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Abstract—This paper discusses the role of continuity,
connectivity and regularity in the design of spatialogic diagrams
for N terms. Three specific diagrammatic schemes are disssed:
Venn diagrams, Marquand tables and Karnaugh maps.
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Charles S. Peirce considered that spatial diagrams
“veridically iconic, naturally analogous to the nbi
represented, and not a creation of conventions’p[2316].
Umberto Eco disputes this view and argues that the
representation of classes with spaces is ratherelypur
conventional because belonging to a class is rspasial fact
“except the fact that | might be defined to beldaghe class
of all those who are located in a certain place”dp. 228-
229]. Now, the interesting point is that it is withis very
understanding that Euler introduced his spatiajmims as we

topological properties of continuity and connedtivin the

to be imagined as if they were all assembled withat single

design of spatial diagrams fot terms. Spatial diagrams have SPace. Hence, what Eco considers to be an exceptuid

been and are still widely used in logic. They haween
popularized by Leonhard Euler who used them thdntyuin
his Letters to a German Princesfl768). There are no
conditions as to the shape of the spaces as lornbegsare
formed by continuous surfaces within closed curvestly
logicians used mostly circles but squares have bedea
regularly used, especially when the number of tantieases.

The very idea of spatial diagrams is simple: taespnt a
class of individuals with a space where those iddizls are
gathered. That's how Euler introduced his diagratds a
general notion contains an infinite number of indial
objects, we may consider it as a space in whicl #re all
contained. Thus, for the notion wilanwe form a space [...] in
which we conceive all men to be comprehended” [1339].
For instance, if we consider the cirden [Fig. 1] to represent
the class ofmen then it is understood thavery manis
comprehended within that circle. This mode of reprgation
deserves further exploration as to what cognitived a
semeiotic processes are at work when it comespi@senting
a class with a space.

Fig. 1

Research supported by Estonian Research CouncjecdPr®UT267,
“Diagrammatic Mind: Logical and Comunicative Aspects of Iconicity
Principal Investigator Prof. Ahti-Veikko Pietarinen

31

rather be the general rule. The fact that thesaviohehls
cannot be really assembled does not matter. Clzesiin
itself is a purely mental operation and there ismeed for
classes or spaces to really exist. All that is ireglis to have
an accurate diagram that provides a visual aid.

Having a continuous space simplifies the expressibn
what is represented and provides a representdtadrcould be
visually better grasped. However, saving continligcomes
difficult when the number of terms represented eases.
There, it often happens that a clasds represented with a
discontinuous space. For instarfceould be represented with
several sub-spaces representing each a subdividién In
such situations, diagrams are better drawn in suslay as to
make those subdivisions connected. As such, they b=
grouped into one continuous space standing foetiiee class

as shown in [Fig. 2]. Hence, the connectivity diet
subdivisions is what makes the whole space contiuuo
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Keeping the subdivisions connected might prove ¢o b
difficult in diagrams with more than 3 or 4 classés the
following, we will discuss how three designers gfatal
diagrams (Venn, Marquand and Karnaugh) handledsthess
of continuity and connectivity in diagrams fdY terms.

Drawing such diagrams for more than 3 terms was not

required within syllogistic where arguments werdueed to
series of syllogisms. Such problems were easilyesblwith

traditional Euler diagrams. One represents classhscircles,

then the logical relations of the classes are sgpred by the
topological relations of the circles. However, thevelopment
of Boolean algebra changed the picture. Logiciaats to face
problems where they were offered an indeterminateber of

premises with an indeterminate number of terms wede

asked to extract the conclusion that follows bynéiating

undesired or superfluous terms.

In 1880, the logician John Venn, who was a greatiaat
of Boole, invented a new type of diagrams wheratiehs
between classes are not directly exhibited by ihges [4].
One first draws a framework diagram where all carabions
of terms are represented. For instance, for 2 teramly, one
uses two circles to divide the universe into 4 cartipentsxy,
xy', X'y, X'y' (wherex stands for not, andy’ for not-y).

VENN DIAGRAMS FORN TERMS

In order to represent propositions, one has toradiks to
indicate the occupation or emptiness of the compamts. For
instance, to represent the proposition “RAlarey”, one has to
shadexy’ to indicate its emptiness, as shown in [Fig. 8]. |
order to handle more complex logic problems, Veasighed
diagrams wher@ continuous curves divide the universe into
2" compartments. For n = 3, one simply uses the fanimee-
circle diagram [Fig. 4]. For n = 4, Venn knew howvadd a
curve to his 3-term diagram in order to obtain &ern
diagram [Fig. 5]. However, he preferred to use w figure
with four ellipses, as shown in [Fig. 6], becausk its
simplicity and symmetry [5, p. 116]. For n = 5, Vefailed in
making ellipses intersect in the desired way. osiggested
using the diagram shown in [Fig. 7].

