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ABSTRACT
Bidirectionalization is the task of automatically inferring one
of two transformations that as a pair realize the forward
and backward relationship between two domains, subject to
certain consistency conditions. A specific technique, semantic
bidirectionalization, has been developed that takes a get-
function (mapping forwards from sources to views) as input—
but does not inspect its syntactic definition—and constructs
a put-function (mapping an original source and an updated
view back to an updated source), guaranteeing standard
well-behavedness conditions. Proofs of the latter have been
done by hand in the original paper, and recently published
extensions of the technique have also come with more or less
rigorous proofs or sketches thereof.

In this paper we report on a formalization of the original
technique in a dependently typed programming language
(turned proof assistant). This yields a complete correctness
proof, with no details left out. Besides demonstrating the
viability of such a completely formal approach to bidirection-
alization, we see further benefits:

1. Exploration of variations of the original technique could
use our formalization as a base line, providing assurance
about preservation of the well-behavedness properties
as one makes adjustments.

2. Thanks to being presented in a very expressive type
theory, the formalization itself already provides more
information about the base technique than the original
work. Specifically, while the original by-hand proofs
established only a partial correctness result, useful
preconditions for total correctness come out of the
mechanized formalization.

3. Finally, also thanks to the very precise types, there
is potential for generally improving the bidirectional-
ization technique itself. Particularly, shape-changing
updates are known to be problematic for semantic bidi-
rectionalization, but a refined technique could leverage
the information about the relationship between the
shapes of sources and views now being expressed at the
type level, in a way we very briefly sketch and plan to
explore further.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

1. INTRODUCTION
We are interested here in well-behaved, state-based, asym-

metric lenses, in which both transformation parts of the BX
are total functions. Formally, let S, V be sets. A lens in
the above sense is a pair of total functions get : S ! V and
put : S ⇥ V ! S for which the following two properties hold:

8s 2 S. put(s, get(s)) = s (GetPut)

8s 2 S, v 2 V. get(put(s, v)) = v (PutGet)

Specifically, we are interested in the case when get is a
program in a pure functional programming language and put
is another program in the same language that is automatically
obtained from get somehow.

Voigtländer (2009) presented a concrete technique, seman-
tic bidirectionalization, that lets the programmer write get
in Haskell and delivers a suitable put for it. The technique is
both general and restricted: general in that it works indepen-
dently of the syntactic definition of get , and restricted in that
it requires get to have a certain (parametrically polymorphic)
type. Also, it comes at the price of partiality: even when
get is indeed a total function, the delivered put is in general
partial; and while GetPut indeed holds as given above, Put-
Get becomes conditioned by put(s, v) actually being defined.
Recent works have extended semantic bidirectionalization in
various ways (Matsuda and Wang, 2013, Voigtländer et al.,
2013, Wang and Najd, 2014), both to make it applicable to
more get-functions (lifting restrictions on get ’s type, thus
allowing more varied behavior) and to make put (for a given
get) defined on more inputs.

The original paper by Voigtländer (2009) gives proofs of the
base technique, and papers about extensions of the technique
also come with formal statements about correctness (i.e.,
about satisfying GetPut and PutGet) and proofs or proof
sketches thereof. As is typical for by-hand proofs, details
are left out and the reader is asked to believe that certain
lemmas that are not explicitly proved do indeed hold and
could in principle be proved by standard but tedious means.
In the programming languages community there is a move-
ment towards working more rigorously by using mechanized
proof assistants to establish properties of programs (and of
programming languages) in a fully formal way, see for ex-
ample the PoplMark challenge (Aydemir et al., 2005). We
report here on applying this way of thinking to the semantic
bidirectionalization technique, which has led to a complete
formalization (Grohne, 2013) that moreover provides more
precision concerning definedness of put than the previous
proofs. The proof assistant we use is Agda, which at the
same time is a pure functional programming language with
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an even more expressive type system than Haskell, and we
take o↵ from there to discuss further potential such expres-
sivity has in making semantic bidirectionalization itself more
useful.

