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Abstract
In this paper we propose a MapReduce implementation of
G-means, a variant of k-means that is able to automatically
determine k, the number of clusters. We show that our im-
plementation scales to very large datasets and very large
values of k, as the computation cost is proportional to nk.
Other techniques that run a clustering algorithm with dif-
ferent values of k and choose the value of k that provides the
“best” results have a computation cost that is proportional
to nk2.

We run experiments that confirm that the processing time
is proportional to k. These experiments also show that, be-
cause G-means adds new centers progressively, if and where
they are needed, it reduces the probability to fall into a lo-
cal minimum, and finally finds better centers than classical
k-means processing.

1. INTRODUCTION
Discovering groups of similar objects in a dataset, also

known as clustering, is one of the most fundamental tech-
niques of data analysis [12]. Clustering algorithms are used
in many fields including machine learning, pattern recogni-
tion, image analysis, information retrieval, market segmen-
tation and bioinformatics.

A lot of di↵erent algorithms exist, mainly depending on
their definition of a cluster. Density based algorithms, like
DBSCAN [8] and OPTICS [2] for example, define a cluster
as a high density region in the feature space. Other algo-
rithms assume that the data is generated from a mixture
of statistical distributions. Finally, centroid models, like k-
means, represent each cluster by a single center point. This
algorithm thus implicitly assumes that the points in each
cluster are spherically distributed around the center [9].

The most known algorithm for computing k-means clus-
tering is Lloyd’s algorithm [13], also known as “the k-means
algorithm”. Although, it was published more than 30 year
ago, it is still widely used today as it is at the same time
simple and e↵ective [12]. However, it also has a number of
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drawbacks:

1. It may converge to a local minimum, producing coun-
terintuitive or even inconsistent results.

2. It is not really e�cient, and may converge very slowly.

3. It prefers clusters of approximately similar size, as it
always assigns an object to the nearest center. This
often leads to incorrect borders between clusters.

4. Finally, like a lot of other clustering algorithms, it re-
quires the number of clusters – k – to be specified in
advance, which is considered as one of the most di�-
cult problems to solve in data clustering [12].

In this paper we tackle this last drawback. We present
and analyze the performance of a MapReduce implementa-
tion of G-means[9], an e�cient algorithm to determine k.
We also compare our algorithm to a common MapReduce
implementation of k-means.

More specifically, we first show that a MapReduce imple-
mentation of G-means requires some modifications of the
original algorithm to reduce I/O operations, as these are
very costly in MapReduce, and to reduce the number of
chained MR jobs. We also show that an e�cient imple-
mentation that maximizes processing parallelism requires a
hybrid design that takes into account the number of nodes
running the algorithm and the quantity of heap memory
available.

We then study the performance aspects of the proposed
algorithm implementation by modeling the communication
and computational cost. We show that our algorithm is
able determine k and find clusters with a computation cost
proportional to nk. Other techniques that run a clustering
algorithm with di↵erent values of k and choose the value of
k that provides the “best” results have a computation cost
that is proportional to nk2.

Finally, we evaluate both solutions experimentally. Our
results confirm that the proposed MR implementation of
G-means has linear complexity with respect to k. The al-
gorithm also takes full advantage of additional computing
nodes, which makes it scalable to very large datasets. More-
over, our experiments show that our implementation clearly
outperforms the classical iterative k-means solution as it re-
duces the probability to fall into a local minimum and pro-
vides better clustering results.

The rest of the paper is organized as follows : In section 2
we present G-means[9] and other existing methods to de-
termine k, as well as other optimizations of k-means. In
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section 3 we present and justify our MapReduce implemen-
tation of G-means. In section 4 we estimate and compare
the computation and communication costs of the MapRe-
duce implementations of G-means and k-means. In section
5 we present our experimental results, and finally we present
our conclusions.

2. RELATED WORK
When clustering a dataset, the right number of clusters

to use – k – is often a parameter of the algorithm.
Even when analyzing data visually, the correct choice of

k is often ambiguous. It largely depends on the shape and
scale of the distribution of points in the data set and on the
desired clustering resolution of the user.

In addition, arbitrarily increasing k will always reduce the
amount of error in the resulting clustering, to the extreme
case of zero error if each data point is considered its own
cluster.

