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ABSTRACT

In the last few years social networks have reached an ubig-
uitous diffusion. Facebook, LinkedIn, and Twitter now have
billions of users, that daily interact together and establish
new connections. Users and interactions among them can be
naturally represented as data graphs, whose vertices denote
users and whose edges are labelled with information about
the different interactions.

In this paper we sketch a novel approach for processing
regular path queries on very large graphs. Our approach
exploits Brzozowski’s derivation of regular expressions to al-
low for a vertex-centric, message-passing-based evaluation
of path queries on top of Apache Giraph.

Categories and Subject Descriptors
H.2.4 [Database Management|: Systems

General Terms

Algorithms, Performance
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1. INTRODUCTION

In the last few years social networks have reached an ubig-
uitous diffusion. Facebook, LinkedIn, and Twitter now have
billions of users, that daily interact together and establish
new connections. Users and their interactions can be natu-
rally represented as data graphs, whose vertices denote users
and whose edges are labelled with information about the dif-
ferent interactions. The problem of managing, querying, and
mining graph databases, hence, is becoming more and more
important; similar problems emerge in many different appli-
cation fields where data have a graph structure, e.g., traffic
analysis, crime detection, the Semantic Web.

Data graphs have attracted a significant research interest
since the mid 90’s. In particular, several query languages
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based on regular expressions [8, 9, 6] have been proposed
and a few data graph query processors have been designed
[5, 10].

Today data graphs can be very large and easily exceed 100
millions vertices. To manage this kind of graphs, Google de-
signed a novel class of graph processing systems, based on
the Bulk Synchronous Parallel Model by Valiant [11], where
graphs are automatically partitioned across the nodes of a
computing cluster, and algorithms are expressed through
vertez-centric functions, i.e., functions that are executed by
each vertex in the graph. Systems in this class (e.g., Google
Pregel [7] and Apache Giraph [1]) exhibit very good scala-
bility properties for many graph algorithms, but have not
been designed for querying graphs.

Our Contribution. In this paper we sketch a novel ap-
proach for evaluating path queries on very large graphs. Our
approach exploits Brzozowski’s derivation of regular expres-
sions [4] to allow for a vertex-centric, message-passing-based
evaluation of path queries on top of Giraph (see Section
3.1). In particular, when each vertex receives a query g, it
derives ¢ according to the symbols labelling outgoing edges
and propagates the derivative of ¢ to its neighbours. To
avoid network flooding, only outgoing edges labelled with
symbols in the first set of q are considered.’

2. DATA MODEL AND QUERY LANGUAGE

2.1 Data Model

Following [6], we model a data graph as an edge-labelled
graph, as shown below.

Definition 2.1 (Data Graph) Given a finite alphabet ¥
and a (possibly) infinite value domain D, a data graph G
over 3 and D is a triple G = (V, E, p), where:

e V is a finite set of vertices;

e [ CV xX xV isa set of labelled, directed edges
(vi7 a, Uj);
e p:V — D is a mapping from vertices to values.
Given a vertex v, we will indicate with in(v) and out(v)

the set of incoming and outgoing edges, respectively. More
formally:

!The first set of a regular expression r is the set of symbols
that appear in the first position of words matching r.
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Figure 1: A graph.

o in(v) ={(v,a,v) e E|v € VAaeZ}
o out(v) ={(v,a,v") € E|v €V Aa €T}

We will also indicate with ¢d(v) the unique identifier of
v. We assume that sequences of outgoing (incoming) edges
of a vertex are unordered, as it is often the case in graph
databases.

2.2 Query Language

Many query languages for graph data have been presented
in the past [8, 9, 6]. We focus our attention here on GXPath,
a language recently proposed by Libkin et al. in [6]. GXPath
is based on the idea of using regular expressions to specify
patterns that must be matched by paths in the input graph.
Given a query g, the result of its evaluation over a graph
G is always a set of vertex pairs (v,v’) such that v and
v’ are connected by a path p in G matching the query q.
GXPath extends other path languages like RPQs or NREs
with the introduction of the complement operator, data tests
on the values stored into vertices, as well as counters, which
generalize the Kleene star, and it can be considered as an
adaptation of XPath [2] to data graphs.

