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ABSTRACT

In this paper, we consider the recent iterative extensions of
the Map-Reduce framework and we argue that they would
greatly benefit from the research work that was conducted in
the area of dataflow computing more than thirty years ago.
In particular, we suggest that the tagged-dataflow model
of computation can be used as the formal framework be-
hind existing and future iterative generalizations of Map-
Reduce. Moreover, we present various applications in which
the tagged model gives elegant solutions with increased par-
allelism. The tagged-dataflow approach for iterative Map-
Reduce creates a number of interesting research challenges
which deserve further investigation, such as the requirement
for a more sophisticated fault tolerance model.

1. INTRODUCTION

The introduction of Map-Reduce [11] has been an impor-
tant step towards the efficient processing of massive data.
The success of the Map-Reduce framework is mainly due
to its simplicity, its declarative nature, its ability to run on
commodity clusters and its effective handling of task failures
that occur during execution. Despite its huge success, Map-
Reduce has often been criticized for a number of different
reasons. For example, it has often been argued that not all
problems can be effectively (and naturally) solved using map
and reduce tasks. Moreover, it has often been stressed that
the framework suffers from a lack of support for iteration,
which is, without doubt, a cornerstone of most interesting
forms of computation.

The realization of the above problems has led to the in-
troduction of various extensions of the framework (see for
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example [16, 7, 8]) and to the development of new systems
that try to overcome the shortcomings (such as for exam-
ple [13, 19, 14, 27, 20, 9, 21]). It appears that the creation of
a framework that preserves the advantages of Map-Reduce
and at the same time lifts its shortcomings, is not an easy
task. In particular, it seems that the clear and efficient sup-
port of iteration is far from straightforward. Furthermore,
there does not exist at present a unifying theoretical frame-
work that could form the basis of the iterative extensions
of Map-Reduce. Such a framework would allow the theory
of such systems to be properly developed. In particular, it
would allow for a proper specification and analysis of pro-
posed algorithms, for the development of a corresponding
complexity theory, for the proof of correctness of proposed
algorithms, and so on.

In this paper we argue that such a formal framework was
actually developed more than thirty years ago, in a similar
but somewhat more restricted context. More specifically,
during the 70s and 80s, the dataflow model of computation
was developed [10, 12], many dataflow architectures were
built and several dataflow programming languages were pro-
posed and implemented. The aim of the dataflow paradigm
was to exploit the inherent parallelism that exists in many
applications. The dataflow architectures were specialized
parallel computers and the dataflow programs were designed
to eventually run on such machines. Of course, the Internet
was not fully developed at that time and the idea of paral-
lelism over clusters of workstations did not exist. Moreover,
the distributed processing of massive data was far less im-
portant at that time than it is today. However, the main
ideas behind the dataflow programs of the past and the
distributed Map-Reduce applications of the present, share
many common characteristics. In particular, the effective
handling of iteration was also an important problem in the
dataflow era and was handled by the introduction of the
so-called paradigm of tagged-dataflow [25, 5, 6].

The main contribution of the present paper is therefore to
demonstrate how the ideas from the dataflow research area
can be applied to the new area of iterative Map-Reduce. In
particular, we demonstrate how the tagging schemes of data-
flow computers can be used in order to achieve a more asyn-
chronous form of iteration for the systems of today. The rest
of the paper is organized as follows. Section 2 summarizes
several extensions of Map-Reduce and discusses the way it-
eration is handled in these extensions. Section 3 presents the
basic ideas of the traditional model of tagged-dataflow. Sec-
tion 4 extends the classical tagged-dataflow model so as to
be applicable to the Map-Reduce setting and demonstrates
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how the new model can be used in order to specify various
applications on massive data that appear to require itera-
tion in their implementation. Finally, Section 5 describes
possible directions for future work.