2. LANGUAGE
Agda is what is called a dependently typed programming

language. It is a descendant of Haskell, and it is implemented
in and syntactically similar to Haskell. Based, like Haskell, on
a typed �-calculus, Agda additionally allows values to occur
as parameters to types. This mixing of types and values
enables us to encode properties into types, and thus the type
checker is able to verify the correctness of proofs: statements
are represented by types and a proof is represented by a
term that has the desired type. For this to work out, a
strong discipline is required so that the type checker’s logic
remains consistent; in particular, all functions must be total—
runtime errors as well as non-termination of programs are
ruled out by a combination of syntactic means and type
checking rules. We give a brief introduction to the language;
a more comprehensive account is given by Norell (2008).

As mentioned, the line between types and values is blurred
in a dependently typed language. As a first example, let
us have a look at the identity function. We use a slightly
simplified version of the definition from the standard library1.

id : {↵ : Set} ! ↵ ! ↵
id x = x

While the definition itself looks much the same as in any
functional language, the type declaration is di↵erent from
what one would have in Haskell, for example. That is be-
cause the availability of dependent types changes the way to
express polymorphism. Instead of some convention treating
certain names in a type (say, all lowercase identifiers) as type
variables, we explicitly say here that ↵ shall be an element of
Set. The type Set contains all types that we will use, except
for itself.2

The next notable di↵erence in the type signature of id is
the use of curly parentheses and the fact that it has two
parameters instead of one. A parameter enclosed in curly
parentheses is called implicit. When the function is defined
or used, implicit parameters are not named or given. Instead,
the type system is supposed to figure out the values of these
parameters. In the case of the identity function, the type
of the explicit parameter will be the value of the implicit
parameter. It is possible to define functions for which the type
system cannot determine the values of implicit parameters.
A type error will be caused in the application of such a
function.

For brevity, we can declare multiple consecutive parameters
of the same type without repeating the type, as can be seen
in the constant function as given in the standard library3.

const : {↵ � : Set} ! ↵ ! � ! ↵
const x = x

1The id function is available in the Function module. Further
footnotes about the origin of functions or types just mention
the module name.
2Actually, Agda knows about a type that contains Set, but

we are not interested in it and further types outside Set.
Therefore, all citations from the standard library have their
support for types beyond Set removed. Eliding those types
allows us to give shorter type signatures.
3Function

The underscore serves as a placeholder for parameters we do
not care about.

Even though the identity and constant functions already
use dependent types, these examples do not illustrate the
benefits of this language feature. To that end, we will have a
look at functions on the data types Fin and Vec soon. Data
types are introduced by notation as follows.

data N : Set where
zero : N
suc : N ! N

This definition introduces the type of natural numbers as
given in the standard library4. This type is named N, is an
element of Set and takes no arguments. It has two construc-
tors, named zero and suc, of which the latter takes a natural
number as a constructor parameter. To write down elements
of this type, we use constructors like functions and apply
them to the required parameters. So zero and suc zero are
examples for elements of N.

Let us have a look at a data type with arguments. The
type of finite numbers, as given in the standard library5,
takes an argument of type N and contains all numbers that
are smaller than the argument.

data Fin : N ! Set where
zero : {n : N} ! Fin (suc n)
suc : {n : N} ! Fin n ! Fin (suc n)

We can see that declarations of the type and of constructors
have the same syntax as function declarations. The names
of the constructors here are shared with the N type. Over-
loading of names is allowed for constructors, because their
types can often be inferred from the context. Therefore, the
constructors of Fin use the suc constructor of N in their types.
Also note that the type Fin zero has no elements.

The type of homogeneous sequences is also given in the
standard library6.

data List (↵ : Set) : Set where
[ ] : List ↵
:: : ↵ ! List ↵ ! List ↵

Underscores have a special meaning when used in symbols.
They denote the places where arguments shall be given in an
application. For example, the list containing just the number
zero can be written as zeroN :: [ ]. Here we already have to
disambiguate which zero we are referring to.

