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ABSTRACT
We present a monadic treatment of symmetric state-based bidi-
rectional transformations, and show how it arises naturally from
the well-known asymmetric lens-based account. We introduce two
presentations of a concept we dub the “entangled” state monad,
and prove their equivalence. As a step towards a unifying account
of bidirectionality in general, we exhibit existing classes of state-
based approaches from the literature as instances of our new con-
structions. This extended abstract reports on work in progress.

1. INTRODUCTION
This extended abstract describes work in progress towards uni-

fying approaches to formalising bidirectional transformations (bx).
For purposes of this paper, a bx is a device for maintaining consis-
tency between two or more information sources. In model driven
development, such sources are usually models; for example, UML
models of a system to be developed. Other artefacts treated with
these techniques could include database tables, XML files, abstract
syntax trees, code, etc. We use the (admittedly overloaded) term
‘models’ broadly to refer to any of these information sources.

There are multiple dimensions over which notions of bx vary.
For example, they may operate on only two information sources, or
several. They may insist that one source be a strict abstraction of
the others (asymmetric case), or not (symmetric case).

Our main motivation is to lay foundations that we will later use
to work towards a uniform, typed understanding of the extra infor-
mation that is used by bx, besides the current states of the models
that are to be synchronised. We begin in this paper with state-based
bx, including those with explicit complement.

In formal semantics, stateful computations are often expressed in
terms of monads [3], giving a unified account of impure side-effects
in pure functional languages. They have since become an essential
programming pattern in such languages [6], and we follow suit.

2. BACKGROUND

Monads for Effectful Functional Programming. The es-
sential idea of monads in functional programming is to encapsulate
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a computation with side-effects, taking inputs of type A and return-
ing a result of type B, as a function of type A!M B, for a suitable
type constructor M, known as a monad. Whereas inhabitants of the
plain type A denote pure values, those of the monadic type M A
denote computations, which may incur computational effects be-
fore yielding a value of type A. For instance, one may describe
non-deterministic computations of type A! B in terms of the List
monad – i.e., as functions A! List B, where each value a : A is
assigned a list of possible return values [b1,b2, . . . ] : List B. Mon-
ads can be used to capture side-effects, input/output, exceptions,
probabilistic choice, and many other computational effects. In this
paper we are concerned with computations which may depend on,
and modify, various forms of mutable state; such computations are
described by the state monad, as defined shortly.

More formally, a monad is a type constructor M equipped with
the following structure of typed operations (parametric in A,B):

return : A!M A
(>>=) : M A! (A!M B)!M B
(>>) : M A!M B!M B
ma>>mb = ma>>=l . mb

(We borrow the Haskell convention of writing an infix operator �
in parentheses (�) in order to refer to it without arguments.) Here,
the operation return simply returns its argument with no other ef-
fect. The ‘bind’ operation ma>>= f runs a computation ma return-
ing an A, then runs a computation f , parameterized over A and re-
turning a B, finally returning that B value. The definable operation
‘sequence’ ma >> mb is a special case of ‘bind’ in which the com-
putation mb does not depend on the A value returned by ma.

We work in the equational theory of the l -calculus, as is com-
mon when discussing monads in Haskell; our presentation is a
special case of the general categorical treatment of monads. The
monad operations are required to satisfy the following three equa-
tional laws. The first two assert that return is a left and right unit
for the ‘bind’ operation and the third that ‘bind’ is associative. (As
usual, l -binding scope extends as far to the right as possible. In the
third equation, a is not free in g.)

return a>>= f = f a
ma>>= return = ma
ma>>=(la . (f a>>=g)) = (ma>>= f )>>=g

As a corollary, ‘sequential composition’ (>>) is associative, with
left unit return ().

The State Monad. A distinguished instance of the above con-
cept is MS, the state monad on type S, representing computations
with access to a single updateable memory cell of type S. We define
MS A = S! A⇥ S so that a computation of type A!MS B takes
input a : A, and then can query the (old) state s : S, before return-
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ing a new state s0 : S and a result b : B. The monadic operations of
MS are defined below. The return operation takes a value a : A and
produces a computation which, for any initial state s : S, returns the
value a and leaves the state s untouched. The ‘bind’ operation >>=
chains together two stateful computations, using the final state s0 of
the first computation as the initial state of the second.

return : A! (S! A⇥S)
return a = l s . (a,s)
(>>=) : (S! A⇥S)! (A! (S! B⇥S))! (S! B⇥S)
ma>>= f = l s . let (a,s0) = ma s in f a s0

In addition to the generic operations return and >>=, the state monad
supports two operations get, set, to read and write the state:

get : MS S
get = l s . (s,s)
set : S!MS ()
set s0 = l s . ((),s0)

In general, one may characterise state monads with multiple mem-
ory cells in terms of an algebraic theory of reads and writes, with
seven equations [4]. In the restricted setting of a single memory
cell, the theory reduces to the following four equations:

(GG) get >>=l s . get >>=l s0 . k s s0 = get >>=l s . k s s
(GS) get >>= set = return ()
(SG) set s>>get = set s>> return s
(SS) set s>> set s0 = set s0

It is routine to verify that the above definitions of get and set satis-
fy these laws. However, in the algebraic perspective, one abstracts
away from the specific concrete representation MS and the corre-
sponding implementations of get and set, and instead considers a
‘state monad on S’ abstractly to be any monad M equipped with the
additional structure of get and set satisfying the above four laws.

