB v2 macros,
it is not required to represent arrays with curried λ -
chains, as arrays are accessed at one single index at a
time (cf. read and write operations on arrays).

We treat array variables as UF with exactly one
argument and represent them as fa for array variable a.

We interpret read operations as function applica-
tions on either UF or λ -terms with read index i as
argument and represent them as read(a, i)≡ fa(i) and
read(λ j . t( j), i)≡ (λ j . t( j))(i), respectively.

We interpret write operations as λ -terms model-
ing the result of the write operation on array a
at index i with value e, and represent them as
write(a, i,e)≡ λ j . ite(i = j,e, fa( j)). A function appli-
cation on a λ -term λw representing a write operation
yields value e if j is equal to the modified index
i, and the unmodified value fa( j), otherwise. Note
that applying β -reduction to a λ -term λw yields the
same behaviour described by array axioms A2 and
A3. Consider a function application on λw(k), where
k represents the position to be read from. If k = i
(A2), β -reduction yields the written value e, whereas if
k 6= i (A3), β -reduction returns the unmodified value of
array a at position k represented by fa(k). Hence, these



axioms do not need to be explicitly checked during
consistency checking. This is in essence the approach
to handle arrays taken by UCLID [17].

We interpret if-then-else operations on arrays
a and b as λ -terms, and represent them as
ite(c,a,b)≡ λ j . ite(c, fa( j), fb( j)). Condition c yields
either function application fa( j) or fb( j), which repre-
sent the values of arrays a and b at index j, respectively.

In addition to the base array operations introduced
above, λ -terms enable us to succinctly model array
operations like e.g. memcpy and memset from the
standard C library, which we previously were not able
to efficiently express by means of read, write and ite
operations on arrays. In particular, both memcpy and
memset could only be represented by a fixed sequence
of read and write operations within a constant index
range, such as copying exactly 5 words etc. It was
not possible to express a variable range, e.g. copying n
words, where n is a symbolic (bit vector) variable.

With λ -terms however, we do not require a sequence
of array operations as it usually suffices to model a par-
allel array operation by means of exactly one λ -term.
Further, the index range does not have to be fixed and
can therefore be within a variable range. This type of
high level modeling turned out to be useful for applica-
tions in software model checking [10]. See also [17] for
more examples. For instance, the memset with signature
memset (a, i,n,e), which sets each element of array a
within the range [i, i+n[ to value e, can be represented
as λ j . ite(i≤ j∧ j < i+n,e, fa( j)). Note, n can be
symbolic, and does not have to be a constant. In the
same way, memcpy with signature memcpy (a,b, i,k,n),
which copies all elements of array a within the range
[i, i+n[ to array b, starting from index k, is represented
as λ j . ite(k ≤ j∧ j < k+n, fa(i+ j− k), fb( j)). As a
special case of memset, we represent array initialization
operations, where all elements of an array are initialized
with some (constant or symbolic) value e, as λ j . e.

Introducing λ -terms does not only enable us to model
arrays and array operations, but further provides support
for arbitrary functions (macros) by means of currying,
with the following restrictions: (1) functions may not
be recursive and (2) arguments to functions may not be
functions. The first restriction enables keeping the im-
plementation of λ -term handling in Boolector as simple
as possible, whereas the second restriction limits λ -term
handling in Boolector to non-higher order functions.
Relaxing these restrictions will turn the considered λ -
calculus to be Turing-complete and in general render
the decision problem to be undecidable. As future work
it might be interesting to consider some relaxations.
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Fig. 1: DAG representation of formula ψ1.

In contrast to treating SMT-LIB v2 macros as C-style
macros, i.e., substituting every function application with
the instantiated function body, in Boolector, we directly
translate SMT-LIB v2 macros into λ -terms, which are
then handled lazily via lemmas on demand. Formulas
are represented as directed acyclic graphs (DAG) of
bit vector and array expressions. Further, in this paper,
we propose to treat arrays and array operations as λ -
terms and operations on λ -terms, which results in an
expression graph with no expressions of sort array (τi⇒
τe). Instead, we introduce the following four additional
expression types of sort bit vector:
• a param expression serves as a placeholder variable

for a variable bound by a λ -term
• a lambda expression binds exactly one param ex-

pression, which may occur in a bit vector expression
that represents the body of the λ -term

• an args expression is a list of function arguments
• an apply expression represents a function application

that applies arguments args to a lambda expression
Example 1: Consider ψ1 ≡ f (i) = f ( j)∧ i 6= j with

functions f (x) := ite(x < 0,g(x),x), g(y) :=−y as de-
picted in Fig. 1. Both functions are represented as λ -
terms, where function g(y) returns the negation of y
and is used in function f (x), which computes the abso-
lute value of x. Dotted nodes indicate parameterized
expressions, i.e., expressions that depend on param
expressions, and serve as templates that are instantiated
as soon as β -reduction is applied.