Like the Fin type, the List type takes one argument. How-
ever, this argument is given before the colon. We need to
distinguish the places of arguments, because they serve di↵er-
ent needs. An argument given after the colon is called data
index. Any symbols bound there are not visible in construc-
tor type signatures. The actual values given for data indices
can vary among constructors, as can be seen in the definition
of Fin. Arguments given before the colon are called data
parameters. They are written as a space-separated sequence,
and each of them must be given a name. Symbols bound as
data parameters can be used both in the types of data indices
and in constructor type signatures. But no discrimination
is allowed on data parameters: When declaring a construc-
tor, they must appear unchanged in the result type of the

4Data.Nat
5Data.Fin
6Data.List
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signature. Nor are data parameters turned into (implicit)
arguments of the constructors. So functions cannot branch
on them when evaluating an element of a data type.

It is also possible to combine data indices and data pa-
rameters. An example for this is the type of fixed-length
homogeneous sequences as given in the standard library7.

data Vec (↵ : Set) : N ! Set where
[ ] : Vec ↵ zero
:: : {n : N} ! ↵ ! Vec ↵ n ! Vec ↵ (suc n)

This definition has similarity to Fin and List and employs
both a data parameter and a data index. Unlike in Fin, the
base case [ ] is (only) constructible for a zero index instead
of a suc n index. So for each index value there is precisely
one constructor with matching type.

When defining functions on data types, we want to branch
on the constructors by pattern matching. A simple example
is the length function from the standard library6.

length : {↵ : Set} ! List ↵ ! N
length [ ] = zero
length ( :: xs) = suc (length xs)

Unlike in Haskell, definition clauses must not overlap. For
instance, the following definition will be rejected for covering
the case zero zero twice.

invalid-pattern-match : N ! N ! N
invalid-pattern-match zero = zero
invalid-pattern-match zero = suc zero

It will also be rejected for not covering the case (suc i) (suc j),
since all constructor combinations must be covered to meet
the totality requirement.

Let us look at a truly dependently typed function now.
A common task to perform on sequences is to retrieve an
element from a given position. In Haskell, this can be done
using the function (!!) :: [a] -> Int -> a. When given
a negative number or a number that exceeds the length of
the list, this function fails at runtime. Such behavior is
prohibited in Agda, so a literal translation of this function
is not possible. Ideally, the bounds check should happen
at compile time. So the Vec type is accompanied with a
corresponding retrieval function in the standard library7, as
follows.

lookup : {↵ : Set} {n : N} ! Fin n ! Vec ↵ n ! ↵
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

In the declaration, the implicit parameter n is used as a
type parameter in the remaining function parameters. Such
appearance blends the type level and value level that are
clearly separated in Haskell. As a notational remark, the
arrows between parameters in a type signature can be omitted
if the parameters are parenthesized. The declaration above
therefore lacks the arrow separating the implicit parameters.

With the totality requirement in mind, the definition of
lookup may seem incomplete, because we omitted the case
of an empty Vec. But a closer look reveals that that case
cannot happen. The type of [ ] is Vec ↵ zero, so it can only
occur when n is zero. There is no constructor for Fin zero
however. The type checker is able to do this reasoning and
recognizes that our definition actually covers all type-correct

7Data.Vec

cases. Another example in a similar spirit is the definition of
the head function from the standard library7.

head : {↵ : Set} {n : N} ! Vec ↵ (suc n) ! ↵
head (x :: ) = x

The input type Vec ↵ (suc n) e↵ectively expresses that only
non-empty sequences can be passed—thus, no runtime error
like for the corresponding Haskell function can occur.

