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ABSTRACT
In the context of Big Data, flexible and adjustable data analytics
become more and more important, whereas an efficient, scalable
and fault-tolerant execution is required as well. To fulfill the flex-
ibility as well as the execution requirements, the specification of
the analysis methods have to be in an appropriate and easy ad-
justable manner. The MapReduce approach has demonstrated that
such flexible specification as well as scalable execution is possi-
ble and applicable. However, the MapReduce programming model
is too generic and complicates the specification from a data anal-
ysis point of view. Therefore, we propose a novel programming
approach using well-defined modular building blocks for a specific
and highly utilized data analysis domain named data clustering in
this paper. Our approach offers many advantages: (i) a unified and
specific instruction set for data clustering which eases understand-
ing and algorithm adaptation in an abstract way, and (ii) enables
an efficient and scalable execution of all data clustering algorithms
based on an efficient mapping of the unified instruction set to a
specific target environment is possible.

1. INTRODUCTION
In order to efficiently process and analyze massive data, highly

scalable parallel data processing platforms have been developed
[16]. In this area, MapReduce [7] is a well-establish programming
and execution framework. A MapReduce cluster is able to scale to
thousands of commodity computer nodes in a fault-tolerant man-
ner. Furthermore, the programmers can parallelize their applica-
tions in an easy way by implementing map and reduce functions to
transform and aggregate data, whereas the underlying data struc-
ture consists of (key,value) pairs. As shown in different application
domains, many algorithms fit perfectly into the MapReduce model,
such as word counting in information retrieval or equi-join queries
in databases.

Generally, the success of MapReduce is based on the simple and
flexible programming model with the ability to execute the applica-
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tion in a highly parallel and fault-tolerant fashion [7, 16]. Neverthe-
less, the MapReduce model has several shortcomings. For exam-
ple, one drawback of MapReduce is the missing support for itera-
tive computations. However, many data analysis techniques require
those iterative computations, therefore Bu et al. [4] have proposed
an extension to MapReduce. A second drawback is that MapRe-
duce itself does not support any high-level language like SQL in
database systems. Users always have to code their operations in
map and reduce functions, whereas they have to consider the (key,
value) data structure. Mapping of individual data structures to (key,
value) pairs is not always trivial [2]. To overcome this issue, a vari-
ety of projects aim at providing higher-level interfaces. An example
is Jagl1 as a declarative query interface with rich data processing
features such as transformation, filtering, join processing, grouping
and aggregation. The Jaql scripts are automatically compiled and
executed as MapReduce jobs.

However, the available higher-level interfaces focus on data trans-
formation and processing tasks. To support deeper analytics as nec-
essary for Big Data, Das et al. [6] integrate the statistical analysis
system R2 in the MapReduce system Hadoop. This integration is
done on the language level by combining Jaql with R scripts as
well as on the execution level using a R-Jaql bridge between R and
Hadoop. The advantage of this approach is the efficient utilization
of the rich functionalities of R for analytical task. From a usabil-
ity point of view, this integration fits perfectly, because users can
immediately start deep analytics on their data using standard func-
tions. The disadvantage of this approach is availability of two dif-
ferent runtime infrastructures which have to interact to determine a
result. Furthermore, this language approach of Jaql combined with
R is not well suited for the specification of new analysis methods
in a MapReduce style, so that these methods are finally scalable on
a highly parallel platform.

To tackle the flexible specification or engineering of analytical
methods for large scale analytics, we propose an alternative ap-
proach with regard to modular algorithm design inspired by MapRe-
duce. We illustrate our approach using algorithms from data min-
ing, in particular from the data clustering domain. Fundamentally,
data clustering is a highly applicable analysis method that is used
to reduce the amount of data or to gain understanding and acquire
novel, previously unknown knowledge. The task of data clustering
is to partition a set of objects into groups—so called clusters—in a
way that similar objects are put in the same cluster, while dissimilar
objects are located in different clusters. To determine such cluster-

1https://code.google.com/p/jaql/
2http://www.r-project.org
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ing result, a large algorithmic landscape has been established. To
get an idea of this landscape, in terms of size, we looked through
the proceedings of the SIGKDD and ICDM data-mining confer-
ence from 2005 and 2012 and counted more than 120 papers in-
troducing new algorithms or variants resp. optimization of existing
techniques. This multitude of algorithms exists because it is impos-
sible to design an algorithm that automatically produces optimal
results for any data set or application, thus a lot of techniques are
highly specialized and custom-made for specific scenarios or types
of data sets.

Our Contribution
In this paper, we present our modular language approach for the
description and specification of clustering algorithms. Our design
principles are (i) to establish a unified view on clustering algorithms
using a compact set of instructions and (ii) to hide details of paral-
lel execution on the programming level as successfully practiced by
MapReduce. Both design principles enable users to focus only on
the clustering analytical part, without considering the efficient ex-
ecution on a scalable data processing platform. Generally, our ap-
proach is based on a mathematical formulation and utilizes a matrix
concept for the unified representation of all data aspects. As a re-
sult, clustering specific operations are expressed as functions over
matrices. From a language perspective, this eases understanding
and engineering of clustering algorithms and allows their compari-
son. Furthermore, our modular approach offers an efficient way to
adapt clustering algorithms. From a execution perspective, several
different execution and optimization strategies are possible.

