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INTRODUCTION 

 

In this paper we explore the notion of autarchy of 
diagrammatic representation that was debated in the German-
speaking world in the 18th century. What is diagrammatic 
autarchy? In one of his writings, Leibniz claimed that one of 
the aims of the characteristica universalis (his big project of a 
general formal and deductive method for science) is to find 
“autarchic” (αυτάρκεις) characters: “One must know that 
characters are more perfect the more they are autarchic, in 
such a way that all the consequences can be derived from 
them” [1, pp. 800-801]. We will use this Leibnizian term to 
indicate an important property of some diagrammatic 
representations, and we will try to show that much of the 
debate about diagrams and iconic representations in the 18th 
century, largely reported in [2], may be considered as a debate 
about the notion of autarchy. Of course, there is much more in 
that debate than the discussion of diagrams for syllogistic [3; 
4, ix]. However, we believe that the notion of autarchy is able 
to capture an important aspect of that debate. We will focus on 
the linear diagrams invented by Leibniz and Lambert and 
discussed in the German logical panorama of that time.  

We do not attempt to answer the question whether or not 
the notion of autarchy might be re-phrased or explained in the 
terms of some contemporary theory of diagrammatic 
reasoning or read through a more sophisticated logical-
philosophical conception, although we will mention a couple 
of interesting parallels in the last section. Our principal aim 
here is to understand what these thinkers thought about 
diagrammatic representations, and especially what their 
criteria were to believe that one system of diagrammatic 
representation is better than, or preferable to, another with 

respect to its being more or less autarchic. To be precise, 
therefore, our reconstruction contributes not so much to the 
history of logic diagrams, but to the history of the ideas about 
logic diagrams, or to the history of the philosophy of 
diagrams. 

 

I. LEIBNIZ 
 

In some of his writings, Leibniz (1646-1716) claimed that 
the aim of the characteristic is to find (adhibire) characters 
such that all the consequences can be derived from them. Such 
characters are “autarchic” (αυτάρκεις). Paraphrasing Heinrich 
Hertz’s famous maxim, Leibniz’s ideal of diagrammatic 
autarchy amounts to this, that the necessary logical 
consequences of the diagram are always the diagram of the 
natural necessary consequences of imagined object [5, p. 75].  

In his mathematical and logical works, Leibniz worked out 
different examples of “autarchic” systems of symbols. For 
example, the binary notation is said to be more autarchic than 
the decimal in that in the binary “all that can be affirmed about 
numbers can be demonstrated from their characters” [1, p. 
800], which is not true for the decimal. Further, Leibniz 
considered algebra as an imperfect instrument for treating 
geometry; algebra is only the characteristic of indeterminate 
numbers or magnitudes (grandeurs), but does not express 
places, angles and motion. A more perfect system of 
geometrical notation (characteristica geometrica) is therefore 
imaginable in which the simple enunciation of the problem is 
already its solution, or one in which the enunciation, the 
construction and the demonstration are one and the same thing 
[1, p. 910; 6, II, pp. 20-21, 228-229; 6, V, pp. 141ff).  

The notion of autarchy also applies to logical notations. In 
his 1686 “Generales Inquisitiones de Analysi Notionum et 
Veritatum” [7, pp. 356-399] and in other writings of roughly 
the same period [7, pp. 206-210, 247-249, 292-321], Leibniz 
proposes a system for representing propositions and 
syllogisms by means of linear diagrams. Such diagrams, as 
one of these writings says, are expressly intended as a 
“demonstration of the logical form” (de forma logicae 
comprobatione per linearum ductus [7, p. 292].  
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In Leibniz’s linear system (Figures 1-4) the extension of 
concepts is represented by parallel straight lines, while the 
dotted vertical lines indicate the relation of inclusion or 
exclusion among concepts: when the vertical lines cut off real 
segments on each parallel, the proposition is affirmative, when 
they pass entirely outside of one or both the parallels the 
proposition is negative (cf. [8; 4, viii]). Leibniz claims that this 
system is capable of showing which of the four propositional 
forms are convertible and which are not. The diagrams of the 
universal negative and of the particular affirmative (Figures 2, 
3) are symmetrical, and therefore these propositions are 
convertible (conversio simplex: “No B is C” is convertible into 
“No C is B”; the same applies to the particular: “Some B is C” 
is convertible into “Some C is B”); The diagrams of the 
universal affirmative and of the particular negative (Figures 1, 
4) are not symmetrical, and therefore these propositions are 
not convertible. Of course the universal affirmative is 
convertible into a particular (per accidens: “All A are B”, then 
“Some B is A”).  