2. ITERATIVE MAP-REDUCE

Despite its simplicity and usefulness, Map-Reduce [11]
has certain shortcomings that restrict its wider applicability.
First, the framework allows only two types of tasks, namely
the map and reduce tasks; obviously, it is not always possi-
ble (or natural) to model any problem using these two types
of tasks. The flow of the data is also rather rigid since the
output of the map tasks is used as input only to the reduce
tasks. Again, there exist problems whose distributed solu-
tion requires a more involved flow of data: in many applica-
tions the data must be processed iteratively before the final
output is obtained. Finally, Map-Reduce imposes the so-
called blocking property: the reducers start processing data
when the mappers have completely finished their work. This
property is crucial in order to deal with task-failures: when
a task fails, we can restart it from the beginning. Therefore,
the blocking property ensures that the data are not “garbled”
and that the computation proceeds in clear, discrete steps.
However, the blocking property obviously has its disadvan-
tages. During the time that the map tasks are processing,
the reduce tasks are idle waiting for the map computation to
complete and this obviously reduces the amount of potential
parallelism.

2.1 Iteration

A natural generalization of Map-Reduce is to allow the use
of arbitrary tasks. The systems Dryad [16] and Hyracks [7]
generalize Map-Reduce by allowing the use of a set of arbi-
trary operators connected as a directed acyclic graph.

Apart from generalizing the types of tasks, a significant
extension of Map-Reduce is the support of iteration. Many
common data analysis algorithms require some form of iter-
ation in order to be appropriately implemented. For ex-
ample, the PageRank algorithm is a recursive algorithm
that is usually implemented as an iteration until a fixed
point is reached. One can attempt to implement such al-
gorithms in the Map-Reduce framework using ad hoc tech-
niques, but this is neither a natural nor efficient approach.
HaLoop [8] tackles this inadequacy of Map-Reduce by pro-
viding iteration-related constructs that allow iterative algo-
rithms to be expressed more succinctly. A characteristic of
HaLoop (as well as other similar systems) is that iteration is
performed in a synchronized manner, i.e., the next iteration
starts when every task of the previous iteration has com-
pletely finished its work. A shortcoming of this approach is
that tasks that have completed their processing remain idle
until the next iteration starts, and therefore the potential
parallelism is not fully exploited.

There have also been proposals for a more asynchronous
form of iteration. For example, Afrati et al. in [3] perform a
theoretical investigation of the iterative execution of recur-
sive Datalog queries in an extended Map-Reduce environ-
ment. In that work, the task graph is not necessarily acyclic
and the execution of tasks need not be synchronized. In
other words, in the framework of [3] the blocking property
is lifted.

Recapitulating, it appears that in current and future ex-
tensions of Map-Reduce, iteration is a vital component. It

also appears that iteration can either be synchronous or
asynchronous, depending on the objectives for which a par-
ticular system has been built.

2.2 Iterative Stream Processing

The problem of iteration becomes much more challenging
when combined with the processing of stream data or stream
queries. In many applications, the data to be processed are
not always fully available at the time of execution. For ex-
ample, in a social network, the edges and the vertices of the
friends-of-friends graph can be added or removed dynami-
cally. In such cases, the data are often most valuable as soon
as they are produced (i.e., it is not possible for the data to
be delayed and processed later as part of a batch). This
state of affairs leads to the quest for iterative extensions of
Map-Reduce that also take into account the temporal na-
ture of the incoming data. A similar situation occurs when
we would like to process a stream of different queries over
the same data. If we would like to process the queries asyn-
chronously (i.e., start processing a query before the previous
one has completed execution), and if each query involves it-
erative computations, then care must be taken so as that
the data produced during the processing of one query will
not affect the processing of the other ones.

Certain extensions of Map-Reduce have been proposed
that can handle situations such as the above. The system
D-Streams [27] handles streaming input in a fault tolerant
manner. The Naiad system realizes the concept of the differ-
ential dataflow [20] in which operators act upon “difference
input traces” (i.e., the set of changes with respect to the pre-
vious input) in order to produce difference traces of output.
The output then can be constructed by combining all the
difference traces. The difference traces are indexed both by
the version of the input and the iteration number. As a re-
sult the computation of an iterative incremental algorithm
is drastically reduced since the framework can reuse com-
putations done both in previous versions of the input and
in previous iterations. Hadoop Online [9] is an extension of
Map-Reduce that supports pipelined stream queries. In [21]
multiple similar Map-Reduce jobs are combined in order to
be executed as one. The key idea is to add tags in the data,
in order to distinguish between different jobs.

