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Abstract—Correspondence tables are a basic yet widely ap-
plied graphical/diagrammatical representation method. We in-
vestigate a certain type of reasoning with tables by exploiting
local conditions, which specify the data in some table entries,
and global conditions, which are constraints over every row
and column. To formalize such a reasoning, we introduce a
heterogeneous logic with tables by combining the usual first-order
formulas in the framework of natural deduction. In order to
formalize tables and formulas in the same framework, we apply
the syntax and semantics of many-sorted logic.

I. I NTRODUCTION

Since the 1990s, logicians have studied diagrammatic and
graphical representations from a formal logical viewpoint. As
a result, it has been shown that they can be studied as formal
objects equivalent to logical formulas. Formal syntax and se-
mantics have been defined, logical properties of diagrammatic
systems, such as soundness and completeness, have been in-
vestigated, and proof-theory has also been developed. Further-
more, studies on the characteristics of diagrammatic systems,
such as their expressive power, drawing techniques, effective
usage, and cognitive properties, have also been conducted.
For more information on these studies, see proceedings, e.g.,
[10], [7], [5], of Diagrams conference series on the theory and
application of diagrams.

On the basis of such research, a natural next step is to study
heterogeneous reasoning, combining various diagrammatic,
graphical, and sentential representations. Jon Barwise, one of
the first logicians to investigate the logical status of diagrams,
pointed out the importance of studying heterogeneous systems
in an early work [1], and he introduced a heterogeneous
system combining graphical representations and first-order
formulas on a blocks world, e.g., [1], [3]. His Hyperproof
project has recently been extended to the Openproof project.
Heterogeneous systems based on Venn (and Euler) diagrams
and first-order formulas have also been studied, e.g., [8], [11].
Furthermore, a heterogeneous system based on spider diagrams
and its implementation has been developed [12].

In this paper, we study a heterogeneous system based on
first-order formulas and tables. Tables and their usage have
been studied in the diagrammatic reasoning community, for
example, in [4], [9], [2]. Our tables are correspondence tables
represented by a rectangular arrangement of given data such
as symbols, characters, or numbers. Tables are one of the
most basic graphical representations, and have been applied for
various usages. From a cognitive science viewpoint, Shimojima
[9] studied the semantic mechanism of extracting information
from a given table.

In addition to the static reading of given tables, we can
use tables dynamically to solve a given problem. This involves
constructing a table and adding pieces of information, before
manipulating, and finally reading the table. For example, let us
consider a situation where we assign a working day to each of
six people. We should establish a one-to-one correspondence
between the six people and the working days in a week.
In such a situation, we are usually given further pieces of
information about who can or cannot work on specific days.
We are able to solve such a problem effectively by constructing
a correspondence table. (See Examples 1 and 2.) In such a
problem, we are, in general, given certain constraints over
the framework of the given problem such as a one-to-one
correspondence between people and days, which we callglobal
conditions, and we are also given some particular pieces of
information such as information about who can or cannot
work on specific days, which we calllocal conditions. This
type of reasoning task is found, for example, in civil servant
examinations in Japan and in so-called logic puzzles, and is
one of the most natural reasoning that could be formalized in
combination with the first-order formulas.

Barker-Plummer and Swoboda [2] discussed similar prob-
lems. They considern-ary relationships among objects, and
their system is defined to be simple and have as few rules as
possible. On the other hand, we concentrate on basic tables
representing the binary relationship between objects, and we
design our inference rules so that we take full advantage of
the effectiveness of our tables. Furthermore, our system is
heterogeneous by combining tables and first-order formulas.

We propose a heterogeneous logic with tables based on
Gentzen’s natural deduction. We first illustrate the type of
reasoning discussed in this paper. We then introduce the syntax
and semantics of our heterogeneous logic with tables,HLT. In
order to formalize tables and formulas in the same framework,
we apply the syntax and semantics of many-sorted logic.

II. A HETEROGENEOUS LOGIC WITH TABLES

In Section II-A, we first specify, through some examples,
the type of reasoning considered in this paper. We then define
the syntax ofHLT in Section II-B, and its semantics in Section
II-C. We introduce the inference rules ofHLT in Section
II-D, and define, in Section II-E, the translation of tables into
formulas. This demonstrates the soundness and completeness
theorems ofHLT via the theorems of many-sorted logic.