For further familiarization, let us look at other polymorphic
functions on Lists and/or Vecs. Our first example is to skip
every other element of a sequence. When implemented using
Lists, its type and implementation closely match what we
would write in Haskell.

sieve
List

: {↵ : Set} ! List ↵ ! List ↵
sieve

List

[ ] = [ ]
sieve

List

(x :: [ ]) = x :: [ ]
sieve

List

(x :: :: xs) = x :: sieve
List

xs

Writing it using Vec requires us to give a length expression
for the result type. More precisely, we need a function that
relates input length to output length, in this specific case
computing the upwards rounded division by 2. It happens
to be available from the standard library4.

d /2e : N ! N
d zero /2e = zero
d suc zero /2e = suc zero
d suc (suc n) /2e = suc d n /2e

Equipped with this function, we can update the type of sieve
while retaining the implementation.

sieve
Vec

: {↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ d n /2e

As another example, we consider the function that reverses
a size-indexed sequence. We can base our implementation on
the dependently typed left fold as does the standard library7.

reverse
Vec

: {↵ : Set} {n : N} ! Vec ↵ n ! Vec ↵ n
reverse

Vec

{↵} = foldl (Vec ↵) (� rev x ! x :: rev) [ ]

3. SEMANTIC BIDIRECTIONALIZATION
The Haskell version of semantic bidirectionalization, in its

most simple form, works for functions of type [a] -> [a],
i.e., polymorphic get-functions on homogeneous lists. We
want to translate the Haskell implementation of “put from
get” given by Voigtländer (2009) to Agda, and redevelop
the proofs of the well-behavedness lens laws in parallel. So
we should first look at the type of the forward function in
Agda. We can think of something like sieve or reverse, so a
reasonably general type expressing both the polymorphism
and the possible type-level information about lengths would
look as follows:

get : {↵ : Set} {n : N} ! Vec ↵ n ! Vec ↵ { ! !}

where { ! !} is a hole that still needs to be filled by some
expression. For the sake of maximal generality, we can turn
the dependence of the output length on the input length into
an explicit function, thus arriving at the following type:

get : ⌃ (N ! N)
(� getlen ! ({↵ : Set} {n : N}

! Vec ↵ n ! Vec ↵ (getlen n)))
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The ⌃ is notation for a dependent pair as defined in the
standard library8, expressing here that there is one compo-
nent that is a function from N to N and another component
whose type depends on the former function (named getlen).
Clearly, both sieve

Vec

and reverse
Vec

can be thus embedded,
for suitable choices of the getlen function. For example, the
pair (d /2e , sieve

Vec

) has the above ⌃-type.
That indeed every polymorphic function on homogeneous

lists can be thus embedded depends on free theorems, as given
by Wadler (1989). One free theorem in Haskell is that for
every function of type [a] -> [a] the length of the returned
list is independent of the contents of the passed list, instead
only depending on its length. Correspondingly, for list-based
get the correct getlen function can be constructively obtained,
and then used to define the type of the vector-based variant
of get. The relationship here has to do with the fact that
the vector type is an ornament of the list type (Dagand and
McBride, 2012, 2013, Ko and Gibbons, 2013). Another way
of thinking about it is colored type-theory (Bernardy and
Moulin, 2013).

Now we are in a position to give the main construction
from (Voigtländer, 2009). There, it is a Haskell function
named bff (which is a short form of “bidirectionalization for
free”) with the following type:9

bff :: (forall a. [a] -> [a])
-> (forall a. Eq a => [a] -> [a] -> [a])

Apparently, a get-function is turned into a put-function,
where the latter must be allowed to compare elements for
equality. The most interesting bit in Agda of course is how
the type plays out. It does become quite a bit more verbose,
but that verbosity is useful since the additional pieces carry
important information. Without further ado, here is the
Agda type for bff:

b↵ : {getlen : N ! N}

! ({↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ (getlen n))

! {n : N} ! Vec Carrier n
! Vec Carrier (getlen n)
! Maybe (Vec Carrier n)