The systems mentioned in this last subsection appear to
be using a common technique in order to handle iteration
in streaming data or queries: they employ some form of
tagging in order to discriminate between the data that be-
long to different iteration levels and different versions of the
input (or different queries). In the next sections we argue
that this tagging mechanism is not just a coincidence, but in-
stead a more general mechanism that can be used in order to
implement arbitrary iteration in a generalized Map-Reduce
framework.

3. TAGGED-DATAFLOW

The dataflow model of computation [10, 12] was devel-
oped more than thirty years ago, as an alternative to the
classical “von-Neumann” computing model. The key moti-
vation was the creation of architectures and programming
languages that would exploit the massive parallelism that is
inherent in many applications. A dataflow program is es-
sentially a directed graph in which vertices correspond to
processing elements and edges correspond to channels. The
data that need to be processed start “flowing” inside the
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channels; when they reach a node they are being processed
and the data produced are fed to the output channels of the
node. Since various parts of the dataflow graph can be work-
ing concurrently, the parallel nature of the model should
be apparent. Moreover, this processing of data “while in
motion” comes in sharp contrast with the traditional “von-
Neumann” model in which data wait passively in memory
until they are fetched by the central processing unit of the
(sequential) computer in order to be processed.

The dataflow model was extensively studied during the
70s and 80s. Many theoretical results were obtained, many
dataflow programming languages were developed and sev-
eral dataflow machines were built. In the beginning of the
90s, the dataflow research area started to decline. The main
reason was the fact that dataflow hardware never proved
extremely successful and never achieved a performance that
would justify the massive production and use of dataflow
machines. However, the theory and the programming lan-
guages that were developed were quite sophisticated, leaving
much hope for further developments in case the hardware
problems were ever bypassed.

In the initial dataflow model (usually called pipeline data-
flow), channels were assumed to be unbounded FIFO queues,
i.e., the data were assumed to flow in a specific order in-
side the channels. However, it soon became apparent that
a model that would not impose any particular temporal or-
dering of the data would be much more general and useful.
This resulted in the so-called tagged-dataflow model [25, 5,
6]. The basic idea behind tagged-dataflow is that data can
flow inside a network accompanied by tags (i.e., labels). The
use of tags makes dataflow much more asynchronous since
data need not be processed in any particular predetermined
order. Moreover, as we are going to see, the tags can carry
essential information that can be used in order to implement
iterative or even recursive algorithms. A key notion in our
foregoing discussion is that of a dataflow graph:

Definition 1. A dataflow graph (or dataflow network) is a
directed graph G = (V, E), where V is the set of nodes of
the graph and E is the set of edges connecting elements of
V. The set V is partitioned into disjoint subsets Vi (input
nodes), Vo (output nodes) and Vp (processing nodes), subject
to the following restrictions:

e Every input node has no incoming edges and has one
outgoing edge towards a processing node.

e Every output node has no outgoing edges and has one
incoming edge from a processing node.

e Every processing node has incoming edges (at least
one) from input nodes and/or from other processing
nodes and outgoing edges (at least one) to output
nodes and/or other processing nodes.

Intuitively, input nodes provide the input data to the data-
flow graph, processing nodes are performing the processing
of data and output nodes are collecting the output data pro-
duced by the network.

The semantics of dataflow networks can be given with
standard techniques of denotational semantics [23]. Our pre-
sentation below follows the exposition given in [26]. Intu-
itively, edges of our dataflow networks carry tuples of the
form (t,d) where d is an element of a data domain D and
t is an element of a set of tags T. The set T may be quite

involved; in its simplest form it can be a set of natural num-
bers, or in more demanding cases it can be the set of lists
of naturals numbers, etc. Pairs of the form (¢,d) € T x D
are usually referred in the dataflow literature as tokens. It
is often assumed that for a given tag ¢, an edge can contain
at most one token (¢,d). In other words, it is a standard
assumption that edges correspond to functions in T — D.
As we are going to see in the next section, this assumption
needs to be extended when considering applications in the
Map-Reduce framework.