If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must be cho-
sen somehow. There are several methods for making this
decision. Lots of them rely on cluster evaluation metrics.
They run a clustering algorithm with di↵erent values of k,
and choose the value of k that provides the “best” results
according to some criterion.

For example, Dunn’s index (DI) [7] can be used to deter-
mine the number of clusters. The k for which the DI is the
highest can be chosen as the number of clusters.

The elbow method [20] is another possible criterion. It
chooses a number of clusters so that adding another cluster
doesn’t give much better modeling of the data. Therefore,
it computes the percentage of variance explained (the ra-
tio of the between-group variance to the total variance, also
known as an F-test) for di↵erent values of k. In the graph of
the percentage of variance explained by the clusters against
the number of clusters, the first clusters will add much in-
formation (explain a lot of variance), but at some point the
marginal gain will drop, giving an angle in the graph. The
number of clusters is chosen at this point, hence the “elbow
criterion”. As it is a visual method, this “elbow” cannot
always be unambiguously identified.

The average silhouette of the data [18] is another useful
criterion for assessing the natural number of clusters. The
silhouette of a point is a measure of how close it is to other
points within its cluster and how loosely it is matched to
points of the neighboring cluster, i.e. the cluster whose av-
erage distance from the point is lowest. A silhouette close to
1 implies the point is in an appropriate cluster, while a sil-
houette close to -1 implies the point is in the wrong cluster.
If there are too many or too few clusters, as it may occur
when a wrong value of k is used with k-means algorithm,
some of the clusters will typically display much narrower
silhouettes than the rest. Thus silhouette plots and aver-
ages may also be used to determine the natural number of
clusters within a dataset.

Sugar and James [19] used information theory to propose
a new index of cluster quality, called the “Jump method”.
The method is based on the notion of “distortion”, which
is a measure of within-cluster dispersion. For each possible
value of k, the method calculates the “jump” of distortion
compared with previous value of k. The Estimated number
of clusters is the value of k with the largest jump.

Tibshirani and al. [21] proposed anoter method based

on dispersion, called the “Gap statistic” for estimating the
number of clusters in a data set. The idea is to compare the
change in within-cluster dispersion to that expected under
an appropriate null distribution as reference. The number
of clusters is then the value for which the observed disper-
sion falls the farthest below the expected dispersion obtained
under a null distribution.

Finally, two other studies presented iterative techniques to
determine the number of clusters when performing k-means
clustering, which do not require to run k-means for every
possible value of k: X-means [17] and G-means [9].

X-means iteratively uses k-means to optimize the position
of centers and increases the number of clusters if needed to
optimize the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) measure. The main ad-
vantage of the algorithm is the e�ciency of the test used to
select the most promising centers for refinement. This leads
to a fast algorithm that outputs both the number of clus-
ters and their position. Experiments showed this technique
revealed the true number of clusters in the underlying dis-
tribution, and that it was much faster than repeatedly using
k-means for di↵erent values of k.

G-means is also an iterative algorithm but it uses Anderson-
Darling test to verify whether a subset of data follows a
Gaussian distribution. G-means runs k-means with increas-
ing values of k in a hierarchical fashion until the test accepts
the hypothesis that the points assigned to each center follow
a Gaussian distribution. Experimental results showed that
the algorithm seems to outperform X-means.

The G-means algorithm starts with a small number of
clusters, and increases the number of centers. At each it-
eration, the algorithm runs k-means to refine the current
centers. The clusters whose data appears not to come from
a Gaussian distribution are then split.

For each cluster X (being a subset of data) of center c,
the algorithm works as follows:

1. Find two new centers c
1

and c
2

.

2. Run k-means to refine c
1

and c
2

.

3. Let v = c
1

� c
2

be the vector that connects the two
centers. This is the direction that k-means believes is
important for clustering.

4. Let X 0 be the projection of X on v. X 0 is a one-
dimensional representation of the data projected on v.

5. Normalize X 0 so that it has zero mean and variance
equal to 1.

6. Use Anderson-Darling to test X 0:

• If X 0 follows a normal distribution, keep the orig-
inal center, and discard c

1

and c
2

.

• Otherwise, split the cluster in two, use c
1

and
c
2

as new centers and run the algorithm on each
sub-cluster.