In order to lazily evaluate λ -terms in Boolector we
implemented two β -reduction approaches, which we
will discuss in the next section in more detail.

IV. β -REDUCTION

In this section we discuss how concepts from the
λ -calculus have been adapted and implemented in



our SMT solver Boolector. We focus on reduction
algorithms for the non-recursive λ -calculus, which is
rather atypical for the (vast) literature on λ -calculus.
In the context of Boolector, we distinguish between
full and partial β -reduction. They mainly differ in
their application and the depth up to which λ -terms
are expanded. In essence, given a function application
λx̄(a0, . . . ,an) partial β -reduction reduces only the top-
most λ -term λx̄, whereas full β -reduction reduces λx̄
and every λ -term in the scope of λx̄.

Full β -reduction of a function application on λ -term
λx̄ consists of a series of β -reductions, where λ -term
λx̄ and every λ -term λȳ within the scope of λx̄ are in-
stantiated, substituting all formal parameters with actual
parameter terms. Since we do not allow partial function
applications, full β -reduction guarantees to yield a term
which is free of λ -terms. Given a formula with λ -terms,
we usually employ full β -reduction in order to eliminate
all λ -terms by substituting every function application
with the term obtained by applying full β -reduction
on that function application. In the worst case, full β -
reduction results in an exponential blow-up. However,
in practice, it is often beneficial to employ full β -
reduction, since it usually leads to significant simplifi-
cations through rewriting. In Boolector, we incorporate
this method as an optional rewriting step. We will use
λx̄[x0\a0, . . . ,xn\an]f as a shorthand for applying full
β -reduction to λx̄ with arguments a0, . . . ,an.

Partial β -reduction of a λ -term λx̄, on the other
hand, essentially works in the same way as what is
referred to as β -reduction in the λ -calculus. Given a
function application λx̄(a0, . . . ,an), partial β -reduction
substitutes formal parameters x0, . . . ,xn with the actual
argument terms a0, . . . ,an without applying β -reduction
to other λ -terms within the scope of λx̄. This has the
effect that λ -terms are expanded function-wise, which
we require for consistency checking. In the following,
we use λx̄[x0\a0, . . . ,xn\an]p to denote the application
of partial β -reduction to λx̄ with arguments a0, . . . ,an.

A. Full β -reduction

Given a function application λx̄(a0, . . . ,an) and a
DAG representation of λx̄. Full β -reduction of λx̄
consecutively substitutes formal parameters with actual
argument terms while traversing and rebuilding the
DAG in depth-first-search (DFS) post-order as follows.
1) Initially, we instantiate λx̄ by assigning arguments

a0, . . . ,an to the formal parameters x0, . . . ,xn.
2) While traversing down, for any λ -term λȳ in the

scope of λx̄, we need special handling for each
function application λȳ(b0, . . . ,bm) as follows.
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(a) Original formula ψ2.
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(b) Formula ψ ′2 after full β -reduction of ψ2.

Fig. 2: Full β -reduction of formula ψ2.

a) Visit arguments b0, . . . ,bm first, and obtain rebuilt
arguments b′0, . . . ,b

′
m.

b) Assign rebuilt arguments b′0, . . . ,b
′
m to λȳ and

apply β -reduction to λȳ(b′0, . . . ,b
′
m).

This ensures a bottom-up construction of the β -
reduced DAG (see step 3.), since all arguments
b′0, . . . ,b

′
m passed to a λ -term λȳ are β -reduced and

rebuilt prior to applying β -reduction to λȳ.
3) During up-traversal of the DAG we rebuild all

visited expressions bottom-up and require special
handling for the following expressions:
• param: substitute param expression yi with cur-

rent instantiation b′i
• apply: substitute expression λȳ(b0, . . . ,bm) with

λȳ[y0\b′0, . . . ,ym\b′m]f



We further employ following optimizations to improve
the performance of the full β -reduction algorithm.

• Skip expressions that do not need rebuilding
Given an expression e within the scope of a λ -term
λx̄. If e is not parameterized and does not contain
any λ -term, e is not dependent on arguments passed
to λx̄ and may therefore be skipped.

• λ -scope caching
We cache rebuilt expressions in a λ -scope to prevent
rebuilding parameterized expressions several times.