Consider now a processing node of our dataflow graph.
A standard assumption in dataflow computing is that pro-
cessing nodes are functions that transform their inputs to
outputs. There have been extensions of dataflow that sup-
port non-functional nodes, for example, non-deterministic
ones [1]. However, such extensions will not be considered
here. It should be noted that determinism is also a key
assumption in Map-Reduce systems (see, for example, [11,
page 109]). Therefore, based on the foregoing discussion, a
processing node f of a dataflow network that has n > 1 in-
puts and m > 1 outputs is a function® in (T — D)" — (T —
D)™. The input and output nodes are in fact equivalent to
channels, ie., they are functions in 7' — D.

In the rest of the paper we will refer to the class of dataflow
networks presented above as functional dataflow networks
(since channels are functions). We will present an extension
of this model in the next section.

Ezample 1. We demonstrate these ideas with the well-
known example of Hamming numbers (first posed as a pro-
gramming problem by Edsger Dijkstra). Recall that Ham-
ming numbers are all numbers of the form 2° - 37 - 5¥ where
i, J, k are non-negative integers. The problem is to enumer-
ate the Hamming numbers in numeric order and a data-
flow solution of it is depicted in Figure 1. We explain the
nodes that appear in the figure. First consider the nodes
that contain constants (such as 1, 2, etc). One can assume
that these nodes produce constant streams. For example,
the node 5 is nothing more than the constant function in
N — N which assigns to every n € N the constant value
5. The fby node (read as “followed-by”), is a function in
(N — N,N = N) - (N — N). The operation of fby can be
intuitively described as follows: initially, it checks its first
input until a token of the form (0,d) arrives, and as soon
as it sees such a token, it delivers it to its output channel.
From that point on, fby never consults again its first input
but it continuously checks its second input. Every time a
token of the form (¢, d) arrives in its second input, the node
puts in its output channel the token (¢ 4+ 1,d). It can be
easily checked that this operational behavior corresponds to
the following functional definition of fby:

X(0 ift =0
ﬂ?y(X,Y)(t):{ y(t)71) ift>0

The merge node is also a function in (N - NN — N) —
(N — N). Given two inputs X,Y € N — N that are in-
creasing functions, merge produces as output an increasing
function that results from merging the two inputs. For the

! Actually, computability reasons dictate that the functions
corresponding to the nodes of our networks have to be addi-
tionally continuous (see [23] for a standard introduction on
this issue and [18] for a corresponding discussion regarding
pipeline dataflow networks).
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Figure 1: The dataflow representation of Hamming
numbers.

formal (recursive) definition of merge, see [24]. The “*” nodes
simply multiply the data part of the token that arrives in
their input, with the constant that exists in their other in-
put.

One can easily verify that the network just described, pro-
duces the sequence of Hamming numbers.

4. TAGGED-DATAFLOW AND ITERATIVE
MAP-REDUCE

In this section we argue that a mild extension of the
tagged-dataflow model of computation can be used as the
formal framework behind existing and future iterative gen-
eralizations of Map-Reduce. We present various applications
in which the tagged model gives elegant solutions with in-
creased asynchronous parallelism.

It is important to clarify what exactly is being claimed
by the following examples. First, we argue that the imple-
mentations of iterative Map-Reduce systems should support
tags and tag-manipulation operations in the same way that
tagged-dataflow machines of the 80s supported such opera-
tions [15, 6]. The tags can be used to ensure the implemen-
tation of asynchronous iteration in an elegant and effective
way. The main idea is precisely defined in the following
excerpt from [15]:

Each separate (loop) iteration reuses the same
code but with different data. To avoid any con-
fusion of operands from the different iterations,
each data value is tagged with a unique identi-
fier known as the iteration level that indicates its
specific iteration. Data are transmitted along the
arcs in tagged packets known as tokens.