The main advantage of this algorithm is that it simpli-
fies the test for Gaussian fit by projecting the data to one
dimension where the test is simple to apply. Moreover it
only creates new centers where needed, improving cluster-
ing quality.
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In this paper, we present a MapReduce implementation
of the G-means algorithm. Some key challenges to be ad-
dressed are the various design choices for parallelizing the
algorithm, as these may have a significant impact on final
results quality, but also on communication and computa-
tional cost.

While the choice of k is a critical question, many other op-
timizations have been proposed in the literature to improve
or speed up k-means processing.

A first optimization consists in selecting better initial cen-
ters, which allows the algorithm to converge quicker, reduces
the probability to fall into a local minimum and reduces
the number trials needed. In k-means++ [3], the starting
centers are chosen randomly, but with a probability pro-
portional the distance to the nearest already chosen cen-
ter. Bahmani [4] also proposed a MapReduce version of
k-means++ initialization algorithm. Another common pos-
sibility is to use canopy clustering [15] to compute the initial
centers. Algorithms also exist to avoid local minimums, for
example by swapping points between clusters [11].

Other optimizations deal with nearest neighbor (NN) search.
In k-means, a NN search is required to decide to which clus-
ter a point belongs. It is thus one of the basic operations
of k-means processing, but also of a lot of other clustering
algorithms. One type of e�cient NN search algorithm uses
tree-based structures, like the mrkd-tree algorithm proposed
by Pelleg et al. [16]. The algorithm uses a multi-resolution
k-d tree to represent groups of points and e�ciently iden-
tify the nearest cluster centers for those points. Vrahatis et
al. [22] proposed a version that uses a windowing technique
based on range trees. A range tree on a set of points in d-
dimensions is a recursively defined multi-level binary search
tree. Each level of the range tree is a binary search tree on
one of the d-dimensions, which allows fast range searches.
Another category of algorithms uses random projection, like
Locality Sensitive Hash used by Buhler [5].

Other algorithms improve the clustering e�ciency by first
summarizing a large data set, and then applying the clus-
tering algorithm. Di↵erent approaches exist:

• Replace a small tight group of objects (but not the
whole cluster) by a single object [6] or by a coreset
[10];

• Pre-process data to reduce dimensionality, dropping
unnecessary features (dimensions) [1];

• Partition data into overlapping subsets [15] for high
dimensional data.

While all these di↵erent optimizations of k-means are defini-
tively valuable, it is outside the scope of this paper to im-
plement and evaluate all of them. However, some of these
optimizations could be easily integrated in the MapReduce
implementation proposed in this paper, and we are consid-
ering them as part of our future work.

3. MAPREDUCE IMPLEMENTATION OF G-
MEANS

Our implementation of G-means for MapReduce is pre-
sented in Algorithm 1.

The first step, PickInitialCenters, is a classical step of
any k-means algorithm. The main di↵erence with respect

Algorithm 1 MapReduce G-means pseudo-code

PickInitialCenters
while Not ClusteringCompleted do

KMeans
KMeansAndFindNewCenters
TestClusters

end while

to classical k-means implementations is that it picks pairs
of centers (c

1

and c
2

). We use a serial implementation, that
picks initial centers at random, but other distributed or more
e�cient algorithms can be found in the literature and can
perfectly be used instead.

The algorithm then enters a while loop that will continue
as long as there are clusters that must be split. The first op-
eration of the loop is a classical MapReduce implementation
of k-means with combiners1, to refine to position of current
centers.

The last iteration of k-means is implemented in a sep-
arate MapReduce job called KMeansAndFindNewCenters in
Algorithm 2. It will also, for each cluster, pick the two new
centers (c

1

and c
2

) that will be used at next iteration. This
job is specific to our implementation and is further explained
below.

Finally, the clusters are tested using the MapReduce job
referred to as TestClusters in Algorithm 1. For each point,
the job searches the cluster it belongs to (using the cen-
ters from previous iteration), then projects it on the vector
formed by the two corresponding centers (of current itera-
tion). Finally, for each cluster it tests if the projections form
a normal distribution. This job, also specific to the proposed
implementation, is explained in more details here below.

As can be noticed, our MapReduce implementation of G-
means di↵ers from the sequential version in three main as-
pects.

First, the original G-means algorithm works locally, by
analyzing each cluster separately. It thus requires that each
point is “linked” in some way to the cluster it belongs to
at each iteration of the algorithm. Implementing this in
MapReduce would require a write operation at each itera-
tion, to save this information in the distributed file system.