Fig. 4
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Fig. 8

In this 5-term diagram, the fifth terma)(is represented by
an annulus. It follows that class nots discontinuous and is
formed by two disconnected spaces. It must be nthat
Venn knew, using an inductive method, how to regmes-
term continuous diagrams [Fig. 8]. However, Venaf@mred
to use the other diagram because of its symmeirgpite of
his dissatisfaction with its discontinuity. For reothan 5
terms, Venn believed his diagrams would not offer visual
aid one would expect, even if they continue to beueate:
“Up to four or five terms inclusive, our plan worksery
successfully in practice; where it begins to fal in the
accidental circumstance that its further developgmsoon
becomes intricate and awkward, though never ceasine
feasible” [5, p. 113]. When Venn faced such complex
problems, he preferred to use tabular diagrams wexe
invented by the logician Allan Marquand [5, pp. 1B,
373-376].

Allan Marquand was one of Peirce’s students at John
Hopkins University. He introduced new diagrams thetre
designed to supersede Venn diagrams, Marquand ‘days:
the object of this paper to suggest a mode of coctiig
logical diagrams, by which they may be indefinitektended
to any number of terms, without losing so rapidigit special

MARQUAND TABLES FORN TERMS



function, viz. that of affording visual aid in treolution of
problems” [6, p. 266].

Marquand used squares rather than circles. He first

represents the logical universe with a square.liftigation of
the universe, absent in Venn diagrams, makes isilplesto
represent with a closed surface the class whertemtls are
negated. Marquand tables should not be understoog\er
as Venn diagrams to which we have added a squavacrto
limit the universe. Indeed, the cognitive constiarts of the
diagrams differ. Venn puts together the individuakst form a
given classx and leavesutsidethe individuals that are nat

Marquand rather divides the universe into 2-sulselsas and
notx, equally considered. Thus, Venn proceeds

classification while Marquand appeals to division.

After one has represented the universe with a squar
suffices to divide it into subdivisions correspamglito the
different combinations of the terms involved in dogument.
For two terms A and B, one gets [Fig. 9] (wharstands for
the negation of A, etc.). This diagram shows hoywantant it
was to choose a rectilinear shape in order to ggtametrical
division of the universe. Making subdivisions ofuatjsize is
purely conventional for Marquand and Venn. Howeveis
obvious that for convenience and practicality,sitbietter to
make the compartment of equal size. It must be neveeed
that Euler and Venn always favored symmetrical idiats
where classes were represented with congruent saame
shape and same size). For 4 terms, Marquand diides
square in the way represented in [Fig. 10].

It is important for our purpose to understand hbesdrder
of the combinations is obtained on each side. Retance,
horizontally, Marquand divides first the squareointwo
subclasses: A and not-A. Then each sub-classel§ dided
into sub-divisions C and not-C. Hence, this dichogo
division produces the horizontal sequence AC,dC, ac that
can be observed on the top of the diagram. Theicaért
sequence is produced similarly. One immediatelyenles
that several classes are not represented with muants
spaces: Cg, D andd.

A

Fig. 9
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Contrary to Venn who abandoned unhappily the caitiin
f his diagrams, Marquand did not seem to be bethevith
this constraint, as long as the diagrams are easytend for
further terms. All one has to do is to divide agtia square
dichotomically to introduce an additional term. eft
Marquand, several tabular schemes have been imteddand
continued to be used in subsequent years [7; 8thMater,
interest in such diagrams has been renewed ing6@slwhen
computer scientists had to simplify logical fornmsdrder to
get better and cheaper electronic circuits. Sucthods have
been notably introduced by Edward W. Veitch in 19§%2and
Maurice Karnaugh in 1953 [10].

IV. KARNAUGH MAPS FORN TERMS

In order to simplify a logical form F, one firstvities each
term of F into its simplest components, then onéects
together the components to get a simpler expressgién Let
us consider the logical form: F = A'B'C + AD + A'BB A’
B'C’ (where A’ stands for the negation of A, etcThere are
four variables A, B, C, D. Karnaugh uses a squareel into
16 subdivisions; each subdivision corresponds tce on
combination of the variables [Fig. 11]. For eacimbination
where F is true, one puts 1 in the appropriate isigidn.
Each red curve in [Fig. 11, left] highlights thebdivisions
that correspond to one term of F. For instance, éastern
circle encloses the cases where term AD is true.