Outline
In Section 2, we review essentials of data clustering by decom-
posing clustering algorithms into conceptual components. These
conceptual components are concretized in Section 3 and 4 with a
data model, building blocks in the form of matrix functions and
control-flow structures. In Section 5, we demonstrate how clus-
tering algorithms are transcribed using our approach. For this, we
choose algorithms from different clustering classes to emphasize
the wide-range applicability of our approach. The contributions of
our approach and its potentials are described in detail in Section
6. The future development of our concepts is described in Section
7, before we review existing related work in Section 8. The paper
closes with a short summary in Section 9.

2. ESSENTIALS OF DATA CLUSTERING
To reach our goal of a unified and specific instruction set for

clustering algorithms, we first need to decompose the correspond-
ing algorithms into their conceptual components. This decompo-
sition concentrates only on the core clustering procedure and does
not consider pre- and post-processing tasks like feature selection,
data cleansing and so on. As starting point, we assume the a general
definition of data clustering [12]: "Data clustering is the partition-
ing of a set of points into groups—so called clusters—in a way that
similar points are put in the same cluster, while dissimilar points
are located in different clusters."

From this definition, we can derive certain fundamental tasks
that have to be performed in order to generate a clustering. The
first fundamental task an algorithm needs to fulfill, is to measure
the similarity of points. This is a prerequisite for the second task,
which is to explicitly choose the points that are similar and should
be grouped together. The actual grouping of points, forms the third
and final task that must be executed in order to create a clustering.

2.1 Basic Elements

The three identified tasks, which are observable in all clustering
algorithms, are independent and have to be executed in sequence.
As result of this abstract consideration, we define the phases of
a clustering algorithm, that form the frame for our algorithm rep-
resentation. This general frame needs to be fitted with additional
building blocks to complete the description of an algorithm. In the
following, we introduce each phase and investigate its basic ele-
ments, in order to find these blocks.

Evaluation Phase
During this first phase, the similarity between all points or between
all points and some set of references is measured. For the deter-
mination of similarity between two objects, a dedicated function is
necessary. In data clustering, there are two general approaches: (i)
similarity functions and (ii) distance functions [12]. While the for-
mer express the degree of equality, the latter point out the amount
of disagreement between objects. As both options are analogous,
we assume that similarity is expressed through distances, without
losing generality. Based on this, distance measure becomes the first
basic element of the evaluation phase.

A distance measure takes at least two values as input and outputs
one value. Obviously, in data clustering one input are the points
which are to be clustered. The second input offers some kind of
variability. On the one hand, there exist algorithms like DBSCAN
[8] that calculate all point-to-point distances and thus use points
also as second input. On the other hand, approaches like k-means
[10] employ a special set of representatives/centroids as second in-
put for distance computation. To combine both alternatives, we
introduce the term references for the second input of the distance
measure. The references can be (i) equal to points, (ii) a subset of
points or (iii) a set of objects that are not part of points but share its
feature-space. Following this, we add these two inputs to the set of
basic elements for the evaluation phase.

The output of the distance measure consists of distances which
is the next basic element. With this, we identified the four basic
elements of the evaluation phase points, references, distances, and
distance measure that allow a more specific definition of its task.
In essence, during evaluation the distance measure is used to cre-
ate a relation between points and references that represents their
similarity and is explicitly expressed in the form of distances. It is
important to mention that the distance itself is not the only result of
evaluation, but the relation-triple point-distance-reference.

Selection Phase
In this phase, the points that are eligible to be grouped together
are selected according to the algorithms specification. For this, the
point-distance-reference triples generated by evaluation are taken
as an input. Referring to our initial clustering definition, the goal
is that only points which are similar should overcome the selection
process in order to be clustered together. Therefore, it is necessary
to define the constraints to acquire the status "similar" and to test all
points whether they fulfill these or not. For this, we propose filters,
which represent the basic element of this phase. Utilizing a set of
filters, the selection phase tests each point-distance-reference triple
coming from evaluation and only passes on those that comply.

Association Phase
During this phase, the previously chosen points are associated with
a cluster. The input of the association phase is a set of point-
distance-reference triples that passed the selection phase and have
to be grouped together to create a clustering. This clustering forms
the output of this phase and qualifies as basic element. Like the
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Phase Input Processing Output
Evaluation Points, References Distance Measure Point-Distance-Reference

Triples
Selection Point-Distance-Reference Filters Point-Distance-Reference

Triples Triples
Association Point-Distance-Reference Association Function Adjacencies

Triples (Point-Reference Tuples)
Optimization - - -

Figure 1: Overview Clustering Algorithm Phases and Basic Elements.

similarities from evaluation, a clustering is made up of relations
i.e. the affiliation between points and clusters. That means dur-
ing the association phase point-distance-reference triples have to
be transformed into point-cluster tuples. To perform this task, we
define an association function as basic element.

For some algorithms, this is already enough to create a clustering
e.g., the association function of k-means effectively takes a point-
distance-reference triple, removes the distance and adopts the ref-
erence as cluster. But not all clustering techniques work in that
way. For example, DBSCAN [8] first associates a core-object with
its neighborhood–by creating point-reference tuples–before the the
actual clusters are formed on the basis of overlapping neighbor-
hoods. Additionally, the direct creation of point-cluster tuples in
DBSCAN is prevented by the fact that clusters are not known in
advance. This issue necessitates a stopover between association
function and clustering, which forms our next basic element: ad-
jacencies. With it, we describe the association phase as follows:
incoming point-distance-reference triples are transformed by the
association function into adjacencies from which the clustering is
derived. The transition from adjacencies to clustering is a part that
can be done in a variety of ways, which is why we do not appoint
basic elements for it on this conceptual level. Doing so would result
in a substantial set of basic elements, that would be contradictory
to our goal of finding only fundamental components. However, we
solve this problem in a later section.