A. Examples of reasoning with tables

Let us investigate the following examples of reasoning with
tables, and then discuss the characteristics of such reasoning.
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Fig. 1

Example 1. Consider four peoplea, b, c, d who are scheduled
to work separately on one of Monday, Tuesday, Wednesday,
and Friday. The following constraints are known:

(1) a works on Wednesday;
(2) Neitherb nor c can work on Monday;
(3) On Friday, eitherc or d should work.

Under these conditions, how we can arrange who works on
which day?

Let us first consider this problem without using tables. Note
that, in addition to conditions (1), (2), and (3), we know that:

(4) There is a one-to-one correspondence between the
persons and the days.

First, condition (1) states that “a works on Wednesday.” Thus,
by (4), we find that “a does not work on Monday.” Then, by
combining this with (2) and (4), we find that “d works on
Monday.”

In the given situation, conditions (3) and (4) imply the
following (in fact, under (4), conditions (3) and (5) are
equivalent):

(5) “a does not work on Friday, andb does not work on
Friday.”

Because we have already determined that “d works on Mon-
day,” (4) implies that “d does not work on Friday.” Then, as
the above facts can be combined to give that “Neithera nor
b nor d works on Friday,” we find by (4) that “c works on
Friday.”

As for b, because we already know that “a works on
Wednesday,” “c works on Friday,” and “d works on Monday,”
we have from (4) that “b works on Tuesday.”

In this way, we are able to determine the working day of
a, b, c, d.

Note that in the above reasoning, the condition (4) is
necessary to derive any piece of information. Further note
that there are various ways to solve the above problem. For
example, in the above solution, we converted condition (3)
with disjunction into (5) without disjunction. Alternatively, we
could have divided (3) into two cases, and examined each case
individually.

Next, let us solve the same problem using a correspondence
table. We construct a table in which the rows are labeled ac-
cording to the workersa, b, c, d, and the columns are labeled by
days,M (for Monday),T (for Tuesday),W (for Wednesday),
andF (for Friday). Based on the given conditions (1), (2), and
(3), we insert⃝ into each entry(x, Y ) for which “x works on
Y ” holds, and insert× when “x does not work onY ” holds.
Thus, we obtain the tableT0 shown in Fig. 1. Note that we
applied condition (5) (stated previously) instead of the given
condition (3). In terms of tables, condition (4) is divided into
the following two conditions:

(6) In each row, exactly one entry should be marked as
⃝, and the other entries should be×;

(7) In each column, exactly one entry should be marked
as⃝, and the other entries should be×.

Thus, from the fact that the(a,W )-entry is ⃝ and (6), we
find that the(a,M), (a, T ) entries are×, as illustrated inT1.
Similarly, because the(a,M), (b,M), (c,M) entries are all×,
we find that(d,M) must be⃝ by (7), as illustrated inT2.

Hence, by successively applying conditions (6) and (7), we
finally get the complete tableT7. From this, we can read off
complete information about the working day ofa, b, c, d.

Although all entries are either⃝ or × in the above
example, in general, some entries may not be determined. For
example, if we remove condition (3), we obtain a partial table
in which (b, T ), (b, F ), (c, T ), (c, F ) remain indeterminate.

Let us consider another example, in which the number of
days worked by each person and the number of people working
on a given day are changed from Example 1.

Example 2. Each person should work exactly two days, and
exactly two people should work on each day. Conditions (1)
and (2) are the same as in Example 1. Condition (3) is replaced
by: (8) On Friday,c andd should work together. In this case,
how can we arrange the allocation of working days toa, b, c, d?

Using tables, we are able to apply essentially the same strategy
as for Example 1. Note that conditions (6) and (7) in Example
1 become the following:

(9) In each row, exactly two entries should be marked as
⃝, and the other entries should be×;

(10) In each column, exactly two entries should be marked
as⃝, and the other entries should be×.