This membership information can of course be used to
reduce computations at some steps of the algorithm:

• When running k-means, for each point, the algorithm
does not have to compute the distance to each center,
but only to c

1

and c
2

, the 2 children centers of the
cluster the point currently belongs to;

• When testing the clusters, the cluster to which a point
belongs is directly identified, and the algorithm does
not have to compute the distance from this point to
each cluster.

However, binding the points to their cluster would require
a write operation at each iteration, and could at best spare
O(2nk) distance computations. Given the very high cost of
I/O operations in MapReduce, we do not recommend using
this solution. Moreover, as mentioned above, other tech-
niques already exist to optimize nearest neighbor search that
can perfectly be added to our implementation.
1A combiner is a well-known pre-aggregation optimization
available in MapReduce.
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Next, in the original G-means algorithm, new centers are
picked at the beginning of each iteration. Implementing this
directly in MapReduce would require an additional MapRe-
duce job. To minimize the number of jobs executed at each
iteration and the number of dataset reads, we merge this
operation with the last iteration of k-means. Thus, the
KMeansAndFindNewCenters operation will perform classical
k-means and at the same time find 2 new centers (c

1

and
c
2

) for each cluster, which will be used at next iteration of
G-means.

Finally, while the sequential algorithm analyzes clusters
individually, and thus adds new centers sequentially, the
MapReduce version analyzes all clusters in parallel and will
thus try to double the number of centers at each iteration.
As a result, it may eventually overestimate the value of
k. Future versions of the algorithm will thus add a post-
processing step to merge close centers.

One of the subtleties of the MapReduce version of G-
means, as proposed in Algorithm 1, is that each iteration
has to deal with centers from previous, current and next
iteration:

• KMeans refines the centers of current iteration;

• KMeansAndFindNewCenters picks centers that will be
used at next iteration;

• TestClusters assigns each point to its cluster (a center
from previous iteration), then projects it on the vector
joining the 2 corresponding centers of current iteration.

3.1 KMeans and Find New Centers
KMeansAndFindNewCenters is a MapReduce job with com-

biners that performs two operations at the same time:

1. Run k-means to refine current centers;

2. For each current center, pick two new centers (c
1

and
c
2

) that will possibly be used at next iteration.

In our implementation, the new centers are chosen ran-
domly. More sophisticated algorithms can be used to select
the new points, but they may require an additional MapRe-
duce job.

Algorithm 2 KMeansAndFindNewCenters Mapper

Input: point (text)
Output:
centerid (long) ) coordinates (float[]), 1 (int)
centerid +OFFSET (long) ) coordinates (float[]), 1 (int)

procedure Map(key , point)
Find nearest center
Emit(centerid , point)
Emit(centerid + OFFSET , point)

end procedure

The Map step of the job is presented in Algorithm 2. The
coordinates of each point are emitted twice. This doubles
the quantity of data to be shu✏ed and transmitted over the
network. However, this e↵ect is largely mitigated by the use
of a combiner. The e�ciency of the combiner is of course
very dependent of the dataset. There are recent execution

engines (such as SPARK2) that allow to specify ”partition-
preserving”operations. Preserving partitions would help the
combiners to perform more e�ciently at next iteration. It
is however outside the scope of this paper to consider such
optimizations.

To make the distinction between coordinates that corre-
spond to new centers to be used at next iteration of the
algorithm and current centers that we want to refine with
k-means, we use an arbitrary high o↵set value. More pre-
cisely, as the type of center id is a Java Long, we use an
o↵set value equal to half the largest possible value of a Java
Long. The value of OFFSET is thus 262 (approximatively
4E18). This also limits our algorithm to datasets with at
most 262 centers.

We could also use a text prefix, but although simpler to
interpret, this choice would hurt performance due to the re-
quirement of an additional parsing phase. Moreover, during
the shu✏e phase, sorting text keys requires more processing
than simple integer values.

The combiner and reducer test the value of the key. If it is
larger than the predefined o↵set, they keep only 2 new cen-
ters per cluster. Otherwise they perform classical k-means
reduction and compute the new position of each cluster cen-
ter.