Optimization Phase
This fourth phase originates from analyzing existing algorithms
that often feature parameter adjustments and target function maxi-
mization leading to multiple iterations of the first three phases. As
the name optimization implies, this phase is mainly concerned with
improving the result generated by the preceding phases. Therefore,
we assume that it is optional in contrast to the other three phases,
that are mandatory for each clustering algorithm. The problem of
variety we explained in the association phase, holds for this phase
as a whole. As optimization can involve tasks like parameter adjust-
ment, updates to points or references, iteration etc. the derivation
of a minimal set of basic elements is not feasible at the moment.
As stated before, we will solve this problem in a later section by
moving to a different level of abstraction.

2.2 Summary
Figure 1 summarizes our conceptual decomposition of cluster-

ing algorithms. We identified three core phases which have to be
executed and one additional phase for several optimizations. Fur-
thermore, we defined the basic elements for each phase. In the fol-
lowing sections, we concretize our approach and iron out the flaws
still existing at this point.

3. DATA MODEL

To realize our concept of a unified and clustering-specific in-
struction set, we have to define a data model for our presented input
and output elements: points, references, point-distance-reference
triples (distances), adjacencies and clustering at first. In our ap-
proach, we propose to use matrices as a unified formal representa-
tion for all input and output basic elements.

Points P and References R
When it comes to the formal definition of a dataset for clustering,
existing literature generally uses multi-dimensional vectors to rep-
resent the location of data points inside a feature-space. Following
this procedure, we define our basic element points as a set P of
f -dimensional vectors p = {p

0

, . . . , pf} where (0  j  f) and
with n = |P |. This set can be easily converted into a matrix P by
interpreting each vector pi as a row pi,⇤ of said matrix, thus giving
P the dimensions of n rows and f columns. We stated earlier, that
the set of references can either be a subset of P or just be located in
the same feature space. This allows us to define it similar to P , as
set of vectors R, containing r = {r

0

, . . . , pf} where (0  j  f)
and k = |R|, which forms a matrix Rk⇥f .

Distances D, Adjacencies A, Clustering C
While P and R basically express the values of features per point,
the remaining actors are instantiations of relations between ob-
jects e.g. point-distance-reference triples from evaluation or point-
cluster tuples from clustering. For the formal description of these
actors, matrices are especially convenient as the objects involved in
the relation correspond to a row and column pair which addresses
the matrix element holding the value of the actual relation. As an
illustration, we define the basic element distances as a matrix D
with n rows and k columns, where n = |P | and k = |R|. Each
element dij of D relates to a point/row pi,⇤ of P and a reference
rj,⇤ of R. Thus, dij contains the distance between pi,⇤ and rj,⇤.
Besides triples, this description can be translated smoothly to tu-
ples like point-cluster from clustering. Such a tuple point-cluster
expresses an existing relation in a binary fashion i.e. a relation be-
tween a point and a cluster only exists, if the corresponding tuple
exists. This can be described with a binary matrix, where a value of
1 at position (i, j) indicates an existing relation between the objects
referenced by i and j, while 0 states the opposite. Accordingly, we
define adjacencies as binary matrix A having the same dimensions
as D. To complete our description, we also define clustering as
binary matrix C with n rows and a number of columns determined
by the number of clusters found.

Notation
Fundamentally, the notation for our reduced instruction set cor-
responds to a pseudocode notation. Matrices are denoted with a
single capital letter e.g. D for the distances. Additional designa-
tion is done in the sub- and superscript of the letter. To distinguish
different matrix versions we use the superscript: DI and DII are
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versions of D after 1 resp. 2 function applications, while Dx and
Dx+1 designate the versions of D that are in effect for the current
resp. next iteration of the algorithm. With the subscript, matri-
ces can be described in more detail e.g. DR denotes the distances
between all references R.

4. BUILDING BLOCKS
So far, we defined the matrix as unified data model for our re-

duced instruction set in the previous section. Next, we have to find
a fitting formal representation for the remaining basic elements like
distance measure, filters and association function as well as a nec-
essary set of control flow structures.

4.1 Functions
We describe the remaining basic elements as functions over ma-

trices. Whereas, we use infix notation for elementary matrix func-
tions: addition, subtraction, multiplication and entry wise multipli-
cation, while prefix notation is used for all other functions.

A � B ! C . infix example: entry wise product
function(A) ! AI . prefix example: single input function
function(A, B) ! CI . prefix example: double input
function

In the next step, we formally define the functions for the pro-
posed basic elements distance measure, filters and association func-
tion.

Distance Function
We start with the distance measure dist, which takes a pair of rows
(pi,⇤, rj,⇤) from P and R and assigns a scalar value to it, that repre-
sents the distance between the corresponding objects. The abstract
function dist can be defined as:

dist : Mn⇥f
⇥ Mk⇥f

! Mn⇥k

(P, R) 7! D

dij = f(pi,⇤, rj,⇤)

Filter Functions
The task of a filter is to check whether a matrix or one of its ele-
ments fulfills certain conditions and to pass them on or sort them
out accordingly. Thus a filter resembles an if-then statement. De-
scribing this behavior by using mathematical functions requires the
breakdown of the task and the establishment of some conventions.
The defining part of each filter is its condition, which can be de-
scribed in mathematical terms as function with the co-domain 0, 1,
representing the results false and true. A simple threshold condi-
tion, that is satisfied by all numbers smaller 10 could be defined
as:

threshold : R ! {0, 1} , X 7! XI

xI =

(
1, if x < 10

0, otherwise.