10



� �
M T W F

a ⃝
b ×
c × ⃝
d ⃝

T8

M T W F
a ⃝ ⃝
b ×
c × ⃝
d ⃝ ⃝

�
�

�
�

T9

M T W F
a ⃝ ⃝ ×
b × ×
c × ⃝
d ⃝ ⃝

�
�

�
�

T10

M T W F
a ⃝ × ⃝ ×

�� ��
b × ×
c × ⃝
d ⃝ ⃝

T11� �� �
M T W F

a ⃝ × ⃝ ×
b × ⃝ ⃝ ×

�� ��
c × ⃝
d ⃝ ⃝

T12

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝
d ⃝ × × ⃝

�� ��
T13

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝ ⃝
d ⃝ × × ⃝

�
�

�
�

T14

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝ × ⃝
d ⃝ × × ⃝

�
�

�
�

T15� �
Fig. 2

We begin with the tableT8 in Fig. 2. Because the
(b,M), (c,M) entries are ×, we find, by (10), that
(a,M), (d,M) are ⃝, as illustrated inT9. In a similar way,
we obtainT10. Then, because the entries of(a,M), (a,W ) are
⃝, we find, by (9), that(a, T ) is ×, as inT11, and in a similar
way to Example 1, we finally obtain tableT15.

In the above examples, although the number of⃝ is fixed
to be the same (i.e., one or two) in every row and column, this
is not necessarily the case. We do not assume such a restriction
in our formalization of reasoning with tables.

By investigating Examples 1 and 2, we find that there are
two types of condition in our problems. One is a “constraint
over the framework of a given problem” (e.g., condition (4)
above), and we call theseglobal conditions. In view of tables,
our global conditions are constraints over every row and
column. The other type is a “specific condition for each object”
(e.g., (1) above), and we call theselocal conditions. In view
of tables, local conditions specify only particular entries. Our
reasoning with tables is essentially conducted by combining
global conditions and local conditions.

One of the remarkable facts of our reasoning with tables is
that, even if the given local and global conditions change, we
are able to apply essentially the same strategy: that is, we check
each row or column, and apply appropriate global conditions
controlling rows and columns. Thus, based on the local and
global conditions, our reasoning using tables is conducted as
follows.

(I) We decompose, if necessary, the given conditions
into local conditions (i.e., atomic sentences or their
negation, such as “a does not work on Friday” and “b
does not work on Friday”) by applying logical laws
(e.g., (3)∧ (4) → (5)).

(II) We construct a correspondence table using these local
conditions (e.g.,T0).

(III) By applying the global conditions, that is, by exploit-
ing constraints over the number of⃝ or × in a row
or column, we further insert⃝ and× into the table.

(IV) Finally, we extract information from the table.

Although most of the given conditions in the above ex-
amples are already local conditions, more complex conditions
may generally be given. In such cases, we frequently apply

item (I) in the above procedure. Furthermore, a given condi-
tion, such as an implicational sentence, may be decomposed
using basic information obtained from item (III). In these
complex cases, we must repeat the whole procedure several
times.

Thus, a natural system of formalizing our reasoning with
tables is a heterogeneous logical system combining tables
and first-order formulas. Our formalization here is based on
Gentzen’s natural deduction.

B. Syntax ofHLT

In order to formalize our heterogeneous reasoning with
tables, we adopt two-sorted logic, in which constants and
variables of the first-order language are divided into two
sorts: sorts of row and column. Although usually distinguished
explicitly by sort symbols in many-sorted logic, we distinguish
the two by lower- and uppercase letters: a constant (resp.
variable) of the row sort is denoted bya (resp.x), and that of
the column sort is denoted byA (resp.X). (See, for example,
[6] for many-sorted logic.) Then, by⃝(a,B) we mean “a and
B are in a certain positive relation.” Thus, sentences such as
“a is B,” “ a matchesB,” and “a corresponds toB” are all
expressed as⃝(a,B).

We begin by specifying some vocabulary.

Definition 3 (Vocabulary). We use the following symbols.

Row-constants:a1, a2, . . . ; Col-constants:A1, A2, . . .
Row-variables:x1, x2, . . . ; Col-variables:X1, X2, . . .
Predicate:⃝( , )

Constants and variables are collectively calledterms, and are
denoted bys, t, u, . . . .

Using the above symbols, we construct our formulas as
follows.