It is important to note that, besides these linear diagrams, 
Leibniz draws the correspondent circular diagrams in the way 
Euler would do later. To differentiate the circular diagram of 
the particular affirmative from that of the particular negative, 
he uses letters (Figures 3, 4). In the circular diagrams the 
letters are placed in such a way as to indicate the nature of the 
proposition, whether affirmative or negative. In the linear 
diagrams this expedient is not necessary, for the figure shows 
by itself whether the particular proposition is affirmative or 
negative. Therefore, Leibniz believes, the linear are more 
autarchic than the circular diagrams, for in the latter the figure 
is not self-sufficient in determining whether the proposition is 
affirmative or not: we must use a conventional or symbolical 
devise in order to differentiate the two forms.  
 

 
Fig. 1. [7], p. 292 
 

 
Fig. 2. [7], p. 293 
 
 

 
Fig. 3. [7], p. 293 
 
 

 
Fig. 4. [7], p. 293 

Leibniz also proposes a version of these diagrams in which 
the part of the line which is relevant for the affirmation or 
negation is doubled [7, pp. 311-312] (see Figure 5). This 
method – that is, to double the part of the line which is 
affirmed or denied of the other – is important because it 
represents visually what Leibniz calls the distribution or non-
distribution of the terms, that is their quantity. A term is 
universal if its line is completely doubled; it is particular if its 
line is only partially doubled. In the universal affirmative, for 
example, the line of the subject is completely doubled, and so 
the subject is universal, while in the particular the line of the 
subject is only partly doubled, and so the subject is particular. 

In order to construct the diagram of the syllogism, Leibniz 
draws the major premise and then, using the line of the middle 
term already drawn, adds the minor premise. To obtain the 
conclusion, he draws two continuous vertical lines starting 
from the double part of minor term towards the major term. If 
these continuous verticals cut off a real segment of the other 
extremes, then the conclusion is affirmative. If they fall 
outside it, the conclusion is negative. For example in Barbara 
(Figure 6), the two continuous vertical lines from D fall 
entirely on B, and so the conclusion is affirmative. Further, all 
D is taken into consideration – its line is completely doubled - 
and so the conclusion is universal: “All D are B”. In 
Camestres (Figure 7) the two continuous lines are again drawn 
from D to B, but they fall outside B, and therefore the 
conclusion is negative. Further, all D is again taken into 
consideration, so the conclusion is universal: “No D is B”.  

 

 
Fig. 5. [7], p. 311-12 

 

Fig. 6. [7], p. 294 
 
 
 

 
Fig. 7. [7], p. 295 
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II. LAMBERT 
 

Johann H. Lambert (1728-1777) calls “scientific” those 
signs that are so constructed as to serve as perfect substitutes 
for their objects. The more a system of signs can be made 
object of reasoning according to simple rules, the more 
scientific it will be: “The signs of concepts and things are 
scientific in the stricter sense if they not only represent in 
general those concepts and things, but also indicate 
relationships such that the theory of the object and the theory 
of its signs can be interchanged” [9, III, § 23].  

Lambert’s Zeichnungsart, his system of linear diagrams, 
is quite similar to Leibniz’s. It is not clear whether Lambert 
knew Leibniz’s diagrams, as most of the relevant texts have 
been published later. In his Neues Organon [9, I, §§ 173-194], 
Lambert represents concepts by means of lines, propositions 
as relations between two lines, and syllogisms as relations 
between three lines. Lines may be either closed or open 
(having dotted extremities), depending on the certainty or 
uncertainty of the distribution of the terms represented by 
them (i.e. depending on the quantity of these terms). The four 
traditional propositional forms are represented as in Figures 8-
11. The use of uppercase and lowercase letters at the 
extremities of the continuous segments is of no use at all, and 
may be easily ignored. 