Let us discuss this type a bit. First of all note how the de-
pendent pair from the above prototypical Agda type for get,
which has to take the role of the (forall a. [a] -> [a])
argument function in Haskell’s bff, is turned into two argu-
ments for b↵ by currying. For the produced put , instead of
quantifying over an Eq-constrained type variable, we use a
Carrier type that is a parameter of the Agda module in which
b↵ is defined. That is solely done for convenience—since
a client of the module can pass an arbitrary type for that
parameter, as long as a decidable semantic equality10 is de-
fined for that type, there is no less flexibility when applying
the outcome put-function of b↵ than there is in the Haskell
8Data.Product
9For simplicity, we do not yet consider type class extensions

to get.
10To cut down on proof size, we do not support any other
kind of equality at the moment. Allowing arbitrary equiva-
lence relations here would be a first step towards supporting
type class extensions to get. Di↵erent notions of equality/e-
quivalence also play an important role in the work of Wang
and Najd (2014) on streamlining semantic bidirectionaliza-
tion for get-functions that are type class aware, or indeed
generally higher-order.

case. Another notable di↵erence is that the final outcome is
wrapped in a Maybe. The reason for this is that in Agda all
functions must be total. So while the Haskell implementa-
tion fails with a runtime error if no suitable result can be
produced by put , in Agda we instead need to explicitly signal
error cases as special values. Finally, the vector lengths in
the type of the produced put-function tell us about shape
constraints. In fact, mismatches between expected shape
(from the original view obtained from the original source)
and actual shape (from the updated view) are one reason
for runtime errors in the Haskell version of bff. In Agda,
trying to combine a source s that has type Vec Carrier n for
some natural number n with a view v that has any other
type than Vec Carrier (getlen n), in particular one that has
any other length than the expected getlen n, will not even
be type-correct—so a possible runtime error has been turned
into a static check.

The actual definition of b↵ is not much di↵erent than in
Haskell. Apart from functions from the standard library11 it
uses a few custom functions. In particular,

enumerate : {n : N} ! Vec Carrier n ! Vec (Fin n) n
enumerate = tabulate id

enumerates the elements of a Vec, i.e., takes a vector of
length n and produces a vector that corresponds to the list
[0 , 1 , . . . , n-1 ], and

denumerate : {n : N} ! Vec Carrier n !

Fin n ! Carrier
denumerate = flip lookup

recovers the actual values, given a position. Using some
further auxiliary functions we do not repeat from (Grohne,
2013) in full here, we arrive at:

FinMapMaybe : N ! Set ! Set
FinMapMaybe m ↵ = Vec (Maybe ↵) m

checkInsert : {m : N} ! Fin m ! Carrier
! FinMapMaybe m Carrier
! Maybe (FinMapMaybe m Carrier)

checkInsert i b h with lookup i h
. . . | nothing = just (insert i b h)
. . . | just c with deq b c
. . . | yes b⌘c = just h
. . . | no b6⌘c = nothing

assoc : {n m : N} ! Vec (Fin m) n ! Vec Carrier n
! Maybe (FinMapMaybe m Carrier)

assoc {zero} [ ] [ ] = just empty
assoc {suc n} (i :: is) (b :: bs) = assoc is bs

>>= checkInsert i b

b↵ get s v = let s0 = enumerate s
g = tabulate (denumerate s)
h = assoc (get s0) v
h0 = (flip union g) <$> h

in (flip map
Vec

s0 � flip lookup) <$> h0

We do not explain all syntax used here, in particular the
generalized form of pattern matching via with. Beside the

11For example, flip : {↵ � � : Set} ! (↵ ! � ! �) !

� ! ↵ ! �, map
Vec

: {↵ � : Set} {n : N} ! (↵ ! �) !

Vec ↵ n ! Vec � n, and <$> : {↵ � : Set} !

(↵ ! �) ! Maybe ↵ ! Maybe � are similar to their Haskell
counterparts.
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fact that apart from the more informative types these func-
tion definitions are rather close to those from (Voigtländer,
2009), the more interesting aspect is anyway what we can
prove about them.