Adopting this notation for each condition would be pretty ex-
tensive, so we settle for a minimized version and only denote the
condition leading to true resp 1 as the function name. Thus, nota-
tion of the preceding definition is reduced to hx < 10i.

With this convention, we have to look into the ’then’ part of a
filter. While elements that fulfill the provided condition are left

untouched, those who fail have to be sorted out or rather deleted.
Actual deletion of elements or matrices cannot be modeled as math-
ematic function, therefore we need a workaround for this issue. Let
us regard k-means as an example, where the minimal point-cluster
distance is evaluated. Assume a row d

2,⇤ = (d
21

, d
22

, d
23

, d
24

),
from D whose components show the distances between point p

2,ast

and the four centroids of R. The filter necessary for k-means re-
quires to sort out all components that are not minimal. Without the
capability for removal, it is necessary to define a neutral element
to which all inputs that fail the condition are mapped. For our sce-
nario, we state this neutral element as 0, which allows us to define
the minimum filter as:

minFilter : M1⇥k
! M1⇥k

(D, hx = min(D)i) 7! DI

dI
ij = hx = min(D)i (dij) · dij

Assuming d
23

as minimum of d
2,⇤, the filtered row becomes

dI
i,⇤ = (0, 0, d

23

, 0). Using this approach, the subsequent func-
tions in a clustering algorithms have to be aware of 0 as neutral
element. Our filter description is a composite of a variable condi-
tion and a fixed function that maps to the neutral element. In the
context of clustering algorithms, filters cannot exist without condi-
tions. However, conditions can exist by themselves and are neces-
sary to describe branching and conditional execution of functions.
Thus, standalone conditions are a way to realize control flow. The
following pseudocode shows the notation for both cases:

filter(M, hcondi) . input for filter
if cond then function . standalone use

In both applications, the condition itself is denoted as boolean
expression hcondi, which is sufficient for its utilization as part of
a filter. In standalone use a condition affects the control flow i.e.
some actions are performed only if the condition is met. To illus-
trate this, we embed hcondi in an if-then block, where the then part
contains the action to be executed.

Association Function
By executing filters, a modified version of the input is created. For
the selection phase, this is the modified distance matrix DI , which
is passed on to the association-function. The goal of this function
is the transformation of distances into adjacencies i.e. the point-
distance-reference triples that made it past the selection phase, must
be converted into point-reference tuples. Basically DI is converted
into a binary matrix, where a value of 1 represents an existing ad-
jacency. Due to the filtering, non-existent adjacencies have already
been mapped to 0 which leaves the task of mapping every non-zero
value to 1. Based on this, we define the binary association function
assoc as

assoc : Mm⇥n
! Mm⇥n

DI
7! A

aij = sgn(dI
ij)

where sgn() is the sign function. This function is quite conve-
nient as it keeps the neutral element 0 and maps all positive values
to 1. Although sgn() can yield �1 for negative inputs, this does
not need to be considered in our setting as distances are always
positive.
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4.2 Control-Flow Structures
Until now we have not discussed one basic element which is cru-

cial for almost every clustering algorithm but whose necessity is not
evident. This additional basic element is the loop, which is a part
of the control flow that we have not considered so far, with stan-
dalone conditions being the exception. The incorporation of loops
in our scenario is tricky as they cannot be mathematically mod-
eled, thus they are defined outside the mathematical domain. To
describe clustering algorithms, we basically need two loop types: a
for-each loop for element-wise traversal of datasets or clusterings
and a repeat-until loop for conditioned iterations. These two loops
are denoted with the following pseudocode:

for each element of M do
hbodyi

end for ! MI

repeat with A
hbodyi

until cond output ! B

At the top, we find the block for the for-each loop, which is gen-
erally used to traverse datasets or clusterings by element. The open-
ing statement of the loop specifies the traversed matrix M and the
element/granularity of traversal: row, column or component. In our
scenario, element-wise traversal is done by splitting up the source
matrix into element-matrices—rows, columns or components at the
beginning of the loop. After the split, the elements are processed in-
dividually according to the instructions of the hbodyi. As we want
a single matrix as output again, the processed elements have to be
re-assembled at the end of the loop e.g. row-matrices are appended.
This re-assembly is implicitly assumed and not specifically noted
in pseudocode. The loop output is denoted with the assignment
after end for.

In addition to the described functionality, we use for-each loops
for the actual removal of rows and columns from matrices. This is
sometimes necessary when clustering algorithms delete references
or clusters during optimization. With filters, we introduced map-
ping to the neutral element 0 as a means to tackle deletion. This
works well and is also necessary for the clear definition of func-
tions. However, the handling of whole rows and columns of zeros
can become challenging e.g. it can lead to empty clusters in C
or cause problems during the selection phase. Some of this issues
could be tackled by introducing constraints to each function to ig-
nore all-zero rows/columns. But this would be complex and not
an overall solution. Our described for-each loop offers an elegant
way to solve this problem. By inserting an appropriate condition
before matrix reassembly at the end of the loop we prevent zero
element-matrices from entering the output matrix. Since loops are
outside the mathematic formalism anyway, adding row/column re-
moval here provides us with a convenient tool without compromis-
ing the formal description of the remaining building blocks.

The repeat-until loop is used to represent conditioned loops. This
kind of loops is normally used to control algorithm iterations, often
during minimization/maximization of target functions like the sum
of squared errors in k-means [10]. The stopping condition for the
loop is always specified after the closing until statement. A repeat-
until loop has one or more input matrices—denoted in the opening
statement—which are continuously processed from iteration to it-
eration and an output matrix, obtained when the loop finishes. This
output matrix can be either a processed version of the input or an
assembly of element-matrices generated during the loop. The par-
ticular output type can be derived from the hbodyi of the loop.

