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Abstract—Correspondence tables are a basic yet widely ap- In addition to the static reading of given tables, we can
plied graphical/diagrammatical representation method. We in-  use tables dynamically to solve a given problem. This involves
vestigate a certain type of reasoning with tables by exploiting  constructing a table and adding pieces of information, before
local conditions, which specify the data in some table entries, manjpulating, and finally reading the table. For example, let us
and global conditions, which are constraints over every row  .qngjder a situation where we assign a working day to each of
and column. To formalize such a reasoning, we introduce a gy noqnle We should establish a one-to-one correspondence

heterogeneous logic with tables by combining the usual first-order bet th . | d th Ki d . K
formulas in the framework of natural deduction. In order to etween the SiX people an € working days In a week.

formalize tables and formulas in the same framework, we apply /N such a situation, we are usually given further pieces of
the syntax and semantics of many-sorted logic. information about who can or cannot work on specific days.

We are able to solve such a problem effectively by constructing

a correspondence table. (See Examples 1 and 2.) In such a
[. INTRODUCTION problem, we are, in general, given certain constraints over
the framework of the given problem such as a one-to-one

osince the 19905 logilans have sl dagrammac 2 Borespondence between peope and days, hich wlosk
grap P g point. nditions and we are also given some particular pieces of

. ; o
a result, it has been shown that they can be studied as formﬁ'ﬁ‘ormation such as information about who can or cannot
objects equivalent to logical formulas. Formal syntax and se:

. . . . ) work on specific days, which we cdlbcal conditions This
mantics have been defined, logical properties of dlagrammatl& e of reasoning task is found, for example, in civil servant

systems, such as soundness and completeness, have beene aminations in Japan and in so-called logic puzzles, and is

vestigated, and proof-theory has also been developed. Furthein . "¢ 1o most natural reasoning that could be formalized in
more, studies on the characteristics of diagrammatic SyStems, ination with the first-order formulas

such as their expressive power, drawing techniques, effectivé
usage, and cognitive properties, have also been conducted. Barker-Plummer and Swoboda [2] discussed similar prob-
For more information on these studies, see proceedings, e.gems. They consider-ary relationships among objects, and
[10], [7], [5], of Diagrams conference series on the theory andheir system is defined to be simple and have as few rules as
application of diagrams. possible. On the other hand, we concentrate on basic tables

representing the binary relationship between objects, and we

On the basis of such research, a natural next step is to stu@ésign our inference rules so that we take full advantage of
heterogeneous reasoning, combining various diagrammatighe effectiveness of our tables. Furthermore, our system is

graphical, and sentential representations. Jon Barwise, one ghterogeneous by combining tables and first-order formulas.
the first logicians to investigate the logical status of diagrams,

pointed out the importance of studying heterogeneous systems We propose a heterogeneous logic with tables based on
in an early work [1], and he introduced a heterogeneou$€ntzen’s natural deduction. We first illustrate the type of
system combining graphical representations and first-orddasoning discussed in this paper. We then introduce the syntax
formulas on a blocks world, e.g., [1], [3]. His Hyperproof and semantlcs.of our heterogeneous qu|c with tathes, In
project has recenﬂy been extended to the Openproof projed@_rder to formalize tables and formulas in the same fram_eWOfk,
Heterogeneous systems based on Venn (and Euler) diagrat¥é apply the syntax and semantics of many-sorted logic.

and first-order formulas have also been studied, e.g., [8], [11].

Furthermore, a heterogeneous system based on spider diagrams ~ !l- A HETEROGENEOUS LOGIC WITH TABLES

and its implementation has been developed [12]. In Section 1I-A, we first specify, through some examples,

rﬁe type of reasoning considered in this paper. We then define
e syntax oHLT in Section 1I-B, and its semantics in Section

-C. We introduce the inference rules ¢iLT in Section

-D, and define, in Section II-E, the translation of tables into

wmulas. This demonstrates the soundness and completeness
eorems oHLT via the theorems of many-sorted logic.