4. PROVING CORRECTNESS
Voigtländer (2009) proves two theorems about bff, cor-

responding to GetPut and PutGet. In Agda, a theorem is
represented/encoded as a type and a proof is a term that
has that type. The two theorems as expressed in Agda are:

theorem-1 :
{getlen : N ! N}

! (get : {↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ (getlen n))

! {n : N}

! (s : Vec Carrier n)
! b↵ get s (get s) ⌘ just s

and:

theorem-2 :
{getlen : N ! N}

! (get : {↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ (getlen n))

! {n : N}

! (s : Vec Carrier n)
! (v : Vec Carrier (getlen n))
! (u : Vec Carrier n)
! b↵ get s v ⌘ just u
! get u ⌘ v

Note how both are first “quantified”—since an argument type
means a piece that the user of the theorem can choose freely
as long as being type-correct—over the ingredients (a getlen
and a get) that are the main inputs to b↵. Then, theorem-1
expresses that for every s and every put obtained as b↵ get
holds: put s (get s) ⌘ just s, i.e., the here appropriate version
of the GetPut law put(s, get(s)) = s. Similarly, theorem-2
expresses that for every s, v, u, if b↵ get s v ⌘ just u (note that
a precondition simply becomes a function argument whose
type is a statement, and thus whose every value witness will
be a proof object for that statement), then get u ⌘ v. In
other words, again for put obtained as b↵ get: if there is some
u such that put s v ⌘ just u, then get of that u is v. That
of course corresponds to the PutGet law, get(put(s, v)) = v,
conditioned by put(s, v) actually being defined.

Complete proof objects for theorem-1 and theorem-2 are
given in (Grohne, 2013, Agda source at http://subdivi.de/
~helmut/academia/fsbxia.agda). We will not give those
proofs/terms here; the important thing is that they exist.
What is interesting to record, of course, is what assumptions
they depend on. The only dependency that is not proved
within said formalization itself is the Vec variant of the free
theorem for polymorphic functions on homogeneous lists.
Instead, it is only postulated.

postulate

free-theorem
Vec

:
{getlen : N ! N}

! (get : {↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ (getlen n))

! {� � : Set}
! (f : � ! �) ! {n : N} ! (l : Vec � n)
! get (map

Vec

f l) ⌘ map
Vec

f (get l)

This is the natural transfer of the free theorem statement for
lists from Wadler (1989) to the setting of vectors. Actually
proving it in Agda as well would require techniques that are
orthogonal to our consideration of the lens laws (Bernardy
et al., 2012), so we opt for keeping it as a postulation here,
just as the list version of that free theorem for Haskell was an
assumption (by all beliefs of the Haskell community a very
well-founded one) in the proofs of Voigtländer (2009). The
important thing is that the proofs of theorem-1 and theorem-2
from free-theorem

Vec

are now fully machine-checked!
Those proofs themselves proceed via a series of lemmas,

similarly as one would do on paper, but of course Agda is
uncompromising in requiring an explicit argument for each
step. There is no “this is obvious” or “left as an exercise to
the reader” as in (Voigtländer, 2009) and other papers on
semantic bidirectionalization and extensions thereof. Just to
give a taste, here are statements that we encounter which
correspond to Lemmas 1 and 2 of Voigtländer (2009):

lemma-1 :
{m n : N}

! (is : Vec (Fin m) n) ! (f : Fin m ! Carrier)
! assoc is (map

Vec

f is) ⌘ just (restrict f (toList is))

lemma-2 :
{m n : N}

! (is : Vec (Fin m) n) ! (v : Vec Carrier n)
! (h : FinMapMaybe m Carrier)
! assoc is v ⌘ just h
! map

Vec

(flip lookup h) is ⌘ map
Vec

just v

as well as how an induction proof in Agda looks like, for the
former:12

lemma-1 [ ] f = refl
lemma-1 (i :: is) f = begin

(assoc is (map
Vec

f is) >>= checkInsert i (f i))
⌘h cong (� h ! h >>= checkInsert i (f i))