Example 2: Given a formula ψ2 ≡ f (i, j) = f (k, l)
and two functions g(x) := ite(x = i,e,2∗ x) and
f (x,y) := ite(y < x,g(x),g(y)) as depicted in Fig. 2a.
Applying full β -reduction to formula ψ2 yields formula
ψ ′2 as illustrated in Fig. 2b. Function application f (i, j)
has been reduced to ite( j ≥ i∧ i 6= j,2∗ j,e) and f (k, l)
to ite(l < k, ite(k = i,e,2∗ k), ite(l = i,e,2∗ l)).

B. Partial β -reduction

Given a function application λx̄(a0, . . . ,an) and a
DAG representation of λx̄. The scope of a partial β -
reduction βp(λx̄) is defined as the sub-DAG obtained
by cutting off all λ -terms in the scope of λx̄. Assume
that we have an assignment for arguments a0, . . . ,an,
and for all non-parameterized expressions in the scope
of βp(λx̄). The partial β -reduction algorithm substi-
tutes param expressions x0, . . . ,xn with a0, . . . ,an and
rebuilds λx̄. Similar to full β -reduction, we perform a
DFS post-order traversal of the DAG as follows.

1) Initially, we instantiate λx̄ by assigning arguments
a0, . . . ,an to the formal parameters x0, . . . ,xn.

2) While traversing down the DAG, we require special
handling for the following expressions:
• function applications λȳ(b0, . . . ,bm)

a) Visit arguments b0, . . . ,bm, obtain rebuilt ar-
guments b′0, . . . ,b

′
m.

b) Do not assign rebuilt arguments b′0, . . . ,b
′
m to

λȳ and stop down-traversal at λȳ.
• ite(c, t1, t2)

Since we have an assignment for all non-
parameterized expressions within the scope of
βp(λx̄), we are able to evaluate condition c. Based
on that we either select t1 or t2 to further traverse
down (the other branch is omitted).

3) During up-traversal of the DAG we rebuild all
visited expressions bottom-up and require special
handling for the following expressions:
• param: substitute param expression yi with cur-

rent instantiation b′i

2 1

1

2

2
2

2

1

2

3

13

1

1

1

2
1

1

1 2

2

1

2

21

3

2

ult

ite

eq

const

var
j

var
i

var
l

var
k

param

var
emul

args

ite

eq

apply

lambda

apply

args

ite

ult

apply

args

Fig. 3: Partial β -reduction of formula ψ2.

• if-then-else: substitute expression ite(c, t1, t2) with
t1 if c =>, and t2 otherwise

For partial β -reduction, we have to modify the first of
the two optimizations introduced for full β -reduction.
• Skip expressions that do not need rebuilding

Given an expression e in the scope of partial β -
reduction βp(λx̄). If e is not parameterized, in the
context of partial β -reduction, e is not dependent
on arguments passed to λx̄ and may be skipped.

Example 3: Consider ψ2 from Ex. 2. Applying partial
β -reduction to ψ2 yields the formula depicted in Fig. 3,
where function application f (i, j) has been reduced to
ite( j < i,e,g( j)) and f (k, l) to ite(l < k,g(k),g(l)).

V. DECISION PROCEDURE

The idea of lemmas on demand goes back to [7]
and actually represents one extreme variant of the lazy
SMT approach [16]. Around the same time, a related
technique was developed in the context of bounded
model checking [9], which lazily encodes all-different
constraints over bit vectors (see also [2]). In constraint
programming the related technique of lazy clause gen-
eration [15] is effective too.

In this section, we introduce lemmas on demand for
non-recursive λ -terms based on the algorithm intro-
duced in [3]. A top-level view of our lemmas on demand
decision procedure for λ -terms (DPλ ) is illustrated in
Fig. 4 and proceeds as follows. Given a formula φ ,
DPλ uses a bit vector skeleton of the preprocessed
formula π as formula abstraction αλ (π). In each itera-
tion, an underlying decision procedure DPB determines
the satisfiability of the formula abstraction refined by
formula refinement ξ , i.e., in DPB, we eagerly encode
the refined formula abstraction Γ to SAT and determine



procedure DPλ ( φ )
π ← preprocess(φ)
ξ ←>
loop

Γ← αλ (π)∧ξ

(r,σ)← DPB(Γ)
i f r = unsatisfiable re turn unsatisfiable
i f consistentλ (π,σ) re turn satisfiable
ξ ← ξ ∧αλ (lemmaλ (π,σ))

Fig. 4: Lemmas on demand for λ -terms DPλ .

its satisfiability by means of a SAT solver. As Γ is
an over-approximation of φ , we immediately conclude
with unsatisfiable if Γ is unsatisfiable. If Γ is satisfiable,
we have to check if the current satisfying assign-
ment σ (as provided by procedure DPB) is consistent
w.r.t. preprocessed formula π . If σ is consistent, i.e., if
it can be extended to a valid satisfying assignment for
the preprocessed formula π , we immediately conclude
with satisfiable. Otherwise, assignment σ is spurious,
consistentλ (π,σ) identifies a violation of the function
congruence axiom EUF, and we generate a symbolic
lemma lemmaλ (π,σ) which is added to formula re-
finement ξ in its abstracted form αλ (lemmaλ (π,σ)).