In this paper, we study a heterogeneous system based
first-order formulas and tables. Tables and their usage ha
been studied in the diagrammatic reasoning community, fo
example, in [4], [9], [2]. Our tables are correspondence table
represented by a rectangular arrangement of given data su
as symbols, characters, or numbers. Tables are one of t
most basic graphical representations, and have been applied for
various usages. From a cognitive science viewpoint, Shimojima™
[9] studied the semantic mechanism of extracting information  Let us investigate the following examples of reasoning with
from a given table. tables, and then discuss the characteristics of such reasoning.

Examples of reasoning with tables
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Example 1. Consider four people, b, ¢, d who are scheduled Next, let us solve the same problem using a correspondence
to work separately on one of Monday, Tuesday, Wednesdayable. We construct a table in which the rows are labeled ac-
and Friday. The following constraints are known: cording to the workers, b, ¢, d, and the columns are labeled by
days,M (for Monday), T (for Tuesday) W (for Wednesday),
(1) a works on Wednesday; and F (for Friday). Based on the given conditions (1), (2), and
(2)  Neitherb nor c can work on Monday; (3), we insertO into each entry(z, Y') for which “z works on
(3)  On Friday, either: or d should work. Y" holds, and insertx when “: does not work ori’™” holds.

Thus, we obtain the tabl&, shown in Fig. 1. Note that we
lApplied condition (5) (stated previously) instead of the given
condition (3). In terms of tables, condition (4) is divided into

) . . , , the following two conditions:
Let us first consider this problem without using tables. Note

that, in addition to conditions (1), (2), and (3), we know that: (6) In each row, exactly one entry should be marked as
O, and the other entries should be

Under these conditions, how we can arrange who works o
which day?

(4) There is a one-to-one correspondence between the

persons and the days (7) In each column, exactly one entry should be marked

as (), and the other entries should be
First, condition (1) states that:"works on Wednesday.” Thus, Thus. from the fact that théa, W)-entry is O and (6), we
by (4), we find that & does not work on Monday.” Then, by fing that the(a, M), (a, T') entries arex, as illustrated iri? .
combining this with (2) and (4), we find thau*works on  gimjjarly, because théu, M), (b, M), (c, M) entries are alk,
Monday. we find that(d, M) must beO by (7), as illustrated irf%.

In the given situation, conditions (3) and (4) imply the  Hence, by successively applying conditions (6) and (7), we
following (in fact, under (4), conditions (3) and (5) are finally get the complete tabl@,. From this, we can read off

equivalent): complete information about the working day @fb, c, d.
(5) “a does not work on Friday, antldoes not work on Although all entries are eithep or x in the above
Friday.” example, in general, some entries may not be determined. For

example, if we remove condition (3), we obtain a partial table
Because we have already determined thaworks on Mon-  in which (b, T), (b, F), (¢, T), (¢, F) remain indeterminate.
day,” (4) implies that & does not work on Friday.” Then, as
the above facts can be combined to give that “Neitteror
b nor d works on Friday,” we find by (4) thatc¢‘works on
Friday.”

Let us consider another example, in which the number of
days worked by each person and the number of people working
on a given day are changed from Example 1.

Example 2. Each person should work exactly two days, and
exactly two people should work on each day. Conditions (1)
and (2) are the same as in Example 1. Condition (3) is replaced
by: (8) On Friday,c andd should work together. In this case,

In this way, we are able to determine the working day ofhow can we arrange the allocation of working daya o c, d?
a,b,c,d.

As for b, because we already know that ‘works on

Wednesday,” ¢ works on Friday,” and ¢ works on Monday,”
we have from (4) that¥ works on Tuesday.”