3.2 Test Clusters
The TestClusters procedure is is the last MapReduce

job of our distributed G-means implementation (Algorithm
1). The mapper projects the points of a cluster on the line
joining the two centers (c

1

and c
2

) and the reducer then tests
if these values follow a normal distribution.

Algorithm 3 TestClusters Mapper

Input: point (text)
Output: vectorid (int) ) projection (double)

procedure Setup
Build vectors from center pairs
Read centers from previous iteration

end procedure

procedure Map(key , point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Emit(vectorid , projection)

end procedure

Algorithm 4 TestClusters Reducer

Input: vectorid (int) )< projection (double) >

procedure Reduce(vectorid , projections)
Read projections to build a vector
Normalize vector (mean 0, stddev 1)
ADtest(vector)
if normal then

Mark cluster as found
end if

end procedure

2http://www.spark-project.org/
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At the first steps of G-means, when k is low, this algorithm
performs poorly as the parallelism of the reduce phase is
bounded by k.

To achieve higher parallelism, the algorithm adopts an-
other strategy when k is low, called TestFewClusters (Al-
gorithm 5. The test for normality is directly performed by
the mapper, thus on subsets of data. This of course only
delivers correct results if the number of samples for each
subset is su�cient, which we can suppose is verified for low
values of k. Anderson-Darling is a powerful statistical test,
which has proved being reliable even with small samples (as
a rule of thumb, a minimum size of 8 is considered to be
su�cient). In our implementation we use a threshold of 20,
to stay on the safe side. The number of reduce tasks is still
equal to k (which is low), but as their task is only to com-
bine the decisions taken by mappers, this will not limit the
performance of the algorithm.

Algorithm 5 TestFewClusters Mapper

Input: point (text)
Output: vectorid (int) ) A⇤2 (double)

procedure Setup
Build vectors from center pairs
Read centers from previous iteration

end procedure

procedure Map(key , point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Add projection to list vectorid

end procedure

procedure Close
for Each list do

Read projections to build a vector
Normalize vector (mean 0 , stddev 1)
Compute A⇤2 = adtest(vector)
Emit(vectorid ) A⇤2)

end for
end procedure

Moreover, TestFewClusters limits the size of the vector
of projections to a level that fits into RAM memory: If we
assume that the value of a point in each dimension is stored
as a string of approximatively 15 characters (the number
of significant decimal digits of IEEE 754 double-precision
floating-point format), and each character is encoded using
1 Byte, the number of points in a dataset is O( S

15D
), where

S is the size of the dataset (in Bytes) and D is the number
of dimensions.

For each point, the algorithm will compute a projection,
encoded as a double (8 Bytes). The total memory space
needed to store all projections is thus O(8 S

10D
) and thus

O( S
D

) Bytes, which can be very large. In the worst case sce-
nario, if all points of the dataset belong to the same cluster,
as a result of the TestClusters procedure, the amount of
memory required by a single combiner will be prohibitive.

When TestFewClusters is used, the quantity of memory
required by each mapper to store the projections will be
O( Ss

D
), where Ss is the size of a single split (64MB on a

default Hadoop installation), which is now completely rea-
sonable.

Choosing when to switch from one strategy to the other
is, as often, a matter of compromise.

If the algorithm switches too late (i.e., when k is large),
the algorithm will keep using the TestFewClusters strategy,
even for a large number of clusters. As the test for normality
is performed by the mapper, there is a risk that the number
of points in some clusters is smaller than the threshold. The
mapper is then not able to compute a decision.

If the algorithm switches too early (i.e., when k is small),
the test is performed by the reducers even for a small number
of clusters. There is a risk that the number of projections
received by a single reducer becomes too large and exhausts
the heap: in the worst case, the maximum amount of mem-
ory required by a single reducer will be O( S

D
) Bytes (if the

complete dataset belongs to a single cluster), and in the best
case it will be O( S

kD
) Bytes (if all k clusters have the same

number of points).
In our MapReduce implementation of G-means, at each

iteration the algorithm counts the number of points that
belong to each cluster. By doing so, the algorithm can es-
timate the maximum amount of heap memory that will be
required as the number of points belonging to the biggest
cluster multiplied by the average quantity of heap memory
required per point (that we determined experimentally).

When an algorithm uses almost all heap memory avail-
able, the Java Virtual Machine (JVM) has to regularly trig-
ger the garbage collector to make room for new objects and
variables, which seriously degrades performance. To avoid
this, we use a maximum heap usage coe�cient.