4.3 Summary
In Section 2, we introduced the core of a clustering as a sequence

of the phases evaluation, selection and association that acts as a
general frame. Now that we finished the description of our building
blocks and defined their syntax, we are able to concretize these
phases and flesh out the mandatory algorithm core:

• evaluation - This phase requires at least 4 building blocks:
one function playing the role of distance measure and three
matrices acting as points, references and distances.

• selection - This phase consists of at least one filter or condi-
tion.

• association - For this phase 3 building blocks are mandatory:
two matrices acting as adjacencies resp. clustering and the
association function.

Beyond this essential structure, arbitrary clustering functionality
can be added to each of these phases—including optimization—
by utilizing the existing building blocks. We move on to the next
section, where we demonstrate how clustering algorithms are tran-
scribed using our proposed approach.

5. TRANSCRIPTION OF ALGORITHMS
This section demonstrates how clustering algorithms are tran-

scribed using our approach, whereas we utilize two prominent clus-
tering algorithms k-means[10] and DBSCAN[8]. While k-means is
a representative of the clustering partitioning alorithm class, DB-
SCAN is from a completely different classed named density-based
clustering.

5.1 k-means
Our representation of k-means is shown in Algorithm 1 and be-

gins with the evaluation phase in which four building blocks take
part. Three of these are actors: two matrices P and R that contain
the points of the dataset and the k initial centroids as rows, as well
as the distance matrix D. The fourth is the distance measure used
to generate D from P and R. For k-means, this role is taken by the
euclidean distance, denoted by the function L

2

which we define for
our matrix setting as:

L
2

: Mn⇥f
⇥ Mk⇥f

!Mn⇥k

(P, R) 7!D with dij =

vuut
fX

l=1

(pil � rjl)2

where pi,⇤ and rj,⇤ are rows of their respective matrices. The
resulting matrix D provides the input for the following selection
phase, which starts with a for-each loop for row-wise traversal of
D (6). Due to the evaluation phase, each row di,⇤ contains all
distances between point pi,⇤ and R that we need for the selection.
The following filter function selects the minimum element dij from
each row, which reflects the target function of k-means. At the
end of the loop, the processed rows are assembled into the filtered
matrix DI , that is passed on to the association phase. There, our
assoc function is deployed to generate the binary adjacency matrix
A. Due to the character of k-means, A basically contains the final
cluster assignments. As centroids resp. references represent the
clusters, A is simply adopted as C (12).

With the core phases finished and a clustering result generated,
k-means enters its optimization phase which updates the centroids
(references) for the next iteration. Each centroid is recalculated

54



Algorithm 1 k-means
1: repeat with Rx

2: phase EVALUATION
3: dist.L

2

(P, Rx) ! D
4: end phase
5: phase SELECTION
6: for each di,⇤ of D do
7: filter(di,⇤, hx = min(di,⇤)i)
8: end for ! DI

9: end phase
10: phase ASSOCIATION
11: assoc(DI) ! A
12: A ! C
13: end phase
14: phase OPTIMIZATION
15: updt(CT , P ) ! Rx+1

16: end phase
17: until Rx = Rx+1 output ! C

as the arithmetic average of all points that were assigned to it in
the current iteration. In our matrix-based setting, we realize this
by using the matrix-multiplication as a template with C and P as
input. The first input is matrix C that contains the point-cluster
assignments and has the dimensions n⇥k with k being the number
of references/centroids. The second input P has the dimension n⇥

f with n being the number of points and f being the number of
features of the dataset. By multiplying C with P we want to create
an updated version of R having the dimension of k ⇥ f . For this,
the number of columns of C has to match the number of rows in
P , which is not the case as k 6= p. Therefore, we transpose C to
CT which leads to the required column-row-match and results in a
k ⇥ f matrix Rx+1 that contains the updated centroids for the next
iteration. The function used for calculation of the update is defined
as:

updt : Mk⇥n
⇥ Mn⇥f

! Mk⇥f (1)

(CT , P ) 7! Rx+1

(2)

rij =

Pn
l=1

cil · pljPn
l=1

cil
(3)

with ci,⇤ being a row of CT and p
⇤,j being a column of P . Ba-

sically, this function uses each cluster represented by a binary row
of CT to select those values from the feature represented by p

⇤,j

that belong to its members. This selection is summed up and nor-
malized with the number of cluster members obtained by summing
up all elements of binary ci,⇤.

The whole algorithm is surrounded by a repeat-until loop that de-
scribes the iteration of k-means using the updated references/centroids
of Rx+1

. The stopping criterion, shown after until (17) is evaluated
before a new iteration is started. For our depiction we choose Rx =
Rx+1 as stopping condition and quit the algorithm if the refer-
ences/centroids no longer change, which indicates stabilized clus-
ters. Of course other stopping conditions can be used e.g. reaching
a fixed number of iterations.

5.2 DBSCAN
DBSCAN [8] is a density-based clustering algorithm that de-

fines clusters as dense regions separated by regions of lower den-
sity. The algorithm uses two parameters " and minPts to define
a density threshold. With " a neighborhood is defined around each
point p. If this neighborhood contains at least minPts additional

points, p is considered as member of a dense area i.e. a cluster
and is named core-object. Sets of core-objects with overlapping
"-neighborhoods are merged in order to create clusters. This is
done recursively i.e. if p is a core-object each member of its "-
neighborhood is checked for the density condition.