 
Fig 8. [9], I, § 181 
 
 

 
Fig 9. [9], I, § 183 
 
 

 
Fig 10. [9], I, § 184 
 
 

 
Fig. 11. [9], I, § 184 
 

 
Fig. 12. [2], p. 218 

 
 

Lambert claims that his Zeichnungsart not only shows 
what relations obtain among concepts, but also shows what 
other relations may be deduced therefrom by the mere 
observation of the figures [8, I, §§ 191, 194]. Like Leibniz, 
Lambert claims that his diagrams are capable of distinguishing 
the different propositional forms one from another; further, 
each of the four propositional forms has its own diagram, 
which is different from the others, so that there is no risk that 
different propositions might be represented by the same 
diagram, or that different diagrams represent the same 
proposition. 

But further, Lambert claims that these diagrams always 
and necessarily indicate what parts of a concept are 
undetermined, that is, they express our imperfect knowledge 
about a concept’s extension, therefore showing whether or not 
a proposition is convertible. For example, take the universal 
affirmative (Figure 8); we may convert it per accidens into the 
particular affirmative “Some B are A” simply by reading the 
diagram top-down instead of bottom-up. The dotted part of the 
line indicates that, when converted, the corresponding term is 
to be taken particularly (Some B). Likewise, the universal 
negative (see Figure 9) may be simply converted (conversio 
simplex) by reading it from the right to the left (“No B is A”). 
This means that the same diagram can express different 
propositions depending on the way we read it. 

It is not clear how things stand with the particular 
affirmative (Figure 10). Reading it top-down, as we do for the 
universal affirmative, would not give us the converted 
proposition. We would like to read it top-down as “All B are 
some A”, which introduces the quantification of the predicate, 
but Lambert would not have been happy with that (he 
famously opposed the quantification of the predicate 
maintained by G. Ploucquet).  

If we compare Lambert’s diagrams to Leibniz’s, we see 
that while Leibniz’s diagram for the particular affirmative is 
symmetrical, thus suggesting simple conversion (Figure 3) 
Lambert’s diagram, on the contrary, is not symmetrical, and 
does not show whether and how the proposition can be 
converted (Figure 10). 

It has further to be noted that Lambert proposes different 
ways to draw these linear diagrams. Figure 12 represents an 
alternative way of diagramming the particular negative Some 
M are not C. Lambert marks by an asterisk the limit of the 
extension, that is, the point beyond which the extension of a 
term cannot go without invalidating the proposition. For 
example, if we allow the dotted line of C to surpass the 
asterisk, the line C would extend to cover completely the line 
M, and the proposition “Some M are not C” would be false [2, 
p. 218] 

Lambert however insisted on a point that was of crucial 
importance for him. The idea is that those premises from 
which something follows should be capable of being 
diagrammed, while those from which nothing follows should 
not: “I begin by drawing the middle term, and then I draw 
either of the other two terms. If the third is capable of being 
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drawn, then the representation gives me anything that follows 
immediately from the premises. If the third term cannot be 
drawn, then nothing follows therefrom” [2, p. 152]. 

 Let us take the two negative premises “No M is P” and 
“No S is M”. I begin by drawing the middle term M (Figure 
13). Then I draw the major term P (Figure 14) so as to place it 
completely outside M (for no M is P). Now I should represent 
that “No S is M”. So I have to represent the third term, the 
minor term S, so as to exclude it from M, too. There are at 
least two geometrical possibilities here, for I can draw S either 
below P or not (see Figure 15). Since I am not entitled to 
choose between these possibilities, no conclusion follows 
from these two premises.  

If, on the other hand, one of the premises were either a 
universal affirmative or a particular, things would be different. 
For example, if the second premise were “All S are M”, it 
could well be represented, for there is just one possible place 
to draw the line of S (see Figure 16). This is the valid 
syllogistic form of first figure Celarent.  

Figures 17 and 18 represent the diagrams of the first and 
second figure according to Lambert [9, I, § 219]. In his 
Zeichnungsart, Lambert argues, everything that is relevant for 
the syllogistic calculation is represented; once a couple of 
propositions is diagrammed, one immediately sees whether 
something follows from it or not, and this is all that is required 
to have a scientific or autarchic system of notation.  

While Leibniz’s linear diagrams were not known in his 
times, Lambert’s method was much debated in the scientific 
community of 18th century German-speaking world. Georg 
Jonathan Holland (1742–1784), in the Anhang to his 
Abhandlung über die Mathematik [2, pp. 95-108], compared 
Lambert’s logical calculus to that of his Tübingen professor 
Gottfried Ploucquet. Holland claims that Lambert’s system of 
linear diagrams is not a real characteristic, as it is possible in it 
to represent premises from which false conclusions follow.  