Using tables, we are able to apply essentially the same strategy
Note that in the above reasoning, the condition (4) isas for Example 1. Note that conditions (6) and (7) in Example

necessary to derive any piece of information. Further notd become the following:
that there are various ways to solve the above problem. For )
example, in the above solution, we converted condition (3)
with disjunction into (5) without disjunction. Alternatively, we
could have divided (3) into two cases, and examined each casgl0) In each column, exactly two entries should be marked
individually. as(, and the other entries should e

In each row, exactly two entries should be marked as
O, and the other entries should be
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We begin with the tableTy in Fig.2. Because the item (I) in the above procedure. Furthermore, a given condi-
(b,M),(c, M) entries are x, we find, by (10), that tion, such as an implicational sentence, may be decomposed
(a, M), (d, M) are O, as illustrated inTy. In a similar way, using basic information obtained from item (lll). In these
we obtainT}o. Then, because the entries(ef M), (a, W) are  complex cases, we must repeat the whole procedure several
O, we find, by (9), thata,T') is x, as inTy1, and in a similar  times.

way to Example 1, we finally obtain tablg 5. . . .
y pie % y B Thus, a natural system of formalizing our reasoning with

In the above examples, although the numbepaf fixed tables is a heterogeneous logical system combining tables
to be the same (i.e., one or two) in every row and column, thisind first-order formulas. Our formalization here is based on
is not necessarily the case. We do not assume such a restrictiGientzen’s natural deduction.
in our formalization of reasoning with tables.

By investigating Examples 1 and 2, we find that there aré3- Syntax oHLT
two types of condition in our problems. One is a “constraint |5 order to formalize our heterogeneous reasoning with
over the framework of a given problem” (e.g., condition (4) taples, we adopt two-sorted logic, in which constants and
above), and we call thesgtobal conditions In view of tables,  yariables of the first-order language are divided into two
our global conditions are constraints over every row andorts: sorts of row and column. Although usually distinguished
column. The other type is a “specific condition for each object’expjicitly by sort symbols in many-sorted logic, we distinguish
(e.g., (1) above), and we call thekgeal conditions In view  the two by lower- and uppercase letters: a constant (resp.
of tables, local conditions specify only particular entries. Ourvariable) of the row sort is denoted lay(resp.z), and that of
reasoning with tables is essentially conducted by combininghe column sort is denoted by (resp.X). (See, for example,
global conditions and local conditions. [6] for many-sorted logic.) Then, by)(a, B) we mean # and

One of the remarkable facts of our reasoning with tables id® &€ In a certain positive relation.” Thus, sentences such as
that, even if the given local and global conditions change, we® 1S B/ “a matchesB,” and “a corresponds ta3” are all
are able to apply essentially the same strategy: that is, we che&&Pressed as)(a, B).
each row or column, and apply appropriate global conditions
controlling rows and columns. Thus, based on the local and

g ' X . We begin by specifying some vocabulary.
global conditions, our reasoning using tables is conducted as gin by specifying Y

follows. Definition 3 (Mocabulary) We use the following symbols.
()  We decompose, if necessary, the given conditions SOW'COUSL"’}”E_’“’@?"“E goll-cor_lst)allnt§§1, ?2"“
into local conditions (i.e., atomic sentences or their ~~oW-variablesy, s, ..., Lol-vanables: Ay, A, ...

negation, such as:“does not work on Friday” and* PredicateO( , )
does not work on Friday”) by applying logical laws Constants and variables are collectively calierns, and are

(e.g., A (4) = (9)). _ denoted bys, ¢, u, . ...
(I We construct a correspondence table using these locall
conditions (e.g. /o). Using the above symbols, we construct our formulas as

() By applying.the global conditions, that is, _by exploit- follows.
ing constraints over the number of or x in a row o ) ]
or column, we further inse@ and x into the table. Definition 4. An atomic formula is of the form Q(S,t) for
(|V) Fina“y’ we extract information from the table. a row-constant/variable and a col-constant/variable Based
on atomic formulas, complelormulas are defined inductively
Although most of the given conditions in the above ex-as usual:
amples are already local conditions, more complex conditions
may generally be given. In such cases, we frequently apply = 0Os,t) |eAp | Ve |p—=¢]| g
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In particular, we denote the negation of an atemy(s,t)
by x(s,t). Formulas of the forms)(s,t) and x(s,t) are
collectively callediterals. Literals containing no variables are

in which rows are labeled by distinct row-constamis. . ., a,,
and columns are labeled by distinct col-constatis. . ., A,,.