Note that in φ , in contrast to the decision procedure
introduced in [3], all array variables and array opera-
tions in the original input have been abstracted away
and replaced by corresponding λ -terms and operations
on λ -terms. Hence, various integral components of the
original procedure (αλ , consistentλ , lemmaλ ) have been
adapted to handle λ -terms as follows.

VI. FORMULA ABSTRACTION

In this section, we introduce a partial formula ab-
straction function αλ as a generalization of the ab-
straction approach presented in [3]. Analogous to [3],
we replace function applications by fresh bit vector
variables and generate a bit vector skeleton as for-
mula abstraction. Given π as the preprocessed input
formula φ , our abstraction function αλ traverses down
the DAG structure starting from the roots, and generates
an over-approximation of π as follows.
1) Each bit vector variable and symbolic constant is

mapped to itself.
2) Each function application λx̄(a0, . . . ,an) is mapped

to a fresh bit vector variable.
3) Each bit vector term t(y0, . . . ,ym) is mapped to

t(αλ (y0), . . . ,αλ (ym)).
Note that by introducing fresh variables for function
applications, we essentially cut off λ -terms and UF
and therefore yield a pure bit vector skeleton, which
is subsequently eagerly encoded to SAT.
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αλ (applyj)

eq

αλ (applyi)

eq

var
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Fig. 5: Formula abstraction αλ (ψ1).

Example 4: Consider formula ψ1 from Ex. 1, which
has two roots. The abstraction function αλ performs a
consecutive down-traversal of the DAG from both roots.
The resulting abstraction is a mapping of all bit vector
terms encountered during traversal, according to the
rules 1-3 above. For function applications (e.g. applyi)
fresh bit vector variables (e.g. αλ (applyi)) are intro-
duced, where the remaining sub-DAGs are therefore cut
off. The resulting abstraction αλ (ψ1) is given in Fig. 5.

VII. CONSISTENCY CHECKING

In this section, we introduce a consistency checking
algorithm consistentλ as a generalization of the con-
sistency checking approach presented in [3]. However,
in contrast to [3], we do not propagate so-called access
nodes but function applications and further check axiom
EUF (while applying partial β -reduction to evaluate
function applications under a current assignment) in-
stead of checking array axioms A1 and A2. Given a
satisfiable over-approximated and refined formula Γ,
procedure consistentλ determines whether a current
satisfying assignment σ (as provided by the under-
lying decision procedure DPB) is spurious, or if it
can be extended to a valid satisfying assignment for
the preprocessed input formula π . Therefore, for each
function application in π , we have to check both if
the assignment of the corresponding abstraction vari-
able is consistent with the value obtained by applying
partial β -reduction, and if axiom EUF is violated. If
consistentλ does not find any conflict, we immediately
conclude that formula π is satisfiable. However, if
current assignment σ is spurious w.r.t. preprocessed
formula π , either axiom EUF is violated or partial β -
reduction yields a conflicting value for some function
application in π . In both cases, we generate a lemma
as formula refinement. In the following we will equally
use function symbols f , g, and h for UF symbols and
λ -terms.

In order to check axiom EUF, for each λ -term and UF
symbol we maintain a hash table ρ , which maps λ -
terms and UF symbols to function applications. We
check consistency w.r.t. π by applying the following
rules.
I: For each f (ā), if ā is not parameterized,

add f (ā) to ρ( f )



C: For any pair s := g(ā), t := h(b̄) ∈ ρ( f ) check
n∧

i=0

σ(αλ (ai)) = σ(αλ (bi))→ σ(αλ (s)) = σ(αλ (t))

B: For any s := λȳ(a0, . . . ,an) ∈ ρ(λx̄) with
t := λx̄[x0\a0, . . . ,xn\an]p,
check rule P, if P fails, check eval(t) = σ(αλ (s))

P: For any s := λȳ(a0, . . . ,an) ∈ ρ(λx̄) with
t := g(b0, . . . ,bm) = λx̄[x0\a0, . . . ,xn\an]p,

if n = m ∧
n∧

i=0

ai = bi, propagate s to ρ(g)