The second thing that is being claimed below is that the
languages used to program iterative Map-Reduce applica-
tions should also support the declaration and manipulation
of tags. In this way the programmer will be free to declare
and use the types of tags that are essential in the specific
application being developed. It is important to stress that
dataflow languages of the 80s and 90s allowed the declaration
of user-defined tags (also called dimensions). For example,
the latest versions of Lucid [24] and its extension GLU [17]
allowed many different dimensions.

4.1 An Extension of Tagged-Dataflow for
Map-Reduce

The basic principles of tagged-dataflow described in the
previous section have been used in the design of many func-
tional dataflow programming languages. In particular, the
interpretation of channels as functions and of processing
nodes as (second-order) functions, clearly emphasizes the
connections between dataflow networks and functional pro-
gramming.

However, there exist applications in which it is not suf-
ficient for channels to be just functions from 7" to D. For
example, it is conceivable for the same tag to be used in two
different tuples that “flow” inside a channel (i.e., to have
(t,d1) and (t,d2) appear in the same channel). Moreover,
it is possible in certain cases to have the same tuple (t,d)
appear more than once in a channel. In particular, as we
are soon going to see, in the Map-Reduce framework both
of these cases show-up quite naturally.

We are thus led to a generalization of the tagged-dataflow
model in which channels are multisets over T' x D and pro-
cessing nodes take multisets as inputs and produce multisets
as outputs. More formally, given a nonempty set S let us
denote by M (S) the set of multisets (or bags) of elements of
S. Then, in our extended tagged-dataflow model, a channel
is an element of M(T x D) while a node f of a dataflow
network that has n inputs and m outputs is a function in
[M(T x D)]"™ — [M(T x D)]™. In the following subsections,
we examine three different applications where this extended
tagged model is applicable and useful.

4.2 Streaming Queries

One of the most promising applications of iterative Map-
Reduce is in the execution of Datalog queries [3, 4]. The key
idea here is that the least fixed point of a Datalog program
can be computed in a bottom-up way using a network of join
and dup-elim processes (see [3] for details). For example,
assume that we have an EDB relation edge and also the
following IDB relation:

reach(Y) :- start(Y).
reach(Y) :- edge(X,Y), reach(X).

Assume also that we want to locate all the nodes that are
reachable from an initial vertex a, i.e., we assume that we
also have the fact start (a). Using the techniques of [3], one
can easily construct a simple network that calculates the set
of nodes reachable from a.

Assume however that we want to have multiple queries,
e.g., we want to locate all the vertices reachable from a, b
and c. Moreover, for reasons of efficiency, we want these
queries to be run in parallel as much as possible (which
means for example that the query for b should not wait
for the computation of the query for a to complete before
starting to execute itself). The problem with running the
queries in an overlapped manner is obvious: the output of
the Map-Reduce network will be a set of reach facts, but
with no indication of which fact corresponds to which query.
So, if we want to do some further processing on the nodes
reachable from vertex a, we have no way of knowing which
exactly these nodes are.

In the tagged setting, the support of such streaming queries
is quite straightforward. Each different start query is tagged
with a different natural number. Then, every time one of the
reach rules is used to produce some new fact, the tag that
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Figure 2: The set of join and dup-elim nodes work-
ing with streaming queries. Queries flow from the
start node tagged with a distinct number.

has been used in the body of the rule is inherited by the fact
that is produced in the head of the rule. In this way, at the
end of the computation a set of tuples (¢, reach(u)) is col-
lected, and one can discriminate the results of the different
queries by examining the tag t.

It is not hard to see how the above example fits the tagged-
model introduced in Subsection 4.1. The dataflow is de-
picted in Figure 2. The channels of our network are ele-
ments of M(N x D); the data domain D is the set of tu-
ples flowing in a particular channel. Notice that we need to
have multisets because the same tuple under the same tag
may appear in a channel more than one times. For exam-
ple, the join processing node may produce many identical
tokens. Consider now the two processing nodes, namely
join and dup-elim. The join node takes as input two tag-
extended relations; each such relation does not contain du-
plicates and is therefore an element® of P(N x D) (which
is a special case of M(N x D)). The output of the join
is an element of M(N x D)), since the joining of two rela-
tions may create duplicate tuples. Overall, the type of join is
[P(Nx D)]*> - M(Nx D). Consider now the dup-elim node,
which eliminates duplicates from its input channel. Its type
is M(N x D) - P(N x D). In fact, the dup-elim is nothing
more than the function which given a multiset returns the
corresponding underlying set.