In a specific representation of a table, we usually omit the
symbol ‘b” and leave the entry blank.

calledground literals (or closed literals), and they are denoted Remark 8. A table T' is abstractly defined as the function

by a, a1, s, .... We denote by the ground literalx (a, B)
whena is O(a, B), andO(a, B) whena is x (a, B). Formulas
containing no free variables are said to desed

We sometimes write)(s, t) ast(s), and x(s,t) as—it(s).

In order to express sentences of the form “amorabjects,
there are exactly objects that ared,” we introduce a kind of
counting quantifier, and write the sentencedd$z. A(x), i.e
JF/rz.0(z, A).

Definition 5 (Global formula) For fixed sets of row-constants
R ={ay,...,a,} or of col-constant® = {A;,...,A,}, the
following forms of formulas are calledlobal formulas: For
any A anda,

3y € RA(z),
/"X € C.X(a),

Ji/ng € R-A(z),
J/nX € C.-X(a).

T:RxC— {0, x,b}, whereR (resp.C) is some finite set
of row-constants (resp. col-constants)af

Note that no entry can be marked with more than one of
0O, X, b at the same time.

As usual, any pair of tables, s&y andT5, are identical
if they consist of the same constants, and if thex marks
of all entries inT} andT» are also identical. This is formally
defined as follows.

Definition 9 (Equivalence of tables)A table T3 is a subtable
of Ty, written as7T; C T5, when:

e all row- and col-constants af; are also those df5;

e forany(a,;, Aj)-entry of Ty: if itis O in T, it is also
O in Ty, and if it is x in T, itis also x in T5.

T, and Ty are (syntactically) equivalentwhenT; C T, and
T, C Ty hold.

If a set of constants is clear from the context, it is abbreviated

as3/ "z A(z).

Note that, by definition, two specific tables that differ only

Global formulas are simply abbreviations of the appropriatd the orders of their rows and columns are equivalent.

first-order formulas. Leto be a permutation of the given
row-constantsay, ...,a,, and S, be the set of all their
permutations. We then defiré/"z ¢ R.A(z) as

V' (Alas) Ao A Aags) A= Alagia) A+ A=Alagn) )
ocES),
We treat3"/"z € R.—A(z) in a similar manner.

Let o be a permutation of the given col-constadts ..., A,,

C. Semantics ofiLT

We now define the semantics of oHlLT as a particular
case of the semantics of many-sorted logic. (See [6] for the
semantics of many-sorted logic.)

Definition 10. A structure M is (M,ow, Mo, I), Where:
M., and M., are disjoint hon-empty domains for the row
and column sorts, respectively.

and S,, be the set of all their permutations. We then definel is an interpretation function such that:

Ji/nX e C. X(a) a
\/ (Agl(a)/\-n/\Agi(a)/\ﬂAm-H(a)/\-n/\

gES,

—|Am(a)>

We again treaB’/" X € C.—X (a) similarly.

Example 6. For example, for some row-constamt and
col-constants C {A1, Ay, A3}, the global formula
3?/3X € C.X(a) is the abbreviation of the following formula:

(41(e )/\Ag(\;l)AﬂAg(&))
(41(a) A A3(a) A ~A5(a)
(42(a) A As(a) A ~A1(a)

\Y

where we omit trivial permutations such ds(a) A Ai(a) A

—As(a), which is equivalent to the first disjunct in the above.

Next, we define our tables.
Definition 7. A table T is anm x n-matrix over symbols

{0, x,b}; that is, a rectangular arrangement of the symbols,

12

e I(a) € M,, for each row-constan;
e I(A) e M.y for each col-constant;
° I(Q) g Mrow X ]\/[col-

Definition 11. A valuation v in M is a function that assigns
every row-variabler an entity of M,.,.,, i.€., v(2) € Myow,
and every col-variablé& an entity of M., i.e.,v(X) € M_y;.

Definition 12 (Truth conditions) The notion of satisfaction
of a formulay in a structureM with a valuationv, written
M = ¢[v], is defined inductively as follows:

o M EO(s,t)[v] if and only if (I(s)[v], I(t)[v]) € 1(O),
where[(s [v] = I(a) whens is a row-constant, and
I(s)[v] = v(z) whens is a row-variabler; Similarly

for ¢;

e M E —plv] if and only if M F~ o[v];
Truth conditions for other connectives,V,— are
defined as usual;

o M EVa.pv] if and only if, for all m € Mo, M =
plo(z = m)],
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where, inVIr (andVIc), the variablex (resp.X) may not occur free in any open hypothesis on
which ¢ depends; iWEr (andVEc), t is a row-variable/constant (resp. col-variable/constant).