The algorithm will thus first use the TestFewClusters
strategy, and switch to the other strategy only when the
following two conditions are met: the number of clusters to
test is larger than the total reduce capacity, and the esti-
mated maximum amount of required heap memory is less
than 66% of the heap memory of the JVM.

As illustration, Figure 1 shows the centers found by suc-
cessive iterations of our final MapReduce G-means algorithm
for a subset of data, consisting of 10 clusters in R2. At each
iteration the algorithm splits clusters in 2, except clusters
that pass the test, and optimizes centers position using k-
means. The algorithm finally finds 14 centers, as shown in
Figure 4.

4. COST MODELIZATION
We now estimate the cost of MapReduce G-means clus-

tering. More precisely, we estimate the number of dataset
reads, the number of computations and the quantity of data
that is shu✏ed.

Each iteration of G-means consists of three steps: KMeans,
KMeansAndFindNewCenters, and TestClusters.

Each iteration of KMeans requires one dataset read3, O(kn)
distance computations, and shu✏es O(n) coordinates in worst
case (if no combiner is used). As the new centers are placed
in an e�cient way, where they are really needed, we found
experimentally that only two k-means iterations are su�-
cient.

3Depending on the underlying execution engine, it may be
possible to avoid subsequent dataset reads. This is the case
for example with SPARK, where you can cache the dataset
in memory and make sure to preserve the data partitioning.
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Figure 1: Evolution of centers positioned by G-
means in a dataset containing 10 clusters in R2

KMeansAndFindNewCenters consists of a single k-means it-
eration, but the mapper will emit each point a second time
to pick two new centers for each current center. It also re-
quires one dataset read, O(kn) distance computations and,
without combiner, shu✏es O(2n) coordinates.
TestClusters requires one dataset read. It computes

O(kn) distances, O(n) projections and performs O(k)
anderson-darling tests. For large values of k (thus for a
large number of clusters), this will be dominated by dis-
tances computation and anderson-darling tests. The step
also shu✏es O(n) projections.

If the algorithm starts with a single cluster at iteration 0,
at iteration i it is updating 2i+1 = 2k centers to test 2i = k
possible clusters. At iteration i, the total number of clusters
that have been tested is

1 + 2 + 4 + ... + 2i =
iX

j=0

2j = 2i+1

� 1

The number of iterations required to test values of k be-
tween 1 and k

real

is theoretically

n = log
2

k
real

In practice a few additional iterations are required because
MapReduce G-means tends to overestimate the number of
clusters, and because some clusters are discovered before
others.

The
P

k for all iterations of G-means is:

nX

j=0

k =
nX

j=0

2j = 2n+1

� 1 ' O(2log

2

k
real

+1

� 1) = O(2k
real

)

In total, G-means algorithm requires O(4 log
2

k
real

) dataset
reads, computation of O(4n

P
k) = O(8nk

real

) distances
and O(

P
k) = 2k

real

anderson-darling tests.
The algorithm is thus able to find k with a number of

computations that remains proportional to k
real

! The price
to pay is an iterative processing, that requires O(log

2

k
real

)
iterations, and thus O(log

2

k
real

) dataset reads.
At the other side, the classical way to find k is to use

a MapReduce implementation of k-means, to let it run for
di↵erent values of k, and to use one of the criteria described
above to find the bet value of k. However, this is not e�cient.

To compare MapReduce versions of k-means and G-means
in a fair way, we used another implementation, multi-k-
means, that computes the centers for all possible values of
k at each iteration. The mapper step is presented by algo-
rithm 6. The combiner and reducer are classical.

Algorithm 6 Multi-k-means Mapper

Input: point (text)
Output: k centerid (text) ) coordinates (float[]), 1 (int)

procedure Map(key , point)
for k = k min; k <= k max; k+ = k step do

Find nearest center
Emit(k centerid ) point)

end for
end procedure

The main drawback is of course that number of distances
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computed and the quantity of data that is shu✏ed and trans-
mitted over the network at each iteration of k-means are
much bigger. But the quantity of data to shu✏e is largely
reduced by using the combiner. So this drawback is largely
outbalanced by the advantage that all possible values of k
can be tested in a single round, thus vastly reducing the
number of iterations and dataset reads!