Any equivalent form of F would still have the sainath
value for any given combination of the variablessnkke,
looking for a simpler (equivalent) form of F doest imvolve
changing the content of the subdivisions. It ratheguires
looking for a different assemblage of the subdisi with
fewer and larger curves yielding to fewer and mgemeral
terms. In present case, [Fig. 11, right] shows hesvget a
simpler expression of F. For instance, the vertidaé curve
encloses all affirmed subdivisions where A'B’ isxdd.
Similarly, the horizontal curve encloses eight rafiéd
subdivisions with one fixed variable D. Hence, wietain
simple form: F = A'B’ + D.
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Karnaugh considered that finding such assemblades
connected squares could be done by “direct ingp@cfiO, p.
594]. This is made possible by the fact that theabdes are

ordered is such a way as to always have one variab

unchanged between adjacent squares. Indeed, trealafp
Gray's sequence: 00, 01, 11, 10 (see the horizeatpience at
the top of the map) makes simplification easier. idt
noteworthy that Veitch first used the same sequease
Marquand’s: 00, 01, 10, 11 [Fig. 12, left]. Thugveral
variables were represented with discontinuous spaFer
instance the two green curves represent togethsmgle
variable. In Karnaugh's map [Fig. 12, right], thatriable is
represented with one continuous space, as showinebgreen
curve. Here we see how Karnaugh changed the seguenc
order to restore the continuity of classes thatewalsandoned
by Marquand and Veitch. Interestingly, Veitch hithse
adopted later Karnaugh'’s sequence [11].

It might be objected that some variables in Karhaongps
are also discontinuous (see the red and blue cim{€sg. 12,
right]). However, Karnaugh considered those oppositds of
columns and rows to be adjacent, as if the mapimssibed
on a torus or a cylinder. As such, their connefgtivias saved.

V. CONCLUSION TOWARD REGULARITY

construction (cylinder) even when the diagrams wgnavn
on a two-dimensional surface.

It is obvious that whel is superior to 5 or 6 terms, using
continuous figures becomes tedious as it make#fitudt to
get regular diagrams. Regularity here is meant las t
possession of some features (symmetry, congruence,
familiarity, recurrence) that simplify the idengéition of the
terms involved in each sub-division of the diagram.
Mathematicians tackled this problem for more thaceatury
in order to construct ‘nice’ Venn diagrams féterms. From a
mathematical viewpoint, the continuity of the dimms is
essential as is rightly explained by Anthony W.Bdwards:
“Both Venn and Carroll gave up at four sets anerefd five-
set diagrams whose fifth set did not consist ofosed curve,
so that some regions became disjoint. In our teshogy, they
were not really Venn diagrams at all: once one &sirtie
possibility of sets being bounded by more than olosed
curve, one might as well just list all the binarynmbers
between 0 and"2L and put a little ring round each!” [12, p.
32]. From a logical viewpoint, the matter is diet however.
Making diagrams continuous and spaces connectewbtisa
challenge in itself. The logician rather expectshsdiagrams
to provide a visual aid for solving logic problen#ss such,
continuity and connectivity are pursued as long thsy
Qontribute to making the diagrams helpful. When ribenber
of terms increases, discontinuous diagrams loose

dvantages of having every class within a singlecepbut
rovide regular schemes where it is easier to éo@atery
subdivision.

th

For instance, Venn abandoned his diagrams in faebur
Marquand’s tables for more than 6 terms. Venn,rrefg to
the 8x8 Marquand diagram for 6 terms argued thahe"
scheme is very compendious: thus one adapted faerbis,
and involving 1024 combinations, can be convenyeptinted
on one of these pages. Of course there is noteheth the
eye here, afforded by keeping all the subdivisioha single
class within one boundary [...] But this is almosgvitable
where we deal with many class terms” [5, p.140]alway,
Karnaugh maps might be perceived as a responsena Wy
suggesting that methods exist to deal with the Kfitgtion
on subdivisions of areas into contiguous parts adde by
‘direct inspection’. In all the cases of the aboerly 0 and 1
are the values in the diagrams and maps, but desadians to
other than binary Boolean algebras should poseroblgms.
These generalisations retain the desired contigoitynaps
and the directly observable properties of simpiificn.

This paper shows how continuity, connectivity and
regularity acted as major constraints for diagraesighers
(Venn, Marquand and Karnaugh). Their opposed smiati

The discussion of Venn, Marquand and Karnaughshow the difficulties they faced and the choicesytmade. It

diagrams shows the crucial role of continuity andrectivity
in the making of those diagrams for more than therThese
topological properties have been differently haddbg these

authors. Venn knew how to draw continuous classas b

sacrificed that continuity in favour of regularity his 5-term
diagrams. On the contrary, Marquand was not bothaseto
whether the classes were continuous or the sulmigs
connected. Finally, Karnaugh made his best to sine
connectivity of spaces by imagining a three-dimenai
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provides a nice illustration of the uneasy balabetween
visual aid and logical efficiency that was condtapursued
by logicians [13].
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