Definition 4. An atomic formula is of the form⃝(s, t) for
a row-constant/variables and a col-constant/variablet. Based
on atomic formulas, complexformulas are defined inductively
as usual:

φ := ⃝(s, t) φ ∧ φ φ ∨ φ φ→ φ ¬φ
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∀x.φ ∃x.φ ∀X.φ ∃X.φ

In particular, we denote the negation of an atom¬⃝(s, t)
by ×(s, t). Formulas of the forms⃝(s, t) and ×(s, t) are
collectively calledliterals. Literals containing no variables are
calledground literals (or closed literals), and they are denoted
by α, α1, α2, . . . . We denote byα the ground literal×(a,B)
whenα is ⃝(a,B), and⃝(a,B) whenα is ×(a,B). Formulas
containing no free variables are said to beclosed.

We sometimes write⃝(s, t) as t(s), and×(s, t) as¬t(s).

In order to express sentences of the form “amongn objects,
there are exactlyi objects that areA,” we introduce a kind of
counting quantifier, and write the sentence as∃i/nx.A(x), i.e.,
∃i/nx.⃝(x,A).

Definition 5 (Global formula). For fixed sets of row-constants
R = {a1, . . . , an} or of col-constantsC = {A1, . . . , An}, the
following forms of formulas are calledglobal formulas: For
anyA anda,

∃i/nx ∈ R.A(x), ∃i/nx ∈ R.¬A(x),

∃i/nX ∈ C.X(a), ∃i/nX ∈ C.¬X(a).

If a set of constants is clear from the context, it is abbreviated
as∃i/nx.A(x).
Global formulas are simply abbreviations of the appropriate
first-order formulas. Letσ be a permutation of the given
row-constantsa1, . . . , an, and Sn be the set of all their
permutations. We then define∃i/nx ∈ R.A(x) as:∨
σ∈Sn

(
A(aσ1) ∧ · · · ∧A(aσi) ∧ ¬A(aσi+1) ∧ · · · ∧ ¬A(aσn)

)
We treat∃i/nx ∈ R.¬A(x) in a similar manner.

Let σ be a permutation of the given col-constantsA1, . . . , An,
and Sn be the set of all their permutations. We then define
∃i/nX ∈ C.X(a) as:∨
σ∈Sn

(
Aσ1(a) ∧ · · · ∧Aσi(a) ∧ ¬Aσi+1(a) ∧ · · · ∧ ¬Aσn(a)

)
We again treat∃i/nX ∈ C.¬X(a) similarly.

Example 6. For example, for some row-constanta and
col-constants C = {A1, A2, A3}, the global formula
∃2/3X ∈ C.X(a) is the abbreviation of the following formula:(

A1(a) ∧A2(a) ∧ ¬A3(a)
)

∨(
A1(a) ∧A3(a) ∧ ¬A2(a)

)
∨(

A2(a) ∧A3(a) ∧ ¬A1(a)
)

where we omit trivial permutations such asA2(a) ∧ A1(a) ∧
¬A3(a), which is equivalent to the first disjunct in the above.

Next, we define our tables.

Definition 7. A table T is an m × n-matrix over symbols
{⃝,×, b}; that is, a rectangular arrangement of the symbols,

in which rows are labeled by distinct row-constantsa1, . . . , am
and columns are labeled by distinct col-constantsA1, . . . , An.

In a specific representation of a table, we usually omit the
symbol “b” and leave the entry blank.

Remark 8. A table T is abstractly defined as the function
T : R× C −→ {⃝,×, b}, whereR (resp.C) is some finite set
of row-constants (resp. col-constants) ofT .

Note that no entry can be marked with more than one of
⃝,×, b at the same time.

As usual, any pair of tables, sayT1 andT2, are identical
if they consist of the same constants, and if the⃝, × marks
of all entries inT1 andT2 are also identical. This is formally
defined as follows.

Definition 9 (Equivalence of tables). A tableT1 is a subtable
of T2, written asT1 ⊆ T2, when:

• all row- and col-constants ofT1 are also those ofT2;

• for any (ai, Aj)-entry ofT1: if it is ⃝ in T1, it is also
⃝ in T2, and if it is × in T1, it is also× in T2.

T1 andT2 are (syntactically) equivalent whenT1 ⊆ T2 and
T2 ⊆ T1 hold.

Note that, by definition, two specific tables that differ only
in the orders of their rows and columns are equivalent.

C. Semantics ofHLT

We now define the semantics of ourHLT as a particular
case of the semantics of many-sorted logic. (See [6] for the
semantics of many-sorted logic.)