Let us take the premises: “All P is O”, and “No A is P”. 
If we represent them as Holland does in the Anhang (see 
Figure 19), then the conclusion seems to follow that “No O is 
A”, which is a false conclusion. Lambert’s method of 
diagrams seems therefore imperfect, for in it it is possible to 
infer a false conclusion. But Lambert replies that Holland’s 
diagram for this syllogism is wrong: “The extension of the line 
O is greater than P, but indeterminately greater. And therefore 
it must in this case be dotted” [2, p. 151]. When the 
proposition “All P is O” is represented as in Figure 20, we see 
that it is not the entire line O which is excluded from the line 
A, but only the continuous part of it that coincides with P. So 
we must conclude not that “No O is A”, but only that “Some 
O are not A”, which is the right conclusion and which gives us 
the valid syllogistic form Fesapo of the fourth figure. This 
indicates why Lambert attaches so much importance to the 
expression of the quantification of concepts by means of 
dotted lines. Without this graphic device, the system may yield 
false conclusions. 
 

                                
Fig. 13. Middle term “M” 
 

 
Fig. 14. “No M is P” 
 

 
Fig. 15. Two geometrical possibilities for “No S is M” 

 

 
Fig. 16. One geometrical possibility for “All S are M”  
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Fig. 17. [9], I, § 219 
 
 

 
Fig. 18. [9], I, § 219 
 
 
 
 

 
Fig. 19. [2] p. 104 
 
 
 
 

 
Fig. 20. [2] p.  106 
 
 
 
 
 
 
 
 

III. PLOUCQUET 
 

Mention has to be made in this context of Gottfried 
Ploucquet (1716-1790), professor of philosophy at Tübingen 
and famous for having introduced in logic the quantification of 
the predicate. Although he was somehow skeptical about the 
idea of a universal characteristic both in the sense of a 
universal calculus and in the sense of a universal language, he 
nonetheless invented different systems of logical 
representation, including graphical and algebraical. His 
diagrams for syllogism are quite similar to Euler’s circles [2, 
pp. 6-8, 157-158] (Figures 21, 22).  

However, Ploucquet’s main interests lie in symbolic 
notations. His fundamental idea is that every affirmative 
proposition states an identity between subject and predicate: 
“The judgment is not the cognition of two things, but of just 
one; and the affirmative proposition reflects this by expressing 
one thing by different signs” [2, p. 52]. The theory of the 
identity of subject and predicate in an affirmative proposition 
is the ground of Ploucquet’s much discussed “quantification of 
the predicate”: not only the subject but also the predicate of a 
categorical form is qualified by means of a quantifier 
expression ‘omne’ (all) or ‘quoddam’ (some). If I affirm, “All 
men are animal”, animal is here taken particularly, that is, as 
“some animal”, so that the proposition actually affirms that 
“all men are some animal”. As a consequence, Ploucquet 
claims that each categorical form can be converted: since 
conversion consists in nothing else but exchanging subject and 
predicate, each categorical form is convertible, provided that 
the quantity of the predicate is made explicit by adding the 
“quantifiers”. In his symbolic notation, he uses uppercase 
letters for universally quantified terms, lowercase letters for 
particularly quantified terms, the symbol > for negation, and 
juxtaposition for affirmation (see Figure 23). 

In the debate with Lambert, Ploucquet moves several 
objections to Lambert’s system of diagrams. First, he claims 
that Lambert’s system has no specific sign to show whether a 
term is universal or particular (as he does in his own symbolic 
notation) [2, pp. 166-167]. Secondly, the diagram in Figure 24 
can be read either as “All A are B” or as “Some B are A”, 
which latter is the former proposition converted per accidens. 
Since Ploucquet does not accept the traditional version of the 
doctrine of conversion, these are two different propositions for 
him, and each has to have its own diagram. This can be done, 
he claims, if we mark graphically whether a term is universal 
or particular. 