4.3 Algorithms with Increased Asynchronic-
ity
The transitive closure of an arbitrary relation can be cal-
culated with the technique shown in the previous section,
using a dataflow network that corresponds to an iterative
Map-Reduce system. In this section, we calculate the tran-
sitive closure by recursive doubling, using a set of join and
dup-elim nodes, as suggested in [2, 3]. In the form of pseu-
docode, the algorithm that we use (copied from [3]) is the
following:

1: Qo:=F

2: Py :={(z,z) | z is a graph node}

3:1:=0

4: repeat

5 d:=1+1

6:  Pj(z,y) = Tay(Qi-1(z,2) X Pim1(2,9))
7 Qi(w,y) = Tay(Qim1(w, 2) > Qi—1(2,y))
8 P =P P

9: QL = Q; — PL'

10: until Q; =0

2By P(A) we denote the power-set of a given set A.

PZ/ @] Q; Ll jOinJ P4

Qi—l

—>| dup-elim |——>@

Figure 3: The set of join and dup-elim nodes that
computes the transitive closure by recursive dou-
bling.

We deviate in the details of the implementation by in-
troducing tags of the form (4,1) which are used to annotate
every row (u,v). A tag conveys two pieces of information:
i is the number of iteration in which a row was produced,
and [ is the length of the path. Hashing can be used to de-
termine which node will receive a given tagged row, in the
same way as in [3]; we omit the details here.

Each join mode has two inputs, left and right, and two
distinct internal stores, again left and right. The join is
performed as follows:

1. For every tuple (z,z) with tag (i1,0l1) in its left in-
put, the node searches its right store for tuples (z,y)
with tag (i2,l2) such that l» < l;. For every such tu-
ple it emits a tuple (z,y) with tag (¢,!) where i =
max{i1,i2} + 1 and I = l1 + l2. The initial tuple (z, z)
is stored in the left store together with its tag.

2. For every tuple (z,y) with tag (i2,12) in its right input,
the node searches its left store for tuples (z, z) with tag
(i1,11) such that lo < ;. For every such tuple it emits
a tuple (z,y) with tag (i,1) where i = max{i1,i2} + 1
and [ = l1 + l. The initial tuple (z,y) is stored in its
right store together with its tag.

Each dup-elim node receive tuples (z,y) with tag (¢,1) and
performs the following steps:

1. If the tuple already exists with smaller tag (i.e., either
smaller length or same length and smaller iteration
number) then it is ignored. If the tag exists with bigger
tag then the tag is updated to the smaller one and the
tuple continues.

2. If | = 2% then it is fed back both as left and as right
input to the appropriate join nodes, otherwise it is fed
only as right input.

Each tuple (z,y) in the relation E is sent to the corre-
sponding dup-elim node with tag (0,1).

The left input of a join node corresponds to relation @
(the paths of size 2"), whereas the right input corresponds
to relation P. We choose to join each tuple of Q) with every
tuple of P of strictly smaller length. That join corresponds
to line (6) of the recursive doubling algorithm. Moreover, we
join each tuple of @ with every right tuple of equal length.
That corresponds to line (7). Thus the output of the join
is the union of both steps, but since we have tagged each
tuple with the length of the path we can distinguish the two
relations.

In fact, the dup-elim will pick only the tuples of size 2°
and redirect them to the left input of the join. But since

33



Qi C P;+1 those tuples will also be redirected to the right
input of the join. All the other tuples will be redirected
only to the right input as part of P. Suppose now that a
new tuple is generated with iteration number ¢ and the same
tuple already exists in dup-elim store with different tag. If
the tag has a smaller iteration j then the tuple exists in
P; C P;. In that case the new tuple is ignored. If that
tuple is for the relation @, omitting it corresponds to line
(9) of the algorithm. On the other hand, if it was for the
relation P, this corresponds to line (8). Since the iteration
is not synchronous, it may occur that the new tuple has
smaller tag (smaller length) than the one already stored in
the dup-elim. In that case, the tuple is not ignored since
it precedes in time and the node will emit the tuple as if
it is encountered for the first time. It will also update the
tag with the smaller one, to prevent for other duplicates to
propagate.