Definition 10. A structure M is (Mrow,Mcol, I), where:
Mrow andMcol are disjoint non-empty domains for the row
and column sorts, respectively.
I is an interpretation function such that:

• I(a) ∈Mrow for each row-constanta;

• I(A) ∈Mcol for each col-constantA;

• I(⃝) ⊆Mrow ×Mcol.

Definition 11. A valuation v in M is a function that assigns
every row-variablex an entity ofMrow, i.e., v(x) ∈ Mrow,
and every col-variableX an entity ofMcol, i.e.,v(X) ∈Mcol.

Definition 12 (Truth conditions). The notion of satisfaction
of a formulaφ in a structureM with a valuationv, written
M |= φ[v], is defined inductively as follows:

• M |= ⃝(s, t)[v] if and only if (I(s)[v], I(t)[v]) ∈ I(⃝),
whereI(s)[v] = I(a) whens is a row-constanta, and
I(s)[v] = v(x) whens is a row-variablex; Similarly
for t;

• M |= ¬φ[v] if and only if M ̸|= φ[v];

Truth conditions for other connectives∧,∨,→ are
defined as usual;

• M |= ∀x.φ[v] if and only if, for all m ∈ Mrow, M |=
φ[v(x 7→ m)],
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φ ∧ ψ ∧I

....
φ1 ∧ φ2

φi
∧Ei(i = 1, 2)

....
φi

φ1 ∨ φ2
∨Ii(i = 1, 2)

....
φ ∨ ψ

[φ]n....
θ

[ψ]n....
θ

θ
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[φ]n....
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→ I, n

....
φ
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⊥
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⊥
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....
φ
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....
φ

∀X.φ ∀Ic

....
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φ[x := t]
∀Er

....
∀X.φ

φ[X := t]
∀Ec

where, in∀Ir (and∀Ic), the variablex (resp.X) may not occur free in any open hypothesis on
which φ depends; in∀Er (and∀Ec), t is a row-variable/constant (resp. col-variable/constant).

....
φ[x := t]

∃x.φ ∃Ir

....
φ[X := t]

∃X.φ ∃Ic

....
∃x.φ

[φ]n....
ψ

ψ
∃Er, n

....
∃X.φ

[φ]n....
ψ

ψ
∃Ec, n

where, in∃Ir (and∃Ic), t is a row-variable/constant (resp. col-variable/constant); in∃Er (and∃Ec),
x (resp.X) may not occur free inψ nor in any open hypothesis on whichψ depends, except inφ.

Fig. 3 Inference rules for formulas inHLT

wherev(x 7→ m) is the valuation that is exactly the
same asv except forx, andx is assigned tom;

• M |= ∀X.φ[v] if and only if, for all m ∈ Mcol, M |=
φ[v(X 7→ m)];

• M |= ∃x.φ[v] if and only if there existsm ∈Mrow such
thatM |= φ[v(x 7→ m)];

• M |= ∃X.φ[v] if and only if there existsm ∈Mcol such
thatM |= φ[v(X 7→ m)];

• M |= T for a tableT if and only if M |= ⃝(s, t) for
any entry(s, t) of T that is⃝, andM |= ×(s, t) for
any entry(s, t) of T that is×.

M is said to be amodel of φ, written asM |= φ, when
M |= φ[v] holds for any valuationv in M .

The semantic consequence relation in ourHLT is defined
as follows.

Definition 13 (Semantic consequence). LetΓ be a set of closed
formulas, letG be a set of global formulas, and letT be a table.
A closed formulaφ is said to be asemantic consequenceof
Γ,G, T , written asΓ,G, T |= φ, when any model ofΓ, G, and
T is also a model ofφ.

D. Inference rules ofHLT

In this section, we introduce the inference rules ofHLT,
which consist of the usual natural deduction rules for formulas
and rules of table manipulation.

Definition 14 (Inference rules). The inference rules ofHLT
consist of the following rules for formulas and rules for tables.

Rules for formulas are the rules for∧,∨,→,¬,∀, ∃, and
⊥E andRAA listed in Fig. 3.

Rules for tables are the followingin, row, col, ext rules:

. . . Ai . . .

a

⃝(a,Ai)

. . . Ai . . .

a ⃝

in⃝

. . . Ai . . .

a

×(a,Ai)

. . . Ai . . .

a ×

in×

In order to describe the same types of rules, we use the symbol
⊗, which denotes either⃝ or ×. Furthermore,⊗ denotes⃝
if ⊗ is ×, and denotes× if ⊗ is ⃝. The following four rules
of row and col are duplicated depending on whether⊗ is ⃝
or ×.