Given a λ -term (UF symbol) f and a correspond-
ing hash table ρ( f ). Rule I, the initialization rule,
initializes ρ( f ) with all non-parameterized function
applications on f . Rule C corresponds to the function
congruence axiom and is applied whenever we add
a function application g(a0, . . . ,an) to ρ( f ). Rule B
is a consistency check w.r.t. the current assignment
σ , i.e., for every function application s in ρ( f ), we
check if the assignment of σ(αλ (s)) corresponds to
the assignment evaluated by the partially β -reduced
term λx̄[x0\a0, . . . ,xn\an]p. Finally, rule P represents a
crucial optimization of consistentλ , as it avoids unnec-
essary conflicts while checking B. If P applies, both
function applications s and t have the same arguments.
As function application s ∈ ρ(λx̄), rule C implies
that s = λx̄(a0, . . . ,an). Therefore, function applications
s and t must produce the same function value as
t := λx̄[x0\a0, . . . ,xn\an]p = λȳ[x0\a0, . . . ,xn\an]p, i.e.,
function application t must be equal to the result of
applying partial β -reduction to function application s.
Assume we encode t and add it to the formula. If DPB
guesses an assignment s.t. σ(αλ (t)) 6= σ(αλ (s)) holds,
we have a conflict and need to add a lemma. However,
this conflict is unnecessary, as we know from the start
that both function applications must map to the same
function value in order to be consistent. We avoid this
conflict by propagating s to ρ(g).

Figure 6 illustrates our consistency checking algo-
rithm consistentλ , which takes the preprocessed input
formula π and a current assignment σ as arguments, and
proceeds as follows. First, we initialize stack S with all
non-parameterized function applications in formula π

(cf. nonparam_apps(π)) and order them top-down,
according to their appearance in the DAG represen-
tation of π . The top-most function application then
represents the top of stack S, which consists of tuples
(g, f (a0, . . . ,an)), where f and g are initially equal and
f (a0, . . . ,an) denotes the function application propa-
gated to function g. In the main consistency checking

procedure consistentλ (π,σ)
S← nonparam_apps ( π )
whi le S 6= /0

(g, f (a0, . . . ,an))← pop ( S )
encode ( f (a0, . . . ,an) )
/∗ check r u l e C ∗ /
i f not congruent ( g, f (a0, . . . ,an) )

re turn ⊥
add ( f (a0, . . . ,an), ρ(g) )
i f is_UF ( g ) c o n t in u e
encode ( g )
/∗ check r u l e B ∗ /
t← g[x0\a0, . . . ,xn\an]p
i f assigned ( t )

i f σ(t) 6= σ(αλ ( f (a0, . . . ,an)))
re turn ⊥

e l i f t = h(a0, . . . ,an) /∗ check r u l e P ∗ /
push ( S, (h, f (a0, . . . ,an)) )
c o n t in u e

e l s e
apps← f resh apps(t)
f o r a ∈ apps

encode ( a )
i f eval ( t ) 6= σ(αλ ( f (a0, . . . ,an)))

re turn ⊥
f o r h(b0, . . . ,bm) ∈ apps

push ( S, (h, h(b0, . . . ,bm)) )
re turn >

Fig. 6: Procedure consistentλ in pseudo-code.

loop, we check rules C and B for each tuple as follows.
First we check if f (a0, . . . ,an) violates the function con-
gruence axiom EUF w.r.t. function g and return⊥ if this
is the case. Note that for checking rule C, we require an
assignment for arguments a0, . . . ,an, hence we encode
them on-the-fly. If rule C is not violated and function f
is an uninterpreted function, we continue to check the
next tuple on stack S. However, if f is a λ -term we
still need to check rule B, i.e., we need to check if the
assignment σ(αλ ( f (a0, . . . ,an))) is consistent with the
value produced by g[x0\a0, . . . ,xn\an]p. Therefore, we
first encode all non-parameterized expressions in the
scope of partial β -reduction βp(g) (cf. encode(g))
before applying partial β -reduction with arguments
a0, . . . ,an, which yields term t. If term t has an as-
signment, we can immediately check if it differs from
assignment σ(αλ ( f (a0, . . . ,an))) and return ⊥ if this is
the case. However, if term t does not have an assign-
ment, which is the case when t has been instantiated
from a parameterized expression, we have to compute
the value for term t. Note that we could also encode
term t to get an assignment σ(t), but this might add a
considerable amount of superfluous clauses to the SAT
solver. Before computing a value for t we check if rule
P applies and propagate f (a0, . . . ,an) to h if applicable.
Otherwise, we need to compute a value for t and
check if t contains any function applications that were
instantiated and not yet encoded (cf. fresh_apps(t))
and encode them if necessary. Finally, we compute



the value for t (cf. eval(t)) and compare it to the
assignment of αλ ( f (a0, . . . ,an)). If the values differ,
we found an inconsistency and return ⊥. Otherwise,
we continue consistency checking the newly encoded
function applications apps. We conclude with >, if all
function applications have been checked successfully
and no inconsistencies have been found.