Note that the relations @ and P up to iteration i are
accumulated in the left and right stores of join nodes, re-
spectively. Moreover, the relation P is also stored in the
dup-elim nodes.

The dataflow is slightly different of that described in Sub-
section 4.2. In this case the tags are elements of N x N and
the channels are elements of M((N x N) x D). The type of
join node is [P((N x N) x D)]? = M((N x N) x D). On the
other hand, the type of the dup-elim node is M((N x N) x
D) — [P((N x N) x D)]?. The dataflow graph is depicted
in Figure 3. Note that the dup-elim node differs from the
simple version since it has two output channels, one for each
relation.

Consider the case where the structure of the graph changes,
for example, new edges are added in a timely manner. A sim-
ple setup of the recursive doubling algorithm must restart
the computation each time a change of the graph is detected.
In the aforementioned tagged-dataflow graph a new edge will
trigger the join of certain paths only, based on their tag,
minimizing the redundant computations.

4.4 Recursive Algorithms

To our knowledge, the existing extensions of Map-Reduce
have mainly dealt with iterative algorithms. However, not
all algorithms can be expressed elegantly in an iterative ways;
there exist problems whose solution is more naturally ex-
pressed in a recursive manner. In the rest of this subsection
we consider one such problem and at the end of the sub-
section we discuss the possibility of extending the proposed
technique to all recursively defined functions.

The algorithm we present below is a distributed sorting
procedure that is based on the tagged-dataflow approach.
However, we do not claim at present that this is actually
an efficient way to perform sorting in a distributed envi-
ronment nor that this example is fully-compatible with the
nature of Map-Reduce. The algorithm described below is
only intended to demonstrate that the tagging mechanism
can also be used to implement recursive algorithms in a dis-
tributed manner. Intuitively, the tags can be used in order
to keep track of the paths in the recursion tree.

Let us assume that we would like to sort a considerably
large list of data, which is possibly distributed in a number
of nodes over the network. One possibility is to use merge
sort: we split the list into two parts, we sort each one of
them separately and then merge the results. This is clearly
a recursive procedure. The problem is therefore how we can

|
[ list JJ—{ split ]—{ length=1 ]
|
[ 1
[ merge ]—»[ tag=(] H sorted ]
— |

—»[ invsplit ]

Figure 4: The mergesort depicted as dataflow.

implement the recursive merge sort in a distributed way,
using tags to coordinate the whole process.
A merge sort function usually has the following form:

msort([1) = [I
msort([x]) = [x]
msort(l) = merge(msort(1l1l), msort(12))

where (11, 12) = split(l)

The function split divides a list into two disjoint lists of
half size and returns a tuple consisting of these two parts.
The base cases of the recursion (1 == [] and 1 == [x])
need not be so fine-grained; for example, in a Map-Reduce
context, when a list given to an intermediate step of merge
sort is relatively small, we can sort it locally on a particu-
lar machine instead of continuing to divide it into smaller
lists, which would circulate in the network and impose fur-
ther communication costs. To simplify the presentation, we
assume however that msort is defined as above and that the
recursion reaches down to lists of trivial size.

The key idea behind the distributed implementation of
merge sort is the following. We tag the all values in our list
with two different tags. The first tag is a natural number
(initially equal to 0) which will be used in the merge pro-
cess of the algorithm. The second tag is a list of natural
numbers (initially empty) which indicates the steps of the
splitting procedure that have been applied on a particular el-
ement of the initial list. For example, if during the recursive
execution of msort an element of the initial list was placed
in the component 11, during the first invocation of split,
and in the component 12, during the second invocation of
split, then this element will be tagged by [2,1].