Let σ be a permutation of columnsA1, . . . , An. Under the
permutation, we assume that entries marked as⃝ and those
marked as× are grouped.

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a ⊗ . . . ⊗ □ . . . □
∃i/nX. ⊗ (a,X)

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a ⊗ . . . ⊗ ⊗ . . . ⊗

row⊗

where each□ is blank or⊗.
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M T W F
a
b
c
d W (a) ¬M(b) ¬M(c)

W (c) ∨ F (c) ∃1/4X.X(c)

¬M(c) ∧ ¬T (c)

¬T (c)

M T W F
a ⃝
b ×
c × ×
d

in⃝,×

∃1/4X.X(a)

M T W F
a × × ⃝ ×
b ×
c × ×
d

row×

∃1/4x.M(x)

M T W F
a × × ⃝ ×
b ×
c × ×
d ⃝

col⃝

∃1/4x.W (x)

M T W F
a × × ⃝ ×
b × ×
c × × ×
d ⃝ ×

col×

M T W F
a × × ⃝ ×
b × ⃝ × ×
c × × × ⃝
d ⃝ × × ×

M(d) ∧ T (b) ∧W (a) ∧ F (c)

Fig. 4 A proof in HLT of Example 1. In the figure, each double line is an abbreviation of some applications of inference rules.

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a □ . . . □ ⊗ . . . ⊗
∃i/nX. ⊗ (X, a)

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a ⊗ . . . ⊗ ⊗ . . . ⊗

row⊗

where each□ is blank or⊗.

Let σ be a permutation of rowsa1, . . . , am. Under the per-
mutationσ, we assume that entries marked as⃝ and those
marked as× are grouped.

A
aσ1 ⊗

.

.

.
.
.
.

aσj ⊗
aσj+1 □

.

.

.
.
.
.

aσm □ ∃j/mx. ⊗ (A, x)

A
aσ1 ⊗

.

.

.
.
.
.

aσj ⊗
aσj+1 ⊗

.

.

.
.
.
.

aσm ⊗

col⊗

A
aσ1 □

.

.

.
.
.
.

aσj □
aσj+1 ⊗

.

.

.
.
.
.

aσm ⊗ ∃j/mx. ⊗ (A, x)

A
aσ1 ⊗

.

.

.
.
.
.

aσj ⊗
aσj+1 ⊗

.

.

.
.
.
.

aσm ⊗

col⊗

where each□ is blank or⊗. where each□ is blank or⊗.

T∧
{⃝(aj , Ai) | (aj , Ai) is ⃝ in T} ∧

∧
{×(aj , Ai) | (aj , Ai) is × in T}

ext

The in-rule enables us to convert ground literals into a
table, and, conversely, theext-rule enables us to convert a table
into a conjunction of literals. Therow andcol rules pertain to
the manipulation of tables.

The notion of proof is defined inductively as usual in
natural deduction.

Definition 15. Let Γ be a set of closed formulas, letG be a
set of global formulas, and letT be a table. A closed formula
φ is provable fromΓ,G, T , written asΓ,G, T ⊢ φ, when there
exists a proof ofφ from the open assumptionΓ,G, T .

Example 16. A proof in HLT of Example 1 is given in Fig. 4.

E. Translation of tables

We give a translation of the rules for tables into those
for usual natural deduction without tables, from which the
soundness and completeness theorems ofHLT are obtained.

We first define the following terminology.

Definition 17. A conjunction of literals is said to beconsistent
when it has a model.

We define the translation of tables into a formula. This is
completely parallel to theext-rule of HLT.
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∃2/3X.X(a)

[A1 ∧A2 ∧ ¬A3]
1

¬A3
∧E

[A1 ∧A3 ∧ ¬A2]
1

¬A2
∧E

A1 ∧A2

A2
∧E

⊥ ¬E

¬A3
⊥E

[A2 ∧A3 ∧ ¬A1]
1

¬A1
∧E

A1 ∧A2

A1
∧E

⊥ ¬E

¬A3
⊥E

¬A3
∨E, 1

A1 ∧A2

A1 ∧A2 ∧ ¬A3
∧I

Fig. 5 A translation given in Example 20

Definition 18. Each tableT is translated into a conjunction
of (consistent ground) literalsT ◦ as follows:

T ◦ =
∧

{⃝(aj , Ai) | (aj , Ai) is ⃝ in T}

∧
∧

{×(aj , Ai) | (aj , Ai) is × in T}

Conversely, it is easily seen that, for any consistent con-
junction of ground literals, there exists a corresponding table.
Thus, we may regard a tableT and a consistent conjunctionL
of ground literals to be interchangeable, and (slightly abusing
our notation) we write, for example,L ⊆ T .