A. Lemma generation

Following [3], we introduce a lemma generation
procedure lemmaλ , which generates a symbolic lemma
whenever our consistency checker detects an inconsis-
tency. Depending on whether rule C or B was violated,
we generate a symbolic lemma as follows. Assume
that rule C was violated by function applications s :=
g(a0, . . . ,an), t := h(b0, . . . ,bn) ∈ ρ( f ). We first collect
all conditions that lead to the conflict as follows.
1) Find the shortest possible propagation path ps (pt)

from function application s (t) to function f .
2) Collect all ite conditions cs

0, . . . ,c
s
j (ct

0, . . . ,c
t
l) on

path ps (pt) that were > under given assignment σ .
3) Collect all ite conditions cs

0, . . . ,c
s
k (ct

0, . . . ,c
t
m) on

path ps (pt) that were ⊥ under given assignment σ .
We generate the following (in general symbolic)
lemma:

j∧
i=0

cs
i ∧

k∧
i=0

¬cs
i ∧

l∧
i=0

ct
i ∧

m∧
i=0

¬ct
i ∧

n∧
i=0

ai = bi→ s = t

Assume that rule B was violated by a function
application s := λȳ(a0, . . . ,an) ∈ ρ(λx̄). We obtained
t := λx̄[x0\a0, . . . ,xn\an]p and collect all conditions that
lead to the conflict as follows.
1) Collect ite conditions cs

0, . . . ,c
s
j and cs

0, . . . ,c
s
k for s

as in steps 1-3 above.
2) Collect all ite conditions ct

0, . . . ,c
t
l that evaluated to

> under current assignment σ when partially β -
reducing λx̄ to obtain t.

3) Collect all ite conditions ct
0, . . . ,c

t
m that evaluated

to ⊥ under current assignment σ when partially β -
reducing λx̄ to obtain t.

We generate the following (in general symbolic)
lemma: j∧

i=0

cs
i ∧

k∧
i=0

¬cs
i ∧

l∧
i=0

ct
i ∧

m∧
i=0

¬ct
i → s = t

Example 5: Consider formula ψ1 and its prepro-
cessed formula abstraction αλ (ψ1) from Ex. 1. For the
sake of better readability, we will use λx and λy to
denote functions f and g, and further use ai and a j
as a shorthand for αλ (applyi) and αλ (applyj). Assume

we run DPB on αλ (ψ1) and it returns a satisfying
assignment σ such that σ(i) 6= σ( j), σ(ai) = σ(a j),
σ(i) < 0 and σ(ai) 6= σ(−i). First, we check con-
sistency for λx(i) and check rule C, which is not
violated as σ(i) 6= σ( j), and continue with checking
rule B. We apply partial β -reduction and obtain term
t := λx[x/i]p = λy(i) (since σ(i)< 0) for which rule P
is applicable. We propagate λx(i) to λy, check if λx(i)
is consistent w.r.t. λy, apply partial β -reduction, obtain
t := λy[y/i]p =−i and find an inconsistency according
to rule B: σ(ai) 6= σ(−i) but we obtained σ(ai) =
σ(−i). We generate lemma i < 0→ ai = −i. Assume
that in the next iteration DBP returns a new satisfying
assignment σ such that σ(i) 6= σ( j), σ(ai) = σ(a j),
σ(i)< 0, σ(ai) = σ(−i) and σ( j)> σ(−i). We first
check consistency for λx(i), which is consistent due to
the lemma we previously generated. Next, we check
rule C for λx( j), which is not violated since σ(i) 6=
σ( j), and continue with checking rule B. We apply
partial β -reduction and obtain term t := λx[x/ j]p = j
(since σ( j)> σ(−i) and σ(i)< 0) and find an incon-
sistency as σ(ai) = σ(−i), σ(ai) = σ(a j) and σ( j)>
σ(−i), but σ(a j) = σ( j). We then generate lemma
j > 0→ a j = j.

VIII. EXPERIMENTS

We applied our lemmas on demand approach for
λ -terms on three different benchmark categories: (1)
crafted, (2) SMT’12, and (3) application. For the crafted
category, we generated benchmarks using SMT-LIB v2
macros, where the instances of the first benchmark set
(macro blow-up) tend to blow up in formula size if
SMT-LIB v2 macros are treated as C-style macros.
The benchmark sets fisher-yates SAT and fisher-yates
UNSAT encode an incorrect and correct but naive im-
plementation of the Fisher-Yates shuffle algorithm [11],
where the instances of the fisher-yates SAT also tend
to blow up in the size of the formula if SMT-LIB
v2 macros are treated as C-style macros. The SMT’12
category consists of all non-extensional QF AUFBV
benchmarks used in the SMT competition 2012. For
the application category, we considered the instantia-
tion benchmarks1 generated with LLBMC as presented
in [10]. The authors also kindly provided the same
benchmark family using λ -terms as arrays, which is
denoted as lambda.