Thirdly, Ploucquet observes that the representation of our 
imperfect knowledge about a concept’s extension by means of 
dots is of no use at all [2, p. 170]. Again, in the diagram in 
Figure 24, the dotted part represents that we do not know 
whether there are B that are not A, and that the only relevant 
part of the assertion is that all A are B. Since Ploucquet 
believes that in this proposition subject and predicate should 
be identical, he needs not employ the dots to represent our 
imperfect knowledge about B. For him, there is no such a 
thing as imperfect knowledge about a concept’s extension. 
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Lambert’s reply is that that which Ploucquet considers as a 
fault of the linear system - representing undetermined 
concepts by means of open or dotted lines – is on the contrary 
a virtue of it. For if we agree that “All A are B” may cover 
both the case in which B is greater than A (B>A) and the case 
in which B is identical with A (B = A), then the use of the 
dotted lines is of the utmost importance: we are obliged to 
represent both the determined and the undetermined part of a 
concept’s extension. By the device of the dotted lines, this 
indetermination is appropriately “made intuitive” (diese 
Unbestimmtheiten recht augenscheinlich zu machen) [2, p. 
215]. 

Ploucquet in its turn proposes an amendment of Lambert’s 
linear diagrams (Figures 25-27). In these diagrams any 
concept is expressed by a straight line as in Lambert’s system, 
but the quantity of the terms is not expressed by continuous or 
dotted lines, but by uppercase letters for universal concepts 
and lowercase letters for particular concepts [2, pp.179-181]. 
As one can easily perceive, Ploucquet’s system is a in fact a 
sort of mixture of algebraical notation (the representation of 
universal/particular terms with uppercase and lowercase 
letters) and geometrical notation (the lines one above the other 
to indicate affirmation of identity, and one external and 
separated from another to indicate negation). In other words, 
this system is neither completely diagrammatic, nor 
completely symbolic, but uses both algebraical and 
geometrical structures in order to express propositions and 
syllogisms.  

 
 
 

 
Fig. 21. [2] p. 6. 
 
 
 

 
Fig. 22. [2] p. 258 
 
 

 
Fig. 23. The 4 standard propositional forms according to Ploucquet 
 
 
 

 
Fig. 24. [9], I, § 181 
 

 
 

 
Fig. 25. [2] p. 179 
 
 

 
Fig. 26. [2] p. 179 
 
 
 

 
Fig. 27. [2] p.  180 
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IV. CONCLUSION 
 

In his correspondence with Holland, Lambert states that in 
Ploucquet’s symbolism it is on the basis of “external” 
information (i.e., syllogistic rules) that it is found e.g. that 
from a given formula nothing follows. It would be better, 
according to Lambert, if this “not following” could be shown 
by the diagram itself [10, pp. 192-193]. Lambert believes he 
has provided a rule to detect invalid syllogistic forms simply 
by the rules of construction of their diagram. As he declares: 
“Ploucquet calculates, while I construct or draw” [2, p. 151]. 

A couple of points may here be mentioned which indicate 
directions for further research, both historical and theoretical. 
One century after the debate, the ideal of an autarchic system 
of signs is still at work in the philosophy of notation of 
Gottlob Frege (1848-1925). The aim of the Begriffsschrift 
(1879) is expressly that of preventing anything intuitive or 
extra-logical from penetrating unnoticed in the chain of 
reasoning. Accordingly, all that is necessary to deduction has 
to be appropriately represented, so that the inferential chain is 
kept free of gaps, and at the same time anything without 
significance for the inferential sequence has to be omitted 
[11]. 

However, we believe that the closest explanation available 
of the notion of autarchy is the conception of corollarial 
reasoning, which is due to Charles S. Peirce (1839-1914). 
Peirce distinguishes between two kinds of deductive 
reasoning, which he calls theorematic and corollarial: “every 
Deduction involves the observation of a Diagram (whether 
Optical, Tactical, or Acoustic) and having drawn the diagram 
(for I myself always work with Optical Diagrams) one finds 
the conclusion to be represented by it. [...] My two genera of 
Deductions are 1st those in which any Diagram of a state of 
things in which the premisses are true represents the 
conclusion to be true and such reasoning I call Corollarial 
because all the corollaries that different editors have added to 
Euclid’s elements are of this nature. 2nd Kind. To the Diagram 
of the truth of the Premisses something else has to be added, 
which is usually a mere May-be and then the conclusion 
appears. I call this Theorematic because all the most important 
theorems are of this nature” [12, pp. 869-870]. In corollarial 
reasoning, the diagram of the premises already represents the 
conclusion; in theorematic reasoning, by contrast, the diagram 
of the premises must be transformed and experimented upon  
– in geometry, for example, subsidiary lines or figures are 
drawn - in order for it to represent the conclusion [13, 2.267]. 
Against Kant, Peirce maintains that all deductive reasoning, 
not just mathematics, is diagrammatic (constructive in Kant’s 
sense). We have to distinguish not between constructive and 
non-constructive forms of reasoning, but among different 
forms of constructive thinking according to the complexity of 
the construction (i.e., diagrammatization) involved therein [13, 
3.560].  