[e]” [e]"

@[X.:: t] e Jrp X b
3X. P (

where, in3Ir (and3lc), t is a row-variable/constant (resp. col-variable/constantifn (and3FEc),
x (resp.X) may not occur free iny nor in any open hypothesis on whighdepends, except ip.

dEr,n dFEc,n

dx.p

Fig. 3 Inference rules for formulas idLT

wherev(z — m) is the valuation that is exactly the ]Rules for formulas\ are the rules forA, v, —,—,V,3, and
same a% except forz, andz is assigned ton; 1FE and RAA listed in Fig. 3.

M = VX.p[v] if and only if, for all m € M., M |=
plo(X = m);

] Rules for tables\ are the followingin, row, col, ext rules:

M = Jz.p[v] if and only if there existsn € M,.,,, such

L. A ... A
that M = plv(z — m)];

M = 3X.p[v] if and only if there existsn € M., such im0 (@A)

that M = p[v(X — m)]; | .. A ... | ... A

M = T for a tableT if and only if M E O(s,t) for a
any entry(s,t) of T that isQ, and M = x(s,t) for
any entry(s,t) of T that is x.

In order to describe the same types of rules, we use the symbol

M is said to be amodel of ¢, written asM | ¢, when : L We
®, which denotes eithep) or x. Furthermore,® denotes)

M = ¢[v] holds for any valuation in M.

The semantic consequence relation in bl is defined
as follows.

Definition 13 (Semantic consequencd)et I" be a set of closed

formulas, letG be a set of global formulas, and [Etbe a table.
A closed formulayp is said to be ssemantic consequencef
I,G,T, written asI', G, T | ¢, when any model of’, G, and
T is also a model ofp.

D. Inference rules ofLT

In this section, we introduce the inference rulesHifT,

which consist of the usual natural deduction rules for formulas

and rules of table manipulation.
Definition 14 (Inference rules) The inference rules oHLT

if ® is x, and denotex if ® is O. The following four rules
of row andcol are duplicated depending on whetheris O
or x.

Let o be a permutation of columnd,,..., A,. Under the
permutation, we assume that entries marked)aand those
marked asx are grouped.

| Aot ... Agi  Agiga Aon
a ® & o O )
/"X ® (a, X) _
| Aoa Asi  Acit Aon rone
a ® . ® ® . ®

consist of the following rules for formulas and rules for tables.where each] is blank or®.

13



M T W _F

. W(c)V F(c) F/*X.X(c)
c —~M(c) A =T (c)
d W(a) —M(b) —M(c) —T(c)
mQ, X
|M T W F
a O
b| x
c| X X
d 31/4X. X (a)
row X
|M T W F
al x x O X
b | x
c| x X
d 342 M ()
colO
‘M T W F
a X X O X
b | x
c| X X
d| O I/ 4 W ()
colx
M T W F
al X X O X
b | x X
c| X X X
d| O X
M T W F
al X X O X
b| x O x X
c| X X X O
d| O x X X
M(d) NT(b) AW (a) A F(c)

Fig. 4 A proof inHLT of Example 1. In the figure, each double line is an abbreviation of some applications of inference rules.

| As1 Asi  Asiti Agn
a O - O R ® )
3/ X. @ (X, a)
row®
| Aoy Asi  Aciti Aon
a ® L. ® ® ®

where each is blank or®.

Let o be a permutation of rows,,...,a,. Under the per-
mutation o, we assume that entries marked @sand those
marked asx are grouped.

| A
As1 D
A : .
Aol ® Goj E
: : Goj+1 ®
Ao j ® .
o O - i/m
asst1 ton | B Feoe)
. S A «
Aom O FMe. @ (A,x) T ®
2 col® )
Aol ® . ®
oj ®
: Agj41 ®
Aoy @
Goj+1 ® u )
Aom ®

where each is blank or®. where eachl is blank or®.
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T
AO(ay, A7) | (ag, A7) is O in T A N{x(ag, Ag) | (ag, Aq) is x in T}

The in-rule enables us to convert ground literals into a
table, and, conversely, the:t-rule enables us to convert a table
into a conjunction of literals. Theow andcol rules pertain to
the manipulation of tables.