We performed all experiments on 2.83GHz Intel Core
2 Quad machines with 8GB of memory running Ubuntu
12.04.2 setting a memory limit of 7GB and a time limit
for the crafted and the SMT’12 benchmarks of 1200
seconds. For the application benchmarks, as in [10]

1http://llbmc.org/files/downloads/vstte-2013.tgz

http://llbmc.org/files/downloads/vstte-2013.tgz


Solver Solved TO MO Time Space
[103s] [GB]

m
ac

ro
bl

ow
-u

p Boolector 100 0 0 24.2 9.4
Boolectornop 100 0 0 18.2 8.4
Boolectorβ 28 49 23 91.5 160.0
CVC4 21 0 79 95.7 551.6
MathSAT 51 2 47 64.6 395.0
SONOLAR 26 74 0 90.2 1.7
Z3 21 0 79 95.0 552.2

fis
he

r-
ya

te
s

SA
T

Boolector 7 10 1 14.0 7.5
Boolectornop 4 13 1 17.3 7.0
Boolectorβ 6 1 11 15.0 76.4
CVC4 5 1 12 15.7 83.6
MathSAT 6 10 2 14.7 17.3
SONOLAR 3 14 1 18.1 6.9
Z3 6 12 0 14.8 0.2

fis
he

r-
ya

te
s

U
N

SA
T

Boolector 5 13 1 17.4 7.1
Boolectornop 4 14 1 18.2 6.9
Boolectorβ 9 0 10 12.1 72.0
CVC4 3 4 12 19.2 82.1
MathSAT 6 11 2 15.9 14.7
SONOLAR 3 15 1 19.2 6.8
Z3 10 9 0 11.2 2.2

TABLE I: Results crafted benchmark.

we used a time limit of 60 seconds. We evaluated
four different versions of Boolector: (1) our lemmas
on demand for λ -terms approach DPλ (Boolector),
(2) DPλ without optimization rule P (Boolectornop),
(3) DPλ with full β -reduction (Boolectorβ ), and (4)
the version submitted to the SMT competition 2012
(Boolectorsc12). For comparison we used the following
SMT solvers: CVC4 1.2, MathSAT 5.2.6, SONOLAR
2013-05-15, STP 1673 (svn revision), and Z3 4.3.1.
Note that we limited the set of solvers to those which
currently support SMT-LIB v2 macros and the theory
of fixed-size bit vectors. As a consequence, we did not
compare our approach to UCLID (no bit vector support)
and Yices, which both have native λ -term support, but
lack support for the SMT-LIB v2 standard.

As indicated in Tables I, II and III, we measured the
number of solved instances (Solved), timeouts (TO),
memory outs (MO), total CPU time (Time), and total
memory consumption (Space) required by each solver
for solving an instance. If a solver ran into a timeout,
1200 seconds (60 seconds for category application)
were added to the total time as a penalty. In case of a
memory out, 1200 seconds (60 seconds for application)
and 7GB were added to the total CPU time and total
memory consumption, respectively.

Table I summarizes the results of the crafted bench-
mark category. On the macro blow-up benchmarks,
Boolector and Boolectornop benefit from lazy λ -term
handling and thus, outperform all those solvers which
try to eagerly eliminate SMT-LIB v2 macros with a
very high memory consumption as a result. The only
solver not having memory problems on this bench-

Solver Solved TO MO Time Space
[103s] [GB]

SM
T

’1
2 Boolector 139 10 0 19.9 14.8

Boolectornop 134 15 0 26.3 14.5
Boolectorβ 137 11 1 21.5 22.7
Boolectorsc12 140 9 0 15.9 10.3

TABLE II: Results SMT’12 benchmark.

mark set is SONOLAR. However, it is not clear how
SONOLAR handles SMT-LIB v2 macros. Surprisingly,
on these benchmarks Boolectornop performs better than
Boolector with optimization rule P, which needs fur-
ther investigation. On the fisher-yates SAT benchmarks
Boolector not only solves the most instances, but re-
quires 107 seconds for the first 6 instances, for which
Boolectorβ , MathSAT and Z3 need more than 300
seconds each. Boolectornop does not perform as well
as Boolector due to the fact that on these benchmarks
optimization rule P is heavily applied. In fact, on these
benchmarks, rule P applies to approx. 90% of all prop-
agated function applications on average. On the fisher-
yates UNSAT benchmarks Z3 and Boolectorβ solve the
most instances, whereas Boolector and Boolectornop do
not perform so well. This is mostly due to the fact
that these benchmarks can be simplified significantly
when macros are eagerly eliminated, whereas partial
β -reduction does not yield as much simplifications.
We measured overhead of β -reduction in Boolector on
these benchmarks and it turned out that for the macro
blow-up and fisher-yates UNSAT instances the overhead
is negligible (max. 3% of total run time), whereas for
the fisher-yates SAT instances β -reduction requires over
50% of total run time.