(lemma-1 is f) i

(just (restrict f (toList is)) >>= checkInsert i (f i))
⌘h refl i

checkInsert i (f i) (restrict f (toList is))
⌘h lemma-checkInsert-restrict f i (toList is) i

just (insert i (f i) (restrict f (toList is))) 2

farming out to another auxiliary lemma:

lemma-checkInsert-restrict :
{m : N}

! (f : Fin m ! Carrier)
! (i : Fin m) ! (is : List (Fin m))
! checkInsert i (f i) (restrict f is)

⌘ just (restrict f (i :: is))

which in turn requires further inductions, etc. Something
we do not dwell on here is the actual process of arriving
at the proofs, but Grohne (2013) describes in detail how
interactive proof construction works and how Agda lends
a helping hand, while also requiring familiarization with
certain idioms for e↵ective formalization. This guidance

12The refl steps correspond to reflexivity of propositional
equality ⌘. It can be used when Agda is able to prove an
equality by its built-in rewriting strategy based on function
definitions. Such rewriting also happens silently, but of
course always with Agda’s correctness guarantee, in some
other steps.
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should be helpful when embarking on a similar endeavor
for correctness proofs of other techniques, or when further
developing the provided formalization, to cover extensions
of semantic bidirectionalization already presented in the
literature or still to be explored.

5. SO WHAT?
We have arrived at formal proofs of GetPut and PutGet for

the bidirectionalization technique from (Voigtländer, 2009).
But we already knew, or at least very strongly believed, that
the technique was correct beforehand. After all, the original
paper did contain lemmas, theorems, and proofs that seemed
acceptable to the community. So what have we actually
gained?

Beside the reassuring feeling that comes with a machine-
checked proof, the dependent types and formalization work
bring concrete additional benefits in terms of better under-
standing of the formalized technique and its properties. We
have already remarked on the fact that the Haskell version
of bff can fail with a runtime error, and that one reason for
such failure is shape mismatches, and that the constraints
on vector lengths in the Agda types we use prevent those.
Actually, it was already informally observed in previous work
for the Haskell version that only when the shapes of get s and
v are the same is there any hope that put s v is defined, but
the dependent types in the Agda version are both explicit
and more rigorous about this.

And there is more. Even when the shapes are in the correct
relationship, the put obtained as b↵ get can fail. After all,
that is why we have wrapped the ultimate return type of b↵
in a Maybe. Such failure occurs when get duplicates some
entry from the source sequence and the two copies in the
view are updated to di↵erent values. On the other hand,
if no duplication takes place, then b↵ should not end up
returning nothing (thus signaling failure). In Agda, we can
formalize this intuition based on the following predicate:

data All-di↵erent {↵ : Set} : List ↵ ! Set where
di↵erent-[] : All-di↵erent [ ]
di↵erent-:: : {x : ↵} {xs : List ↵}

! x /2 xs
! All-di↵erent xs
! All-di↵erent (x :: xs)

What this definition says is that, trivially, the elements of
the empty list are pairwise di↵erent, and the elements of a
non-empty list are pairwise di↵erent if the head element is
not contained in the tail and if, moreover, the elements of
the tail are pairwise di↵erent. Based on All-di↵erent, Grohne
(2013) proves a su�cient condition for when an assoc-call
succeeds (i.e., for when there exists some h such that the
result of assoc is just h rather than nothing):

di↵erent-assoc :
{m n : N}

! (u : Vec (Fin m) n)
! (v : Vec Carrier n)
! All-di↵erent (toList u)
! 9 (� h ! assoc u v ⌘ just h)

Moreover, he proves that if a certain assoc-call succeeds, then
the put obtained as b↵ get succeeds:

lemma-assoc-enough :
{getlen : N ! N}

! (get : {↵ : Set} {n : N} ! Vec ↵ n
! Vec ↵ (getlen n))

! {n : N}

! (s : Vec Carrier n)
! (v : Vec Carrier (getlen n))
! 9 (� h ! assoc (get (enumerate s)) v ⌘ just h)
! 9 (� u ! b↵ get s v ⌘ just u)

Combining di↵erent-assoc and lemma-assoc-enough, we learn
that b↵ get s v succeeds, and thus the precondition of Put-
Get/theorem-2 is fulfilled, if

All-di↵erent (toList (get (enumerate s)))

holds. Thus, we have formally established that a su�cient
condition on get to guarantee that the dependently typed
b↵ get always succeeds is what is called semantically a�ne
in (Voigtländer et al., 2013).

