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Abstract—This paper discusses the role of continuity, 
connectivity and regularity in the design of spatial logic diagrams 
for N terms. Three specific diagrammatic schemes are discussed: 
Venn diagrams, Marquand tables and Karnaugh maps.  
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I.   INTRODUCTION: CONTUINITY AND CONNECTIVITY 

The aim of this paper is to discuss the role of the 
topological properties of continuity and connectivity in the 
design of spatial diagrams for N terms. Spatial diagrams have 
been and are still widely used in logic. They have been 
popularized by Leonhard Euler who used them thoroughly in 
his Letters to a German Princess (1768). There are no 
conditions as to the shape of the spaces as long as they are 
formed by continuous surfaces within closed curves. Early 
logicians used mostly circles but squares have been also 
regularly used, especially when the number of terms increases.   

The very idea of spatial diagrams is simple: to represent a 
class of individuals with a space where those individuals are 
gathered. That’s how Euler introduced his diagrams: “As a 
general notion contains an infinite number of individual 
objects, we may consider it as a space in which they are all 
contained. Thus, for the notion of man we form a space […] in 
which we conceive all men to be comprehended” [1, p. 339]. 
For instance, if we consider the circle A in [Fig. 1] to represent 
the class of men, then it is understood that every man is 
comprehended within that circle. This mode of representation 
deserves further exploration as to what cognitive and 
semeiotic processes are at work when it comes to representing 
a class with a space. 

 
Fig. 1 

 

Charles S. Peirce considered that spatial diagrams are 
“veridically iconic, naturally analogous to the thing 
represented, and not a creation of conventions” [2, p. 316]. 
Umberto Eco disputes this view and argues that the 
representation of classes with spaces is rather purely 
conventional because belonging to a class is not a spatial fact 
“except the fact that I might be defined to belong to the class 
of all those who are located in a certain place” [3, pp. 228-
229]. Now, the interesting point is that it is with this very 
understanding that Euler introduced his spatial diagrams as we 
indicated above. As such, the individuals that form a class are 
to be imagined as if they were all assembled within that single 
space. Hence, what Eco considers to be an exception would 
rather be the general rule. The fact that these individuals 
cannot be really assembled does not matter. Classification 
itself is a purely mental operation and there is no need for 
classes or spaces to really exist. All that is required is to have 
an accurate diagram that provides a visual aid.  

Having a continuous space simplifies the expression of 
what is represented and provides a representation that could be 
visually better grasped. However, saving continuity becomes 
difficult when the number of terms represented increases. 
There, it often happens that a class A is represented with a 
discontinuous space. For instance A could be represented with 
several sub-spaces representing each a subdivision of A. In 
such situations, diagrams are better drawn in such a way as to 
make those subdivisions connected. As such, they can be 
grouped into one continuous space standing for the entire class 
A as shown in [Fig. 2]. Hence, the connectivity of the 
subdivisions is what makes the whole space continuous. 

 
Fig. 2 

Research supported by Estonian Research Council Project PUT267, 
“Diagrammatic Mind: Logical and Communicative Aspects of Iconicity,” 
Principal Investigator Prof. Ahti-Veikko Pietarinen. 

ABC ABC’ 

AB’C’ AB’C 

ABC ABC’ 

AB’C’ AB’C 

 
A 

31



Keeping the subdivisions connected might prove to be 
difficult in diagrams with more than 3 or 4 classes. In the 
following, we will discuss how three designers of spatial 
diagrams (Venn, Marquand and Karnaugh) handled the issues 
of continuity and connectivity in diagrams for N terms. 
Drawing such diagrams for more than 3 terms was not 
required within syllogistic where arguments were reduced to 
series of syllogisms. Such problems were easily solved with 
traditional Euler diagrams. One represents classes with circles, 
then the logical relations of the classes are represented by the 
topological relations of the circles. However, the development 
of Boolean algebra changed the picture. Logicians had to face 
problems where they were offered an indeterminate number of 
premises with an indeterminate number of terms and were 
asked to extract the conclusion that follows by eliminating 
undesired or superfluous terms.  

 

II.    VENN DIAGRAMS FOR N TERMS 

In 1880, the logician John Venn, who was a great admirer 
of Boole, invented a new type of diagrams where relations 
between classes are not directly exhibited by the circles [4]. 
One first draws a framework diagram where all combinations 
of terms are represented. For instance, for 2 terms x and y, one 
uses two circles to divide the universe into 4 compartments xy, 
xy’, x’y, x’y’ (where x’ stands for not-x, and y’ for not-y).  

In order to represent propositions, one has to add marks to 
indicate the occupation or emptiness of the compartments. For 
instance, to represent the proposition “All x are y”, one has to 
shade xy’ to indicate its emptiness, as shown in [Fig. 3]. In 
order to handle more complex logic problems, Venn designed 
diagrams where n continuous curves divide the universe into 
2n compartments. For n = 3, one simply uses the famous three-
circle diagram [Fig. 4]. For n = 4, Venn knew how to add a 
curve to his 3-term diagram in order to obtain a 4-term 
diagram [Fig. 5]. However, he preferred to use a new figure 
with four ellipses, as shown in [Fig. 6], because of its 
simplicity and symmetry [5, p. 116]. For n = 5, Venn failed in 
making ellipses intersect in the desired way. So, he suggested 
using the diagram shown in [Fig. 7].  