Based on the translation of tables, we give a translation of
table manipulations into rules of natural deduction. (See also
Example 20 below.)

Theorem 19 (Translation). If G, T1 ⊢ T2 with only row and
col rules inHLT, thenG, T ◦

1 ⊢ T ◦
2 in natural deduction without

tables.

Proof: It is sufficient to give a translation ofrow andcol
rules into combinations of rules of natural deduction without
tables.

Because all cases are treated in a similar way, we show
only the following row×-rule (we assume that all□ of the
rule are blank for simplicity).

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a ⃝ . . . ⃝ ∃i/nX.X(a)

Aσ1 . . . Aσi Aσi+1 . . . Aσn

a ⃝ . . . ⃝ × . . . ×

row×

From our translation of tables, the table in the premises of
the row×-rule is translated intoAσ1(a) ∧ · · · ∧ Aσi(a). Note
also that another premise of therow×-rule ∃i/nX.X(a) is∨

τ∈Sn

(
Aτ1(a)∧· · ·∧Aτi(a)∧¬Aτi+1(a)∧· · ·∧¬Aτn(a)

)
.

Given these two formulas, we construct a natural deduction
proof.

We denote byAτi the conjunctionAτ1(a)∧ · · · ∧Aτi(a),
and by¬Aτn the conjunction¬Aτi+1(a) ∧ · · · ∧ ¬Aτn(a).
Then, we can write∃i/nX.X(a) as

∨
τ∈Sn

(Aτi ∧ ¬Aτn).

In order to apply the∨E-rule of natural deduction, we
divide the following cases according to the form of each
disjunctAτi∧¬Aτn of the above∃i/nX.X(a), and we derive
¬Aσn in each case.

1) Whenτ = σ, or whenAσi ↔ Aτi holds, we apply
the ∧E-rule of natural deduction toAτi ∧ ¬Aτn to
obtain¬Aτn, which is equivalent to¬Aσn.

2) Otherwise, we apply the∧E-rule to Aτi ∧ ¬Aτn,
and obtain¬Aτn. Note that at least one of the
conjuncts of¬Aτn contradicts a conjunct ofAσi

by the definition of the permutation for∃i/nX.X(a).
Hence, by applying the⊥E-rule, we obtain¬Aσn.

Therefore, in every case, we obtain¬Aσn from Aτi ∧¬Aτn.
Thus, by applying the∨E-rule, we obtain a proof of¬Aσn.

As we haveAσi by the initial assumption, by applying the
∧I-rule, we obtainAσi ∧ ¬Aσn, which is the translation of
the conclusion of the givenrow×-rule.

Example 20. Let us consider the following application of the
row×-rule: A1 A2 A3

a ⃝ ⃝ ∃2/3X.X(a)

A1 A2 A3

a ⃝ ⃝ ×

row×

Note that∃2/3X.X(a) := (A1 ∧ A2 ∧ ¬A3) ∨ (A1 ∧ A3 ∧
¬A2) ∨ (A2 ∧ A3 ∧ ¬A1), where we abbreviateAi(a) asAi

and omit trivial permutations. This application of therow×-
rule is translated as in Fig. 5.

The soundness ofHLT is obtained straightforwardly by the
above theorem of translation, because each rule for tables is
translated into a combination of rules for formulas by Theorem
19, and each rule for formulas, i.e., of many-sorted logic, is
known to be sound.

Theorem 21 (Soundness ofHLT). Let Γ be a set of closed
formulas,G be a set of global formulas,T be a table, andφ
be a closed formula. IfΓ,G, T ⊢ φ in HLT, thenΓ,G, T |= φ.