To test all values of k between 1 and k
max

, the total num-
ber of centers computed by multi-k-means is:

k
maxX

j=1

j =
k(k + 1)

2
' O(k2)

At each iteration, multi-k-means requires 1 dataset read,
O(nk2

max

) distance computations and shu✏es O(nk
max

) co-
ordinates if no combiner is used.

Clearly, from a theoretical point of view G-means has a
huge advantage over multi-k-means, as the number of com-
putations remains proportional with k

real

instead of k2

max

. It
does, however need O(log

2

k
real

) iterations, and thus O(log
2

k
real

)
dataset reads.

For example, for a dataset containing 100 clusters, G-
means theoretically requires 7 iterations, and thus O(800n)
distance computations, O(200) anderson-darling tests and
28 dataset reads. At the other side, for such a small value,
multi-k-means already requires O(10000n) distance compu-
tations at each iteration!

Moreover, G-means stops processing when k is found,
while multi-k-means has to process all possible values of k
before taking a decision. As G-means adds new centers pro-
gressively, where they are required, it reduces the probability
to get stuck in a local minimum, while this can be the case
for multi-k-means if initial centers are poorly chosen. A pro-
duction version of multi-k-means thus requires multiple runs
with di↵erent starting points, or an additional job to select
initial centers, for example using canopy clustering[15], or
an algorithm that avoids local optima [11]. Finally, once
the centers have been computed for di↵erent values of k,
multi-k-means requires at least one additional job to find
the correct value of k.

In any way, there is a risk that because of skewed data,
some reducers will have a higher workload, thus reducing the
global e�ciency of the algorithm. Handling skewed data in
MapReduce is a whole subject by itself and is left as future
work.

5. EXPERIMENTAL RESULTS
To test the algorithms we propose in this paper, we use a

Hadoop implementation and run tests on a cluster consisting
of 4 nodes. Each node is equipped with 2 quad-core Xeon
processors and 32GB of RAM.

As a first experiment, we want to estimate the quantity of
heap memory required by the reducer of the TestClusters
step of Algorithm 1. Therefore we run the algorithm with
di↵erent datasets that consist of a variable number of points.
During the first iteration of the algorithm, all points belong
to a single cluster, and will thus be tested by a single reducer.
We iteratively run the algorithm, and let the amount of heap
memory vary. When the quantity of available heap memory
becomes to small, the job crashes with an error (”Java heap
space”). The results are shown on Figure 2.

Linear regression shows our reducer requires approxima-
tively 64 Bytes (8 doubles) per point. This value can cer-
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Figure 2: Estimation of the amount of heap memory
required by the reducer of the step TestClusters

tainly be further optimized, but it is not the goal of this
paper to create a production level version of the algorithm.
So for all other tests, the algorithm uses that value of 64
to estimate the quantity of heap memory required by the
reducer of the TestClusters step, and to decide when to
switch from one strategy to the other.

We now turn to the experiments performed in order to
test our G-means algorithm on di↵erent synthetic datasets.
We used five datasets of 10M points (in R10) generated us-
ing a Gaussian distribution, and using a variable number of
clusters ranging from 100 up to 1600. Table 1 shows for each
dataset the real number of clusters, the number of clusters
discovered by G-means, as well as the number of iterations
and time required.

Table 1: Results of G-means clustering

d100 d200 d400 d800 d1600

Clusters 100 200 400 800 1600

Discovered 134 305 626 1264 2455

Time (sec) 1286 1667 2291 4208 5593

Iterations 9 10 11 13 13

As expected, the algorithm overestimates the number of
clusters. The proportion of discovered clusters to the real
number of clusters seems to be quite constant (1.5). The al-
gorithm thus requires a post-processing step to merge clus-
ters, the development of which is left as future work.

The number of iterations is also slightly greater than the
theoretical value (1+log

2

k). As some centers are discovered
before the last iteration, the algorithm will not create new
centers for them. It may thus require 1 ore more additional
iterations to discover all centers.

Finally, as expected, the execution time scales linearly
with k.

We then compare G-means with a hadoop implementation
of multi-k-means. For each dataset, multi-k-means com-
putes the position of centers for all values of k between one
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and the real number of clusters in the dataset. Table 2 shows
the average computing time for a single iteration.