 
Fig. 3 

 

 
Fig. 4 

 
Fig. 5 

 
Fig. 6 

 
Fig. 7 

 
Fig. 8 

In this 5-term diagram, the fifth term (z) is represented by 
an annulus. It follows that class not-z is discontinuous and is 
formed by two disconnected spaces. It must be noted that 
Venn knew, using an inductive method, how to represent 5-
term continuous diagrams [Fig. 8]. However, Venn preferred 
to use the other diagram because of its symmetry, in spite of 
his dissatisfaction with its discontinuity. For more than 5 
terms, Venn believed his diagrams would not offer the visual 
aid one would expect, even if they continue to be accurate: 
“Up to four or five terms inclusive, our plan works very 
successfully in practice; where it begins to fail is in the 
accidental circumstance that its further development soon 
becomes intricate and awkward, though never ceasing to be 
feasible” [5, p. 113]. When Venn faced such complex 
problems, he preferred to use tabular diagrams that were 
invented by the logician Allan Marquand [5, pp. 139-140, 
373-376]. 

 

III.    MARQUAND TABLES FOR N TERMS 

Allan Marquand was one of Peirce’s students at John 
Hopkins University. He introduced new diagrams that were 
designed to supersede Venn diagrams, Marquand says: “It is 
the object of this paper to suggest a mode of constructing 
logical diagrams, by which they may be indefinitely extended 
to any number of terms, without losing so rapidly their special 
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function, viz. that of affording visual aid in the solution of 
problems” [6, p. 266].  

Marquand used squares rather than circles. He first 
represents the logical universe with a square. The limitation of 
the universe, absent in Venn diagrams, makes it possible to 
represent with a closed surface the class where all terms are 
negated. Marquand tables should not be understood however 
as Venn diagrams to which we have added a square around to 
limit the universe. Indeed, the cognitive constructions of the 
diagrams differ. Venn puts together the individuals that form a 
given class x and leaves outside the individuals that are not x. 
Marquand rather divides the universe into 2-subclasses x and 
not-x, equally considered. Thus, Venn proceeds by 
classification while Marquand appeals to division. 

After one has represented the universe with a square, it 
suffices to divide it into subdivisions corresponding to the 
different combinations of the terms involved in the argument. 
For two terms A and B, one gets [Fig. 9] (where a stands for 
the negation of A, etc.). This diagram shows how important it 
was to choose a rectilinear shape in order to get a symmetrical 
division of the universe. Making subdivisions of equal size is 
purely conventional for Marquand and Venn. However, it is 
obvious that for convenience and practicality, it is better to 
make the compartment of equal size. It must be remembered 
that Euler and Venn always favored symmetrical diagrams 
where classes were represented with congruent spaces (same 
shape and same size). For 4 terms, Marquand divides the 
square in the way represented in [Fig. 10].  

It is important for our purpose to understand how the order 
of the combinations is obtained on each side. For instance, 
horizontally, Marquand divides first the square into two 
subclasses: A and not-A. Then each sub-class is itself divided 
into sub-divisions C and not-C. Hence, this dichotomy 
division produces the horizontal sequence AC, Ac, aC, ac that 
can be observed on the top of the diagram. The vertical 
sequence is produced similarly. One immediately observes 
that several classes are not represented with continuous 
spaces: C, c, D and d.  

 
Fig. 9 

 
Fig. 10 

Contrary to Venn who abandoned unhappily the continuity 
of his diagrams, Marquand did not seem to be bothered with 
this constraint, as long as the diagrams are easy to extend for 
further terms. All one has to do is to divide again the square 
dichotomically to introduce an additional term. After 
Marquand, several tabular schemes have been introduced and 
continued to be used in subsequent years [7; 8]. Much later, 
interest in such diagrams has been renewed in the 1950s when 
computer scientists had to simplify logical forms in order to 
get better and cheaper electronic circuits. Such methods have 
been notably introduced by Edward W. Veitch in 1952 [9] and 
Maurice Karnaugh in 1953 [10]. 

 

IV.    KARNAUGH MAPS FOR N TERMS 

In order to simplify a logical form F, one first divides each 
term of F into its simplest components, then one collects 
together the components to get a simpler expression of F. Let 
us consider the logical form: F = A’B’C + AD + A’BD + A’ 
B’C’ (where A’ stands for the negation of A, etc.). There are 
four variables A, B, C, D. Karnaugh uses a square divided into 
16 subdivisions; each subdivision corresponds to one 
combination of the variables [Fig. 11]. For each combination 
where F is true, one puts 1 in the appropriate subdivision. 
Each red curve in [Fig. 11, left] highlights the subdivisions 
that correspond to one term of F. For instance, the eastern 
circle encloses the cases where term AD is true.  