Further exploration of semantic bidirectionalization tech-
niques should also profit from the availability of a formaliza-
tion. Indeed, such availability would have benefited us in the
past. For example, the original paper (Voigtländer, 2009)
proved GetPut and PutGet, but only claimed that a third
law, PutPut, also holds. Later work (Foster et al., 2012)
refactored the definition of bff, essentially by formulating it
in terms of the constant-complement approach (Bancilhon
and Spyratos, 1981), to make more apparent that PutPut
indeed holds. But this refactoring required extra care and
consideration to make sure that no other properties were
destroyed. In fact, new arguments were needed for correct-
ness of the refactored version. Of course, the same would
have been the case if an Agda formalization of the original
correctness arguments had already been available, but the
dependent types and proof assistant would have provided a
safety net, just as standard type systems provide a safety
net when refactoring ordinary programs instead of programs
and proofs in one go. Similarly, other and further variations
of semantic bidirectionalization may profit now. It would be
useful to first extend the formalization to treat data struc-
tures other than sequences for get to operate on, for example
trees. Data type generic versions of get have already been im-
plemented in Haskell Voigtländer (2009), Foster et al. (2012),
but not been proved with the same rigor. The formalization
of indexed containers using ornaments (Dagand and McBride,
2013) should be useful here.

Finally, let us mention a promising new direction for bidi-
rectionalization that uses dependent types not only for veri-
fication but for doing a better job at the bidirectionalization
task itself. The idea here is to turn dependent types into
a “plug-in” in the sense of (Voigtländer et al., 2013). In
brief, the variation of semantic bidirectionalization presented
by Voigtländer et al. (2013) overcomes the limitation of
only being able to handle shape-preserving updates. It does
so by requiring that each invocation of bff is enriched by
a “shape bidirectionalizer”, a function that performs well-
behaved updates on an abstraction of sources and views to
the shape level, for example list lengths. Several possibilities
are discussed for solving the shape-level problem, ranging
from requesting programmer input, over search and syntactic
transformations, to bootstrapping semantic bidirectionaliza-
tion for abstracted problems. All this happens in Haskell,
but in Agda we have another resource for such plug-in tech-
niques. Namely, we can turn to shape information that comes
from the types. Specifically, the getlen functions already ex-
press relationships between source and view sequence lengths.
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Since the propagation direction needed for shape bidirection-
alizer plug-ins is from views to sources, we would actually
need at least a partial inverse of getlen. But with the rich
expressiveness available at the type level in Agda, we could
even explore di↵erent abstractions, be they general relations
between source and view shapes, or functions in one or the
other direction. We can also prove connections between these
abstractions, and potentially move between them, depending
on what is most convenient for a given get-function. As a
very simple example of what we have in mind, consider the
tail function with its canonical type in Agda:

tail : {↵ : Set} {n : N} ! Vec ↵ (suc n) ! Vec ↵ n
tail ( :: xs) = xs

The type does not only express that tail is only well-defined
on non-empty sequences, it also tells us in no uncertain terms
that its input is always exactly one entry longer than its
output (so suc acts as getlen�1 here). Concerning bidirec-
tionality that tells us that if tail is get and the view sequence
is changed to some new length, we know exactly what the
new source length should be. This is exactly the information
that a shape bidirectionalizer plug-in needs to provide, but
now actually available statically by virtue of the very defi-
nition of get in a dependently typed language. We plan to
develop a general technique from this idea, of course with
Agda implementation and formalization going hand in hand.
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