Table 2: Average time of a single iteration of multi-
k-means

d50 d100 d141 d200 d400

Clusters 50 100 141 200 400

Time (sec) 237 751 1356 2637 10252

The execution time of both G-means and multi-k-means
are graphed in Figure 3.

We observe now that the execution time of multi-k-means
rises exponentially. Moreover, for a single iteration of multi-
k-means, and for a value of k as low as 100, G-means already
outperforms multi-k-means.
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Figure 3: Running time of G-means and multi-k-
means

We also want to evaluate the consistency of the clustering
results provided by both algorithms. The final goal of k-
means clustering is to partition the n data points into k sets
S = S

1

, S
2

, ..., Sk so as to minimize the within-cluster sum
of squares (WCSS):

arg min
S

kX

i=1

X

x

j

2S
i

kxj � µik
2

where µi is the mean of points in S
i

. Therefore we use
WCSS as a measure of the quality of clustering.

For di↵erent datasets, Table 3 shows the real number of
clusters in the dataset, the number of clusters discovered
by G-means, the average distance between points and their
centers discovered by G-means, and the average distance be-
tween points and centers when using multi-k-means for the
same value of k. A smaller value means the position of the
centers is better. For multi-k-means, we let the algorithm
run 10 iterations, which is enough to find a stable solution.

As can be seen in Table 3, G-means consistently out-
performs multi-k-means, by approximatively 10%. This is

Table 3: Real number of clusters in each dataset,
number of clusters discovered by G-means, and av-
erage distance between points and centers found by
G-means and multi-k-means

d100 d200 d400

kreal 100 200 400

kfound 150 279 639

G-means 3.34 3.33 3.23

multi-k-means 3.71 3.60 3.39

mainly due to the fact G-means progressively adds new cen-
ters, if and where they are needed. This reduces the proba-
bility to fall into a local minimum.

This e↵ect is illustrated on Figure 4. Both plots show a
small dataset consisting of 10 clusters. The upper plot shows
the 14 centers found by G-means. This is more than the real
number of clusters, but the clusters are correctly detected.
The lower plot shows the centers found by multi-k-means
after 10 iterations, for k = 10. Two centers are located in the
penultimate cluster, around (80, 80). Although the multi-k-
means searches the position of the correct number of centers,
it falls into a local minimum and does not detect the correct
clusters, which results in a larger average distance between
point and center.

Finally, to test the scalability of the algorithm, we gener-
ate a dataset consisting of 100M points (in R10) distributed
in 1000 clusters using a Gaussian distribution. We then run
our MR G-means algorithm on 4, 8 and 12 nodes. All tests
completed after 13 iterations of G-means. The respective
running times are shown in Table 4 and on Figure 5.

Table 4: Running time of MR G-means to cluster a
dataset of 100M points

T4 T8 T12

Nodes 4 8 12

Time (min) 798 447 323

We can observe that the running time decreases roughly
linearly with the number of nodes, which shows that our al-
gorithm and Hadoop can take advantage of additional nodes
and thus scale to very large datasets.

6. CONCLUSIONS AND FUTURE WORK
Despite its known drawbacks and alternative techniques,

k-means [14] is still a largely used clustering algorithm. It
also has a lot of variants and optimizations. One of these
variants, G-means, is able to automatically determine k, the
number of clusters. In this paper we proposed a MapReduce
implementation of G-means that is able to estimate k with
a computation cost that is proportional to k.

We ran experiments that confirm that the processing time
scales linearly with k. These experiments also show that, be-
cause G-means adds new centers progressively, if and where
they are needed, it reduces the probability to fall into a local
minimum, and eventually finds better centers than classical
k-means processing.

The algorithm still has some caveats, as it tends to con-
stantly overestimate the number of clusters, but it definitely
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Figure 4: Results of MR G-means and multi-k-
means
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Figure 5: Running time of MR G-means to cluster
a dataset of 100M points

deserves interest when it comes to clustering large datasets
consisting of an unknown number of clusters.

As future work, we plan to explore ways to extend our
MapReduce implementation of G-means by leveraging more
advanced batch execution engine (e.g. SPARK) which can
provide advanced configuration options at run-time in or-
der to save unnecessary disk I/O operations via in-memory
caching and partition-preserving operations. We also plan
to run additional experiments on a larger cluster to evaluate
further the performance and scalability of the algorithm.
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