Any equivalent form of F would still have the same truth 
value for any given combination of the variables. Hence, 
looking for a simpler (equivalent) form of F does not involve 
changing the content of the subdivisions. It rather requires 
looking for a different assemblage of the subdivisions, with 
fewer and larger curves yielding to fewer and more general 
terms. In present case, [Fig. 11, right] shows how we get a 
simpler expression of F. For instance, the vertical blue curve 
encloses all affirmed subdivisions where A’B’ is fixed. 
Similarly, the horizontal curve encloses eight affirmed 
subdivisions with one fixed variable D. Hence, we obtain 
simple form: F = A’B’ + D. 
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Fig. 11 

 
Fig. 12 

Karnaugh considered that finding such assemblages of 
connected squares could be done by “direct inspection” [10, p. 
594]. This is made possible by the fact that the variables are 
ordered is such a way as to always have one variable 
unchanged between adjacent squares. Indeed, the appeal to 
Gray’s sequence: 00, 01, 11, 10 (see the horizontal sequence at 
the top of the map) makes simplification easier. It is 
noteworthy that Veitch first used the same sequence as 
Marquand’s: 00, 01, 10, 11 [Fig. 12, left]. Thus, several 
variables were represented with discontinuous spaces. For 
instance the two green curves represent together a single 
variable. In Karnaugh’s map [Fig. 12, right], that variable is 
represented with one continuous space, as shown by the green 
curve. Here we see how Karnaugh changed the sequence in 
order to restore the continuity of classes that were abandoned 
by Marquand and Veitch. Interestingly, Veitch himself 
adopted later Karnaugh’s sequence [11].  

It might be objected that some variables in Karnaugh maps 
are also discontinuous (see the red and blue curves in [Fig. 12, 
right]). However, Karnaugh considered those opposite ends of 
columns and rows to be adjacent, as if the map was inscribed 
on a torus or a cylinder. As such, their connectivity was saved. 

 

V.   CONCLUSION: TOWARD REGULARITY 

The discussion of Venn, Marquand and Karnaugh 
diagrams shows the crucial role of continuity and connectivity 
in the making of those diagrams for more than 3 terms. These 
topological properties have been differently handled by these 
authors. Venn knew how to draw continuous classes but 
sacrificed that continuity in favour of regularity in his 5-term 
diagrams. On the contrary, Marquand was not bothered as to 
whether the classes were continuous or the subdivisions 
connected. Finally, Karnaugh made his best to save the 
connectivity of spaces by imagining a three-dimensional 

construction (cylinder) even when the diagrams were drawn 
on a two-dimensional surface. 

It is obvious that when N is superior to 5 or 6 terms, using 
continuous figures becomes tedious as it makes it difficult to 
get regular diagrams. Regularity here is meant as the 
possession of some features (symmetry, congruence, 
familiarity, recurrence) that simplify the identification of the 
terms involved in each sub-division of the diagram. 
Mathematicians tackled this problem for more than a century 
in order to construct ‘nice’ Venn diagrams for N terms. From a 
mathematical viewpoint, the continuity of the diagrams is 
essential as is rightly explained by Anthony W. F. Edwards: 
“Both Venn and Carroll gave up at four sets and offered five-
set diagrams whose fifth set did not consist of a closed curve, 
so that some regions became disjoint. In our terminology, they 
were not really Venn diagrams at all: once one admits the 
possibility of sets being bounded by more than one closed 
curve, one might as well just list all the binary numbers 
between 0 and 2n-1 and put a little ring round each!” [12, p. 
32]. From a logical viewpoint, the matter is different however. 
Making diagrams continuous and spaces connected is not a 
challenge in itself. The logician rather expects such diagrams 
to provide a visual aid for solving logic problems. As such, 
continuity and connectivity are pursued as long as they 
contribute to making the diagrams helpful. When the number 
of terms increases, discontinuous diagrams loose the 
advantages of having every class within a single space but 
provide regular schemes where it is easier to locate every 
subdivision.  

For instance, Venn abandoned his diagrams in favour of 
Marquand’s tables for more than 6 terms. Venn, referring to 
the 8x8 Marquand diagram for 6 terms argued that: “The 
scheme is very compendious: thus one adapted for 10 terms, 
and involving 1024 combinations, can be conveniently printed 
on one of these pages. Of course there is not the help to the 
eye here, afforded by keeping all the subdivisions of a single 
class within one boundary […] But this is almost inevitable 
where we deal with many class terms” [5, p.140]. In a way, 
Karnaugh maps might be perceived as a response to Venn by 
suggesting that methods exist to deal with the simplification 
on subdivisions of areas into contiguous parts observable by 
‘direct inspection’. In all the cases of the above, only 0 and 1 
are the values in the diagrams and maps, but generalisations to 
other than binary Boolean algebras should pose no problems. 
These generalisations retain the desired contiguity of maps 
and the directly observable properties of simplification. 

This paper shows how continuity, connectivity and 
regularity acted as major constraints for diagram designers 
(Venn, Marquand and Karnaugh). Their opposed solutions 
show the difficulties they faced and the choices they made. It 
provides a nice illustration of the uneasy balance between 
visual aid and logical efficiency that was constantly pursued 
by logicians [13].  
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