Because our inference rules and semantics ofHLT “without
tables” are just particular cases of those of many-sorted logic,
the following completeness theorem ofHLT holds via the
theorem of many-sorted logic. (See [6] for the completeness
of many-sorted logic.)

Theorem 22(Completeness ofHLT). Let Γ be a set of closed
formulas,G be a set of global formulas,T be a table, andφ
be a closed formula. IfΓ,G, T |= φ, thenΓ,G, T ⊢ φ in HLT.

Proof: Based on the translation of tables, a tableT
and the consistent set of ground literalsT ◦ are equivalent.
Thus, Γ,G, T |= φ is equivalent toΓ,G, T ◦ |= φ. Then,
by the completeness theorem of many-sorted logic, we have
Γ,G, T ◦ ⊢ φ. Again, by the translation (more precisely, by the
ext-rule of HLT for T ), we haveΓ,G, T ⊢ φ in HLT.

III. C ONCLUSION AND FUTURE WORK

We investigated reasoning with tables by exploiting local
and global conditions. This type of reasoning is not just a mere
puzzle, but can be applied to simple scheduling problems. In
order to formalize our reasoning with tables, we introduced a
heterogeneous logic with tables,HLT, with a combination of
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first-order formulas. For the formalization ofHLT, we applied
the syntax and semantics of many-sorted logic. Although we
actually applied two-sorted logic, as we studied the most
basic binary relationship between objects, our system can be
extended to cover then-ary relationship between objects, as
in [2], by applying the general many-sorted logic.

We defined inference rules forHLT that consist of the
usual natural deduction rules for the first-order formulas and
table manipulation rules. These were designed to reflect our
intuitive and effective manipulation of the tables. We inves-
tigated the translation of tables and their manipulations into
formulas and natural deduction inference rules. Then, based
on these translations, we obtained soundness and completeness
theorems ofHLT by reducing them to the usual many-sorted
logic theorems.

In this paper, for the sake of simplicity, we concentrated
on the most basic global formulas, such as “amongn objects,
there are ‘exactlyi objects’ . . . .” Our system can be easily
extended by introducing the following forms for the global
formulas:

• ∃≤i/nx.A(x) meaning “amongn objects, there are
‘at most’ i objects that areA,” and

• ∃≥i/nx.A(x) meaning “amongn objects, there are
‘at least’ i objects that areA.”

Similarly, we could consider∃≤i/nX.X(a) and∃≥i/nX.X(a),
as well as negative literals. These formulas are also just
abbreviations of appropriate first-order formulas, similar to the
definition of ∃i/n in Section II-B.

Based on the informal analysis of Examples 1 and 2 and
the translation between tables and formulas (Theorem 19 and
Example 20), we may point out the following differences, for
example, between the usual sentential systems and our table
system.

(1) In a sentential system, on the one hand, we need to derive
each statement corresponding to an entry of a table one by
one. On the other hand, in our table system, by an application
of our rule, a number of entries are filled with⃝ or × at
once, that is, a number of statements are derived at once. This
suggests that the number of steps of inference is reduced by
our row andcol rules as illustrated in Example 20.

(2) However, the above difference appears in a fragment where
our tables androw andcol rules work most effectively. In other
words, our table fragment ofHLT, consisting only of rules for
tables (row, col, in, ext rules) without rules for formulas, is
not complete with respect to our semantics. That is, there exists
a formula which is semantically valid, but is not provable with
only rules for tables. In contrast, the natural deduction system
without tables is complete, and there are no restriction on a
given problem.

(3) Once a table is constructed, and sentences are translated
into the table (for example, “a works on Wednesday (W (a))”
is translated as “(a,W )-entry is⃝,” and “exactly one person
should work on Wednesday (∃1/4x.W (x))” is translated as
“there is exactly one⃝ in columnW ”), reasoning with the
table is conducted by completely graphical or geometrical

manipulations on the table, i.e., by dealing only with the
number of⃝,× symbols in each row and column. Further-
more, there are two ways, in a sentential system, to derive a
statement, say “d works on Monday (M(d))”: deriving M(d)
from ¬M(a),¬M(b),¬M(c) by checking every person on
Monday, and from¬T (d),¬W (d),¬F (d) by checking every
possible working day ofd. These derivations correspond, in
our table system, to an application ofcol rule androw rule,
respectively.

These comparison between sentential systems and our
table system should be investigated by combining logic and
cognitive science methods.
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