Algorithm 2 DBSCAN
1: phase EVALUATION
2: dist.L

2

(P, Rx) ! D
3: end phase
4: phase SELECTION
5: for each di,⇤ of D do
6: filter(di,⇤, hx < "i)
7: sgn(dI

i,⇤)

8: filter(dI
i,⇤,

DPn
j=0

x  minPts
E
)

9: end for ! DI

10: end phase
11: phase ASSOCIATION
12: assoc(DI) ! A
13: merge(A) ! C
14: distinct(C) ! Cdistinct

15: end phase

The fully transcribed version of DBSCAN using our approach
is shown in Algorithm 2. Although the evaluation phase may look
the same as with the previously described algorithms, DBSCAN
is different as it calculates the distances between all points, which
means P and R are actually identical. The selection phase uses a
for-each loop for row-wise traversal and contains three steps. First,
a filter is employed to remove all distances that are bigger than the
"-neighborhood. Next sgn() is applied in preparation of the fol-
lowing filter, that tests if the neighborhood contains the necessary
number of objects by checking the sum of components of the binary
row-matrix. With the selection phase done, association starts with
the known application of assoc() (12). After that, we face a chal-
lenge as assoc() effectively creates a cluster for each core-object
and its "-neighborhood.

Now, to determine the final clusters, overlapping "-neighbor-
hoods have to be merged. Utilizing recursion as proposed in [8]
is not a valid approach in our matrix based setting. Therefore, we
use a repeat-until loop to connect overlapping "-neighborhoods as
specified in Algorithm 3. For this, the adjacencies–labeled here as
Mx–are multiplied with itself and the result is transformed into the
binary Mx+1, which is the input for the next loop. With this, in-
direct/transitive cluster assignments are resolved. The loop ends if
Mx+1 does not change anymore, which means that all direct adja-
cencies have been found and the resulting clustering C is delivered.

Algorithm 3 Transitive Merging Function: merge(Mx)

1: repeat with Mx

2: Mx
· Mx

! MI

3: sgn(MI) ! Mx+1

4: until Mx = Mx+1 output ! Mx+1

Example matrices for this association are shown in Figure 2,
where the first three columns of Mx show the indirect cluster as-
signment of p

1

, p
2

and p
3

. The matrix A = Mx is the result the
selection phase and therefore, the input of the association function.
Although the points p

1

,p
2

and p
3

form a cluster, the adjacency of
p
1

and p
3

is indirect via p
2

. After multiplication, all adjacencies
are explicit in Mx+1. While this solves the problem of merg-
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A = Mx

1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

!

MI

2 2 1 0 0 0
2 3 2 0 0 0
1 2 2 0 0 0
0 0 0 2 0 2
0 0 0 0 1 0
0 0 0 2 0 2

!

Mx+1

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

Figure 2: DBSCAN association.

ing overlapping "-neighborhoods into clusters, it leads to duplicate
columns/clusters. Complete explicit adjacencies mean that each
member of a cluster is associated with each remaining member i.e.
a cluster with 4 members manifests in 4 identical rows in C.

To get rid of the duplicates, we apply a duplicate elimination
function distinct (14) on the output association matrix. The algo-
rithm of this function is depicted in Algorithm 4. The function
takes Mx as input and starts by aggregating it into a row matrix of
cluster sizes Hselect. Then, a maximum filter is deployed to select
the biggest cluster and sgn() is applied to make the resulting row-
matrix HI

select binary. This is only done to implement a processing
sequence for the rows of Mx. Multiplication of HII

select with Mx

extracts a particular row matrix from Mx. This row matrix be-
comes the first row mi,⇤ of Mdistinct. Example matrices for this
are shown in Figure 3. After getting the first row, we have to get
rid of all its duplicates in Mx. For this we apply sgn() to mi,⇤ and
create binary (mi,⇤)

I , whose transpose is multiplied with mi,⇤ to
get a square filter matrix Hfilter . By subtracting it from Mx, the
processed row and its duplicates are set to zero, effectively remov-
ing them from further processing in the loop. The resulting Mx+1

enters the next iteration, where another unique row is extracted.
The loop ends when Mx+1 becomes a zero matrix, which means
all unique rows have been extracted. Examples of Hfilter , Mx+1

and final Mdistinct can be found in Figure 3, where the example
output of the association phase in Figure 2 is continued.

Algorithm 4 Distinct Function: distinct(Mx)
1: repeat with Mx

2: agg(Mx) ! Hselect

3: filter(Hselect, hx = max(Hselect)i) ! HI
select

4: sgn(HI
select) ! HII

select

5: HII
select · Mx

! mi,⇤ of Mdistinct

6: sgn(mi,⇤) ! mI
i,⇤

7: (mI
i,⇤)

T
· mi,⇤ ! H

filter

8: Mx
� H

filter

! Mx+1

9: until
P

Mx+1 = 0 output ! Mdistinct

10: output MT
distinct

At the end of the distinct function, the result is transposed as we
want clusters to be represented in columns. Afterwards, DBSCAN
finishes as it has no optimization phase or global loop.