Table II summarizes the results of running all
four Boolector versions on the SMT’12 benchmark
set. We compared our three approaches Boolector,
Boolectornop, and Boolectorβ to Boolectorsc12, which
won the QF AUFBV track in the SMT competition
2012. In comparison to Boolectorβ , Boolector solves 5
unique instances, whereas Boolectorβ solves 3 unique
instances. In comparison to Boolectorsc12, both solvers
combined solve 2 unique instances. Overall, on the
SMT’12 benchmarks Boolectorsc12 still outperforms
the other approaches. However, our results still look
promising since none of the approaches Boolector,
Boolectornop and Boolectorβ are heavily optimized yet.
On these benchmarks, the overhead of β -reduction in
Boolector is around 7% of the total run time.

Finally, Table III summarizes the results of the appli-
cation category. We used the benchmarks obtained from
the instantiation-based reduction approach presented
in [10] (instantiation benchmarks) and compared our



Solver Solved TO MO Time Space
[s] [MB]

in
st

an
tia

tio
n Boolector 37 8 0 576 235

Boolectornop 35 10 0 673 196
Boolectorβ 44 1 0 138 961
Boolectorsc12 39 6 0 535 308
STP 44 1 0 141 3814

la
m

bd
a

Boolector 37 8 0 594 236
Boolectornop 35 10 0 709 166
Boolectorβ 45 0 0 52 676
Boolectorsc12 - - - - -
STP - - - - -

TABLE III: Results application benchmarks.

new approaches to STP, the same version of the solver
that outperformed all other solvers on these benchmarks
in the experimental evaluation of [10]. On the instanti-
ation benchmarks Boolectorβ and STP solve the same
number of instances in roughly the same time. However,
Boolectorβ requires less memory for solving those
instances. Boolector, Boolectornop and Boolectorsc12
did not perform so well on these benchmarks because
in contrast to Boolectorβ and STP, they do not ea-
gerly eliminate read operations, which is beneficial on
these benchmarks. The lambda benchmarks consist of
the same problems as instantiation, using λ -terms for
representing arrays. On these benchmarks, Boolectorβ

clearly outperforms Boolector and Boolectornop and
solves all 45 instances within a fraction of time.
Boolectorsc12 and STP do not support λ -terms as arrays
and therefore were not able to participate on this bench-
mark set. By exploiting the native λ -term support for
arrays in Boolectorβ , in comparison to the instantiation
benchmarks we achieve even better results. Note that on
the lambda (instantiation) benchmarks, the overhead in
Boolectorβ for applying full β -reduction was around
15% (less than 2%) of the total run time.

Benchmarks, binaries of Boolector and all log files
of our experiments can be found at: http://fmv.jku.at/
difts-rev-13/lloddifts13.tar.gz.

IX. CONCLUSION

In this paper, we introduced a new decision procedure
for handling non-recursive and non-extensional λ -terms
as a generalization of the array decision procedure
presented in [3]. We showed how arrays, array op-
erations and SMT-LIB v2 macros are represented in
Boolector and evaluated our new approach with 3
different benchmark categories: crafted, SMT’12 and
application. The crafted category showed the benefit
of lazily handling SMT-LIB v2 macros where eager
macro elimination tends to blow-up the formula in size.
We further compared our new implementation to the
version of Boolector that won the QF AUFBV track

in the SMT competition 2012. With the application
benchmarks, we demonstrated the potential of native
λ -term support within an SMT solver. Our experiments
look promising even though we employ a rather naive
implementation of β -reduction in Boolector and also
do not incorporate any λ -term specific rewriting rules
except full β -reduction.

In future work we will address the performance
bottleneck of the β -reduction implementation and will
further add λ -term specific rewriting rules. We will
analyze the impact of various β -reduction strategies on
our lemmas on demand procedure and will further add
support for extensionality over λ -terms. Finally, with
the recent and ongoing discussion within the SMT-LIB
community to add support for recursive functions, we
consider extending our approach to recursive λ -terms.
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