The distributed algorithm for merge sort is depicted in
Figure 4. It contains two phases.

In the first phase, the algorithm starts by splitting the
initial list into two sublists; this is achieved by the split
node in Figure 4. The elements placed in the first component
11 by split will have their list tag prefixed by 1, while
those plaved in the second component 12 will be prefixed
by 2. This process of splitting and tagging is continued
until all elements of the initial list have different tags; this
is achieved by the length=1 node, which checks whether the
list of elements corresponding to a given tag contains a single
element and, if not, returns all elements of the list to split.
Every element whose tagging process has been completed,
passes to the second phase of the dataflow network.

In the second phase of the algorithm, the invsplit node
examines each element that arrives to it; if the head of the
element’s tag is 1, invsplit removes the head and sends the
element to its left output; if the head is 2, it removes it and
sends the element to the right output. The merge node sorts
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all those elements that have the same list tag by changing
the natural number tag so as to reflect the order of each ele-
ment. E.g., if merge receives the element ({0, [2, 1]), George)
and the element ((0, [2,1]), Steve), then, since George is al-
phabetically first compared to Steve, the merge node will
output ((0,[2,1]), George) and ((1,[2,1]),Steve). If in the
next step it receives [((0,[1]), Ann), ((1,[1]), Suzan)| in the
left input and [({0, [1]), George), ((1,[1]), Steve)] in the right
input, then it will merge these two ordered sets and produce
[((0,[1]), Ann), ({1, [1]),George), ((2,[l]),Steve), ((3,[1]),
Suzan)|. The process will end when two ordered sets whose
elements are all tagged with the empty list appear as inputs
to merge; in this case, merge will do the final merging of
these two sets, and the sorted file will come to the output.

The above procedure may seem ad hoc at first sight and
one may assume that the distributed tag-based execution
may not be applicable to all forms of recursion. However,
this does not appear to be the case. A purely dataflow tag-
based scheme for implementing first-order recursive func-
tional programs was proposed in [26] and was theoretically
justified in [22]. However, the scheme of [26] is appropriate
for demand-driven execution while the main applications in
the area of Map-Reduce appear to require a data-driven ap-
proach. The mergesort example presented above was ob-
tained by adapting the technique of [26] to run in a data-
driven way. Whether this can be done in general appears to
be an interesting research problem.

S. FUTURE WORK

There exist several aspects of the connection between the
Map-Reduce framework and tagged-dataflow that require
further investigation. In the following, we outline certain
such problems that we feel are particularly interesting and
worthwhile for further study:

e Every functional dataflow network of the form pre-
sented in Section 3 can be shown to compute a function
which is the least fixed point of a system of equations
associated with the network. This result is an easy
generalization of the so-called Kahn principle [18]. The
least fixed point can be computed inductively, based
on standard results of recursion theory (in particular,
Kleene’s fixed point theorem). Therefore, there exists
a way of computing the meaning of functional dataflow
networks or, in other words, we have a formal the-
ory for reasoning about functional dataflow programs.
It would be interesting to examine whether the Kahn
principle also holds for the more general (i.e., multiset-
based) dataflow networks introduced in Subsection 4.1.
If this is the case, then this opens up the possibility
of performing formal proofs of correctness for various
dataflow algorithms (such as the transitive closure al-
gorithm of Section 4).

e At present, not many specialized programming lan-
guages have been proposed that can be used to pro-
gram applications for the processing of massive data.
We feel that this is probably one of the next steps in
the evolution of the area. Such languages would defi-
nitely benefit by adopting the features and philosophy
of the dataflow programming languages of the past.

e Based on the model of tagged-dataflow, one should be
able to define a formal theory of fault tolerance for

dataflow networks. Since fault tolerance is a primary
characteristic of (standard) Map-Reduce, it would be
interesting to see how such a desired property can
be ensured in the more general setting of the tagged-
dataflow model.

We strongly believe that the further investigation of the in-
teractions between dataflow and the novel approaches to dis-
tributed processing that have resulted from Map-Reduce,
will prove very rewarding.
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