The notion of proof is defined inductively as usual in
natural deduction.

Definition 15. Let I be a set of closed formulas, I6tbe a
set of global formulas, and I&t be a table. A closed formula
 is provable froml’, G, T, written asI’, G, T F ¢, when there
exists a proof ofp from the open assumptioh, G, T'.

Example 16. A proof in HLT of Example 1 is given in Fig. 4.

E. Translation of tables

We give a translation of the rules for tables into those
for usual natural deduction without tables, from which the
soundness and completeness theoremdLdf are obtained.

We first define the following terminology.
Definition 17. A conjunction of literals is said to beonsistent
when it has a model.

We define the translation of tables into a formula. This is
completely parallel to thezt-rule of HLT.



[A1 A As A ﬁAQ]l A1 N As [A2 A Az A ﬁAﬂl A1 N As
—— AE AE ANE

ﬁAQ A2 j141 Al NE
Aindenag L g o L g ﬁE
F/3X . X (a) 7 A 7 T
VE, 1
—As A N As 7
Ay A Ay A —As A
Fig.5 A translation given in Example 20
Definition 18. Each tablel” is translated into a conjunction by the definition of the permutation f&/"X.X (a).
of (consistent ground) literalg as follows: Hence, by applying thel E-rule, we obtain—A,,,.
T° :/\{o(aj, A;) | (aj,A4;)isOinT} Therefore, in every case, we obtaiA ,,, from A, A—A .

Thus, by applying the/E-rule, we obtain a proof of:A,,,.
A Nfx(az, Ai) | (a5, A;) s x in T} Y appying P

As we haveA ,; by the initial assumption, by applying the
Conversely, it is easily seen that, for any consistent con/\/-Tule, we obtainA,; A A, which is the translation of

junction of ground literals, there exists a corresponding tablefN€ conclusion of the givenow x-rule. u

Thus, we may regard a tableand a consistent conjunctiah  Example 20. Let us consider the following application of the
of ground literals to be interchangeable, and (slightly abusing o x-rule:

: : A1 Ay A
our notation) we write, for example; C 7. | AL Ax As
) pq; - a ‘ @) @) 32/3X.X(a)
Based on the translation of tables, we give a translation of (AL Ay A rowx
table manipulations into rules of natural deduction. (See also a0 0O x

Example 20 below.) hat 32/3 A AA p A AA

. . Note that3*/°X.X = A A% \% A A
Theorem. 19 (Translation) If g,rl F Ty with only row.and ~A5) V (Ag A As /\(Z)Al), \Svhlere w2e abbrgzliatéli(la) asSAi
col rules inHLT, theng, Ty = T3 in natural deduction without 54" omit trivial permutations. This application of thew x-

tables. rule is translated as in Fig. 5.
Proof: It is sufficient to give a translation afow andcol

rules into combinations of rules of natural deduction without
tables.

The soundness ¢iLT is obtained straightforwardly by the
above theorem of translation, because each rule for tables is
translated into a combination of rules for formulas by Theorem

Because all cases are treated in a similar way, we show9, and each rule for formulas, i.e., of many-sorted logic, is
only the following rowx-rule (we assume that alll of the  known to be sound.

rule are blank for simplicity). Theorem 21 (Soundness ofiLT). LetI' be a set of closed

| Aot oo Ay Agit1 ... Agn formulas,G be a set of global formulag] be a table, andp

al O ... O 31/mX.X (a) be a closed formula. IF,G, T F ¢ in HLT, thenT', G, T = ¢.
| Act ... Asi Asig1 ... Aon row . . .

al O ... O < X Because our inference rules and semantidsldf “without

tables” are just particular cases of those of many-sorted logic,
From our translation of tables, the table in the premises ofhe following completeness theorem 6fLT holds via the
the row x-rule is translated intod,1(a) A --- A Ayi(a). Note  theorem of many-sorted logic. (See [6] for the completeness
also that another premise of thewx-rule 3/"X.X(a) is  of many-sorted logic.)