Among the various fragments of GXPath, we focus here
on a navigational, path-positive fragment with counting, but
without complement, intersection, and nested conditions, as
described by the following grammar.

a == €|_|Jalatala-ala™"

Given a graph G = (V, E, p), the semantics of our frag-
ment of GXPath can be defined as follows.

lle = {(u,u)|ueV}
[[(le = {(u,v)]|3a€ Z.(u,a,v) € E}
[ale = {(u,v)] (u,a,v) € E}
[or + az]e = [ea]eU[e2]e
[oa-az]e = [oa]eo[az]e
[@™"]e¢ = Ulnlale

where o is the symbol for the concatenation of binary re-
lations and R’ denotes the concatenation of R with itself
times. Here, € denotes the empty word, _ matches any sym-
bol, a1 - a2 and a; + a2 are the standard concatenation and
union operators, and a™" denotes the repetition of « from
m to n times (m € N, n € NU {x}, m < n).

Example 2.2 Consider the graph depicted in Figure 1.

Consider now the following query: a?3- (b+d). This query
returns all vertex pairs (u,v) connected by the following
paths: aab, aaab, aad, aaad. The result of this query is
{(v1,v6), (v1,v5), (v2,v5), (vs,v6)}-

3. PROCESSING PATH QUERIES

3.1 Brzozowski’s derivatives

Brzozowski’s derivatives [3] represent an alternative way
to check if a word w belongs to the language generated by a
given regular expression r. The idea is to iterate over w and
to rewrite r according to the last read symbol, hence com-
puting a derivative; if the derivative generated after the last
symbol of w has been read is €, then the check is successful.

Brzozowski’s derivatives can be extended to regular path
expressions on data graphs in the following way.

Definition 3.1 (Derivative) o is a derivative of o in a
graph G = (V, E) according to a € o iff U ,, 4 »epf(u,v)}o
[o']e = [o]c.

Definition 3.2 (Empty expression) () denotes the empty
reqular expression, that is, [0]c =qer 0

Proposition 3.3 (Empty expression properties) 0§ sat-
isfies the following properties:

at+h = 0+a = «

a- = 0« = 0

Notation 3.4 (m™, * — 1) In the following definitions, we
use m~ to denote max(m—1,0), and assume that *—1 = *.

Definition 3.5 N(a) is a predicate on regular expressions,
defined as follows:

N(D) = false N(e) = true
N(a) = false N() = false
N(ar +a2) = N(aa)V N(ag)

N(Otl '062) = N(Ocl)/\N(ch)

N(a™™) = N(a)

Definition 3.6 first(a) is a function on regular expres-
sions, defined as follows:

first(0) = 0
first(e) = 0
first(a) = {a}
first(L) = X
first(ar +a2) = first(on) U first(as)
) first(a1) U first(az) if N(aa)
firstlan - az) first(an) otherwise
first(a™™) = first(a)

Definition 3.7 (Derivation) d.(«), where « is a regular
path query and a € X, is defined in Figure 2.

It is easy to see that dq () is a derivative of o according
to a in G.

3.2 Evaluation Algorithm

Brzozowski’s derivatives can be used to implement path
query processing on top of Giraph (or similar systems). In
Giraph a computation consists of several supersteps, repre-
senting global synchronization points. Each superstep com-
prises a master computation, performed by a special node
(“the master”) at the beginning of the superstep, and by a
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Figure 2: Derivation function.

vertez-centric computation, where each graph vertex pro-
cesses incoming messages from other vertices, sends mes-
sages to other vertices, and executes a given algorithm. Ver-
tices communicate together through messages, that are de-
livered at the beginning of the next superstep; the com-
munication between the master and vertices is performed
through special data structures called aggregators, and is
bidirectional. The computation halts when each vertex de-
cides to halt and no more message is flowing in the network.

In our system each input query ¢ is sent to each vertex
by the master at the beginning of the first superstep; the
master also sends the command derive. If ¢ contains a
subexpression of the form o, the master transforms it
into o™V

At superstep 0, each vertex v checks for a message by
the master; if the message is a pair (g, derive), then the
vertex is instructed to start the derivation process. If ¢ = €
or N(q), then v sends the pair (id(v), id(v)) to the master
through the aggregator result; the master will push the
content of result on persistent store at the beginning of the
next superstep. If ¢ # 0 and q # €, v starts the derivation
process by looking at the symbols labelling outgoing edges.
The derivation of g according to a symbol a is performed
only if a € first(q), i.e., a may appear in the first position
of a word generated by q. If d,(g) # @, then v sends to the
target vertex a message (id(v), da(q)).

At each superstep s > 0, the master checks if the new
results have been aggregated in result by graph vertices in
the previous superstep; in that case, the master moves the
result pairs to the persistent store and cleans the aggregator.