5.3 Summary
Due to the large number of approaches to clustering, we can-

not transcribe each method or even a representative of each larger

C = Mx

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

(a)

Hselect

3 3 3 2 1 2
(b)

HII
select

1 0 0 0 0 0
(c)

H
filter

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(d)

Mx+1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

(e)

Mdistinct

1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0

(f)

Figure 3: Duplicate Elimination.

family of algorithms in this paper. However, we are sure that our
approach is general enough to cope with this variety. Often it seems
that a particular algorithm cannot be transcribed at first, but after re-
considering a way can be found to adapt to our setting. Sometimes,
little modification are enough, but in other cases the problem must
be rethought thoroughly to find an equivalent building block repre-
sentation. Examples include but are not limited to:

• Graph-clustering, where graphs must be transformed into a
matrix for adaptation.

• Evolutionary approaches e.g. artificial immune systems [18],
model centroids or proto-clusters as a population of cells that
is influenced by a fitness function. This can be modeled in
our approach by modifying references/clusters between iter-
ations. Creation, deletion, re-calculation as well as splitting
and merging, can be reproduced with modified matrix multi-
plications, filters and custom mathematical functions.

• Spectral clustering approaches, work with the eigenvalues of
a similarity matrix. Although it seems that this resembles our
distances D, this is not the case. As partitioning is based on
the correspondence between eigenvalues, this measure must
be considered during evaluation. In this case the initial simi-
larity matrix must be seen as an additional input.

This should only point our the versatility of our approach. We are
pretty sure that there are still a lot of further clustering approaches,
that we did not consider in detail. But we are also sure that we could
describe them with our approach after giving them some thought.
To summarize our approach offers the following advantages:

1. Easy adaptation and specification of clustering algorithms in
an abstract and implementation-independent way. In general,
our approach is designed for the data scientist.

2. The comparison of algorithms and the easy identification of
common functionalities.
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Figure 4: Similarities of DBSCAN and AGNES.

6. CONTRIBUTIONS
Besides providing a way to specify clustering algorithms, our

building blocks approach offers several novel application possibil-
ities. Due to the use of consistent components, we can evaluate the
similarity between algorithms to a certain degree. During the tran-
scription of our example algorithms, we uncovered the existence of
several description blocks that are used by multiple algorithms e.g.
removal of duplicates and resolution of transitivity. Fig. 4 shows
a comparison of the already described DBSCAN and AGNES[12,
13] as an example from a further hierarchical clustering algorithm
class, where identical building blocks are highlighted in blue. It is
easy to see, that both methods are very similar. Evaluation phases
are identical, while the association phases show only minor differ-
ences in two lines that are necessary because each C generated by
AGNES is also considered a hierarchy level. The main differences
between both methods are located in the selection phase and dur-
ing optimization. While this allows the easy identification of an
algorithms characteristic parts, it can also be used to classify al-
gorithms. Families of algorithms that share certain traits could be
identified on the basis of commonalities. In order too find common
patterns, frequent itemset mining could be applied to a repository
of algorithms. For this, each building block is considered as an item
and each phase resp. algorithm as transaction.

Each of our phases and building blocks encapsulates a defined
functionality. Furthermore, we observed that certain blocks can be
used in different algorithms. Therefore, we do not limit our concept
to the description/translation of existing methods but also use it for
the creation of new ones. The modular character of our approach
enables algorithm creation in a novel and easy way. Basically, there
are three levels of modularity that can be used to build new algo-
rithms and are depicted in Fig. 5.

1st Level: Phase-Swap Phases realize the basic tasks neces-
sary for clustering in an algorithm-specific way. Although phases
are implemented individually, they share a defined interface. This
means, evaluation always produces a distance matrix D, selection
always uses D and creates DI , and association always creates C
from DI . With this, phases become interchangeable and form the
largest modules of our approach. The optimization phase is more
individual, but can still be swapped if only the mandatory elements
P,R,D,D’,A,C are accessed. All this allows users to easily create
new algorithms by recombining phases of available stock algo-
rithms.

2nd Level: Custom Phase This level works on the finer gran-
ularity of building blocks and enables intermediate users to cre-
ate new evaluation, selection, association, and optimization phases
from scratch. For this, existing blocks from a repository are com-
bined and fitted into our introduced phase-templates. Examples for
such blocks are updt() and distinct() from our example algorithms
section. Newly created phases can be added to the existing reposi-
tory and thus provide new options for level 1.

3rd Level: Custom Block On this level, experienced user can
freely define new building blocks e.g a new distance function or a
scenario specific variant of assoc(). In addition, block sequences
or subroutines that occur very often, can be integrated as higher-
order building blocks to ease description. Like before, new building
blocks are added to a repository, where they are available for other
users. The creation of new building blocks also makes the previous
levels more versatile.

The first and second level implement creation exclusively by
combination of modules/blocks from a repository. This makes it
possible to realize this task with interactive interfaces instead of
IDE’s normally used for software development. In Fig. 6, we
depict a prototypical interface for modular algorithm design that
shows k-means by using our building blocks as basis for the visual
elements. Each phase is marked by a different color: blue for eval-
uation, green for selection and so on. This prototype was designed
for smart devices, and allows users to swap phases by swiping and
switch building blocks by touching. If one of these actions is per-
formed, the system provides a list of alternatives, available in the
repository, from which the user can choose.

7. FUTURE WORK
Looking back at our motivation, we argued that the ever increas-

ing diversity of clustering algorithms is necessary to cope with the
individual characteristics of various data sets. Because, this diver-
sity complicates the application of clustering in the context of Big
Data, a building block approach would be desirable and was pro-
posed in this paper. Aside from supporting the specification, our
approach facilitates the adaptation of core clustering principles for
specific applications.

Generally, our modular approach consists of a few functions like
assoc, merge, updt and filter over a single data structure of type
matrix. Our next research step focuses on a general mapping of
these functions to a MapReduce infrastructure. In this step, the
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Figure 5: Levels of modular algorithm design.