In Peirce’s terms, an autarchic system of diagrams is one 
in which any reasoning that can be performed is of the 
corollarial kind. In corollarial reasoning neither auxiliary 
constructions nor the appeal to “extra-diagrammatical” logical 

rules is needed in order to draw the conclusion desired. All 
that which is necessary to reasoning must be expressed 
diagrammatically in such a way as to enable the diagram of 
the premises to be, at once, also the diagram of the conclusion. 
In Lambert’s terms, a corollarial reasoning is one in which 
either the following or the not-following of a conclusion is 
shown by the diagram itself.  

 The second point worth mentioning concerns current 
diagram research. What we call “autarchy of diagrammatic 
representations” seems to correspond to the notion of “free 
ride”, or information which arises in a diagram as a by-product 
of its syntax. Already Jon Barwise and John Etchemendy 
observed that “Diagrams are physical situations. They must 
be, since we can see them. As such they obey their own set of 
constraints. [...] By choosing a representational scheme 
appropriately, so that the constraints on the diagrams have a 
good match with the constraints on the described situation, the 
diagram can generate a lot of information that the user never 
need infer. Rather, the user can simply read off facts from the 
diagram as needed” [14, p. 23]. As explained by Atsushi 
Shimojima, in any system of diagrams whatsoever there exists 
a set of operational constraints which may or may not 
intervene in the process of encoding and extracting 
information [15, p. 28]. Under certain conditions, some 
operational constraints will give rise to a free ride: “a free ride 
is where a reasoner attains a semantically significant fact in a 
diagram site, while the instructions of operations that the 
reasoner has followed do not entail the realization of it. Thus, 
we can view the process as one in which the reasoner has 
attained the fact without taking any step specifically designed 
for it” [15, p. 32]. Under different conditions, the operational 
constraints will produce “overdetermined alternatives” [15, p. 
33], that is, will produce pieces of information which do not 
follow from the diagram of the premises. 

In contemporary terms, then, the debate on logic diagrams 
pictured above may be taken as a debate on operational 
constraints. When Leibniz claimed that the most perfect 
systems of representations are those that are autarchic he was 
maintaining that those systems of logical or mathematical 
notation must be preferred in which the operational constraints 
always give rise to free rides. In his system of linear diagrams, 
the drawing of the conclusion from the premises is always a 
free ride because the conclusion is obtained directly from the 
diagram of the premises, without being necessary that any 
specific step designed for it be taken. 

Likewise, Lambert’s idea that in an adequate system of 
representation those premises from which nothing follows 
should not be capable of being diagrammed is captured by the 
notion of overdetermined alternative. A system which, given 
certain operational constraints, may produce overdetermined 
alternatives is one in which, in Lambert’s terms, the following 
or not-following of a proposition upon another is not a 
consequence of those constraints, but is the effect of 
“external” (non-diagrammatical) logical rules. In other words, 
if a system of diagrammatic representation is capable of 
producing overdetermined alternatives (as in the case of 
Bocardo in Figure 13), then that system is not autarchic in the 
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Leibnzian and Lambertian sense. On the contrary, if the 
system is capable of producing all the consequences as free 
rides, then that system is autarchic. An autarchic system of 
diagrammatic representation is therefore one in which a 
certain set of operational constraints always gives rise to free 
rides (corollarial reasoning) and never to overdetermined 
alternatives.  

The picture is no doubt more complicated than that, and 
new problems may arise which might contribute drawing 
parallels between old and new problems in logic, and building 
new bridges between the history of logic diagrams and current 
trends in diagrams research in computing and cognitive 
sciences. 
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