At each superstep s > 0, each vertex v checks if there
are incoming messages from other vertices. If v receives
a message m = (id(vo),q’), then it starts analyzing ¢’ to
understand if it must be derived; in particular, if ¢ = €
or N(¢'), v adds the pair (id(vo),id(v)) to result and, if
¢ = e, it starts processing the next message. If ¢ # e v
starts deriving ¢’ according to the symbolb labelling outgoing
edges, provided that they are in first(q’). If the derivative
is equal to (), no message is sent; otherwise, given an edge
(v,a,v"), v sends to v’ the message (id(vo),da(q')).

The pseudocode of the algorithms for master and vertex
computation is shown in Figures 3 and 4.

3.3 Implementation Issues

We implemented the algorithms described in the previ-
ous section in a very preliminary research prototype called

MASTERCOMPUTE

/ - - Input: a query ¢
/ - - Input: aggregators result and command
if (superstep == 0)
if (¢ == Cla™"]) ¢ = Cla™!")
command.aggregate((q, derive))
else List resultList = result.getAggrValue()
if (resultList # {})
add resultList to persistent storage
result.clean()

N O U W N

Figure 3: Master computation.

Vertigo. While implementing Vertigo, we faced several chal-
lenges. First of all, Brzozowski’s derivation does not behave
well on non-deterministic regular expressions, as it may gen-
erate exponentially larger derivatives;? this is even more
evident when the regular expression contains a counting
operator. To speed up the derivation process, our deriva-
tion algorithm works modulo associativity and commutativ-
ity of union. In detail, we memoize the derivation process
through a small LRU cache on each Giraph worker, and sys-
tematically simplify derivatives through the following rules:
ata—a,a+0— o ae—a, a h—0.

Second, when working on very large graphs and queries
with low selectivity, query results can be quite large. Hence,
their transmission to the master through aggregators can
be quite expensive. To decrease this overhead, result trans-
mission is performed at the end of each superstep by each
worker through a post-superstep computation. Workers per-
form a preliminary duplicate elimination, while the master
just appends result pairs on a file on HDFS; final duplicate
elimination is performed when computation halts.

Finally, the most efficient way to evaluate queries of the
form o™ ™ is to evaluate a and, then, to compute the reflex-
ive and transitive closure of [a] . This can be performed in
a BSP fashion, but it would be too expensive as it requests
to stop the current graph traversal. Therefore, we prefer to
drop this technique in favour of a more naive one, where %

2Intuitively, a regular expression r is non-deterministic (or
1-ambiguous) if there exists at least a word w that can match
r in multiple ways.
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VERTEXCOMPUTE

0~ Uik WN

/ - - Input: aggregators result and command
/ - - Input: current vertex v
if (superstep == 0)
MasterMessage m = command.getAggrValue()
Query ¢ = m.query
if (¢ == 0) HaLT()
elseif (¢ ==¢)
result.aggregate((id(v), id(v)))
HALT()
elseif (N(q)) result.aggregate((id(v),id(v)))
for each (v,a,u) € E : (a € first(q))
Query ¢’ = da(q)
if (¢' # 0)
if (¢ ==di +q2)

HALT()
elseif (superstep > 0)
for each message m = (id(vo), q)
if (¢ ==¢)
result.aggregate((id(vo), id(v)))
skip to next message
elseif (N(q)) result.aggregate((id(vo),id(v)))
for each (v,a,u) € E : (a € first(q))
Query ¢’ = da(q)
if (¢ #0)
if (¢ ==q1 + ¢2)
if (g1 # 0)
SEND(u, (id(v0),q1))
if (g2 # 0)
SEND(u, (id(vo), g3))
else SEND(u, (id(vo),q"))
HALT()

Figure 4: Vertex computation.

is replaced by the number of vertices in the input graph.

4. CONCLUSIONS AND FUTURE WORK

In this paper we sketched a novel algorithm for evaluating
regular path queries on data graphs. This algorithm exploits
Brzozowski’s derivation and can be used in Giraph and any
other similar system. We developed a very preliminary pro-
totype implementation of our algorithm; in early tests on
a single commodity machine this prototype easily processed
queries on 200-million-edge graphs. We are currently testing
our implementation on Pivotal’s AWB cluster.

In a very near future we plan to extend our algorithm to
support a larger fragment of GXPath comprising backward
navigation, branching, and intersection.
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