Figure 6: Prototype UI for modular algorithm design.

following challenges arise:

• As described in Section 4, the repeat-until loops are integral
part of our building blocks. Therefore, we require a MapRe-
duce infrastructure with support for iterative computations as
proposed in [4].

• The most challenging issue is the mapping of our matrices
to (key, value) pairs in MapReduce. This mapping has to
be done, so that an efficient and scalable partitioning is pos-
sible in order to parallelize necessary function evaluations.
In [14], we investigated this aspect in MapReduce and pre-
sented several approaches, whereas there exists no best fitting
approach for all cases. The best-fitting approach depends
on several properties like matrix size or number of available
nodes.

• Aside from mapping of our matrix construct, we also have
to specify physical operators for our limited set of logical
functions.

As a result of this work, we are able to transform any arbitrary
clustering algorithm specified in our building blocks into an effi-
cient and scalable execution form. Furthermore, we can optimize

the transformation by the utilization of different mapping strategies
of matrices to (key, value) pairs as well as selection of the best-
fitting physical operator for a logical building block function. For
this optimization, we have to define various optimization strategies
depending e.g., on matrix sizes or sequence of logical functions.
Furthermore, our iterations can be integrated in the optimization,
since our loops iterate either row- or column-wise over the ma-
trix. In this way, we establish a similar approach as conducted in
database systems for over 30 years with SQL as logical interface
and for each logical operator different physical operators exist. The
transformation between the logical and physical layer is done using
an optimizer component, which is responsible for efficient transfor-
mation using roles and a cost-model. In our next research step, we
want to establish such an approach for data clustering algorithms
in highly scalable parallel data processing platforms.

A second major approach to execution is direct integration into
the database. Already, approaches like SciDB [5] consider matri-
ces as first-order citizens in database management systems. This
way of integration is especially compelling as it allows a tight cou-
pling of data management and data analysis in the scope of a single
platform. Besides the deployment to different software systems,
also hardware specifics can be considered. By developing platform-
specific compilers for e.g. NUMA or GPU-centric systems, users
could create optimized versions of their algorithm libraries in an
on-demand fashion. In this case, a lot of related research is and has
been done in different domains, that can be used in our future work.
For example, efficient large matrix computation has a long tradition
as area of research in high performance computing [11, 15]. Fur-
thermore, graphic cards and CUDA are strongly geared to matrix
processing [1, 9, 17] and seem to be an ideal target architecture our
approach. In this domain, dense [1, 19] as well as sparse [3] matrix
operations are well-investigated.

8. RELATED WORK
On the one hand, our work is motivated by SciDB [5], which

only considers the storage and the processing of a natural nested
multi-dimensional array data model. One the other hand, our ap-
proach originates from the ongoing key-value hype of MapReduce
[7], because from our point of view the key-value model is not ap-
propriate for the data clustering domain. As shown in [20, 2], Map-
Reduce and an enhanced paradigm based on a key-value data model
can be used for the k-means clustering algorithm. However, the im-
plementation of essential clustering functionality is complicated by
the restricted data model. Several approaches are proposed to map
the necessary matrix data to a key-value model. One possibility is
to encrypt row and column information in the key forming a super-
key. Nevertheless, a pure matrix model as proposed in our approach
is more direct and eases the specification of clustering algorithms.
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In a derived implementation out of our modular algorithm speci-
fication, we are able to use the key-value data model for scalable
execution.

In the context of highly scalable parallel data processing plat-
forms, the Mahout3 project has to be considered, which directly
implements various machine-learning algorithms in Hadoop. The
implementations currently neither exploit high-level data process-
ing languages built on top of Hadoop nor do they make use of
any statistical software. With more and more analysis methods are
added, leveraging existing functionality adds to the stability and
simplicity of the implementation. Instead of implementing and op-
timizing each single analysis method separately, our approach in-
troduces a novel abstraction layer on top to specify methods in an
implementation-independent way using building blocks. The build-
ing blocks have to be mapped to the execution unit, e.g. Hadoop
once and each algorithm can directly benefit. The mapping of our
building blocks is our next step as described in the previous section.

9. SUMMARY AND CONCLUSION
In this paper, we proposed our modular building blocks approach

as a unified construction kit for clustering algorithms. We decom-
posed clustering methods and derived the core of every algorithm in
the form of the three phases: evaluation, selection and association.
In addition with the optional optimization phase, this provides a
general frame for algorithm description. To fill this frame, we iden-
tified the basic elements of each phase and transformed them into a
set of building blocks. In our data model, all necessary objects for
clustering i.e. points, references, distances, adjacencies and clus-
tering are formally represented as matrices. Matrices are the exclu-
sive and universally valid way for data modeling in our approach
and naturally match the concept of clustering. Based on this, all
necessary operations like distance measurement, filtering and as-
sociation are modeled as mathematical functions on matrices. To
complete our set of building blocks, we introduced conditions and
loops to represent the control-flow of a clustering algorithm.

All this was put to use during the transcription of k-means and
DBSCAN which are well-known members of the two major classes
of clustering algorithms. Our transcription proved that different
methods can be easily represent with our unified description. Fur-
thermore, our approach allows the comparison of algorithms and
the easy identification of common functionalities. Besides this ben-
efits for understanding, adaptation and construction of clustering
algorithms, our descriptions can be used as a starting point for
platform-specific implementation. From our point of view, this of-
fers considerable potential for the efficient execution of any clus-
tering algorithm.
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