Vi es, (Aﬂ(a)/\' NAzi(a) A=Az (a) A '/\ﬂAm(a))- Theorem 22 (Completeness dfiLT). LetT be a set of closed

Given these two formulas, we construct a natural deductiofiormulas,G be a set of global formulag]’ be a table, andp
proof. be a closed formula. IF, G, T = ¢, thenT',G, T I ¢ in HLT.

a ndV\()eyci%:Otetﬁfgé;?uengggatnjngn‘?;ﬁ(X)_/.\_'}\' ﬁ ;14”'83' Proof: Based on the translation of tables, a tatfle
Then. we CT;n Writed/" X. X (a) agl\jl (Ani A—A T”) " and the consistent set of ground literdlS are equivalent.
' ’ TES, \TIT ) Thus, T',G,T = ¢ is equivalent tol',G,T° E . Then,

In order to apply thevE-rule of natural deduction, we by the completeness theorem of many-sorted logic, we have
divide the following cases according to the form of eachl',G,T° I ¢. Again, by the translation (more precisely, by the
disjunctA ; A—A ,,, of the aboved/” X.X (a), and we derive ext-rule of HLT for T'), we havel',G,T - ¢ in HLT. |
-A,, in each case.

IIl. CONCLUSION AND FUTURE WORK
1) Whent = o, or whenA,; < A.; holds, we apply

the AE-rule of natural deduction té\ ,; A —=A,,, tO We investigated reasoning with tables by exploiting local
obtain—A ., which is equivalent to-A,,,. and global conditions. This type of reasoning is not just a mere
2) Otherwise, we apply the.E-rule to A; A ~A.,, puzzle, but can be applied to simple scheduling problems. In
and obtain—A.,. Note that at least one of the order to formalize our reasoning with tables, we introduced a
conjuncts of—A ., contradicts a conjunct ofA; heterogeneous logic with tableldL T, with a combination of
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first-order formulas. For the formalization BILT, we applied manipulations on the table, i.e., by dealing only with the
the syntax and semantics of many-sorted logic. Although we&umber of (O, x symbols in each row and column. Further-
actually applied two-sorted logic, as we studied the mostnore, there are two ways, in a sentential system, to derive a
basic binary relationship between objects, our system can b&tatement, sayd'works on Monday {/(d))": deriving M (d)
extended to cover the-ary relationship between objects, as from —M(a), =M (b),—~M(c) by checking every person on

in [2], by applying the general many-sorted logic. Monday, and from—T'(d), =W (d), —F(d) by checking every

. . . possible working day ofi. These derivations correspond, in
We defined inference rules fddLT that consist of the ur table system, to an application afl rule androw rule,

usual natural deduction rules for the first-order formulas an espectively
table manipulation rules. These were designed to reflect our '
intuitive and effective manipulation of the tables. We inves- These comparison between sentential systems and our
tigated the translation of tables and their manipulations intdable system should be investigated by combining logic and
formulas and natural deduction inference rules. Then, basetbgnitive science methods.

on these translations, we obtained soundness and completeness
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suggests that the number of steps of inference is reduced by
our row andcol rules as illustrated in Example 20.

(2) However, the above difference appears in a fragment where
our tables andow andcol rules work most effectively. In other
words, our table fragment ¢iLT, consisting only of rules for
tables tow, col,in,ext rules) without rules for formulas, is
not complete with respect to our semantics. That is, there exists
a formula which is semantically valid, but is not provable with
only rules for tables. In contrast, the natural deduction system
without tables is complete, and there are no restriction on a
given problem.

(3) Once a table is constructed, and sentences are translated
into the table (for exampled‘works on WednesdayX (a))”

is translated as(a, W)-entry isO,” and “exactly one person
should work on Wednesdayd(/*z.W (z))” is translated as
“there is exactly one) in column W), reasoning with the
table is conducted by completely graphical or geometrical
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