Asymmetric lenses via the state monad. An asymmetric
lens [1] between S and V consists of a pair l of functions, usually
called ‘get’ and ‘put’, which we write as follows:

l.get : S! V
l.put : S! V! S

The idea is that S and V represent source and view data, e.g. in
a database; V is derived from S using l.get, and l.put computes a
modified S on the basis of an old S and an updated V .

Given such a lens l, the state monad MS admits computations
getl, setl, where setl takes input from V , updates the state S, and
returns void; and getl is the trivially stateful operation that queries
but doesn’t change the state S, and returns the V view of it:

getl : MS V
getl = l s . (l.get s,s)
setl : V!MS ()
setl v = l s . ((), l.put s v)

These computations do not allow us to observe, or update, the un-
derlying state S, except via the view type V . But viewed as abstract
operations relative to an arbitrary monad M, the structure

getl : M V
setl : V!M ()

defines a state monad on V , provided that the equational laws hold.
In the special case of the identity lens l = id, between S and S,

where id.get just reads the state, and id.set updates it, we have:

getid = l s . (s,s)
setid s0 = l s . ((),s0)

i.e. we obtain the state monad structure (MS,get,set) on S.
Thus, an asymmetric lens l gives rise to two distinct state monad

structures, one on V derived from l, the other on S corresponding
to the special case id. Each accesses the same underlying state;
we say the two structures are entangled. In the rest of this paper,
we consider such entangled state monads in general. The general-
isation turns out to be both simple and powerful: several other bx
formalisms are instances of this notion, corresponding to monads
which present two updateable views of some shared, possibly hid-
den, state. In the next section we give details of the generalisation.
We revisit the discussion of asymmetric (and other) lenses, in more
detail, in Section 4.

3. ENTANGLED STATE MONADS
We now show that a monad that exhibits the structure of a state

monad in two ways is essentially a bidirectional transformation.
We do this by introducing two definitions, those of ‘set-bx’ (cor-
responding directly to state monads) and ‘put-bx’ (corresponding
more closely to symmetric lenses) and showing that they are equiv-
alent. (The proofs are included in an extended paper currently in
preparation.) We use the umbrella term ‘entangled state monad’ for
these two formulations.

3.1 Set-bx
Given types A, B, we define a set-bx between A and B to be a

monad M, equipped with four operations:

getA : M A
getB : M B
setA : A!M ()
setB : B!M ()

that satisfy the three laws for getA and setA
(GG) getA >>=l s . getA >>=l s0 . k s s0

= getA >>=l s . k s s
(GS) getA >>= setA = return ()
(SG) setA a>>getA = setA a>> return a

and symmetrically for getB and setB. A set-bx that in addition sat-
isfies the following:

(SS) setA a>> setA a0 = setA a0

(and symmetrically in B) is called overwriteable.
We write (getA,getB,setA,setB) : A M() B to indicate that M is a

set-bx between A and B equipped with operations getA, etc. When
discussing more than one such structure, we write t : A M() B and
t.getA and so on for the operations of t.

3.2 Put-bx
Given types A, B, we define a put-bx between A and B to be a

monad M, equipped with four operations:

getA : M A
getB : M B
putBA : A!M B
putAB : B!M A

satisfying the following laws:

(GG) get >>=l s . get >>=l s0 . k s s0 = get >>=l s . k s s
(GP) getA >>=putBA = getB
(PG1) putBA a>>getA = putBA a>> return a
(PG2) putBA a>>getB = putBA a

(and symmetrically, swapping A and B).
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A put-bx that in addition satisfies the following:

(PP) putBA a>>putBA a0 = putBA a0

(and symmetrically in B) is called overwriteable.
As above, we write (getA,getB,putBA,putAB) : A M() B to indicate

that M is a put-bx with operations getA, etc., and write t : A M() B,
t.getA and so on when discussing more than one such structure.

3.3 Relating set-bx and put-bx
We will show that set-bx and put-bx are equivalent in the fol-

lowing sense: for each set-bx t : A M() B we can construct a put-bx
set2pp(t) :A M()B and for each put-bx u :A M()B we can construct
a set-bx pp2set(u) : A M() B. Moreover, the two constructions are
inverses: pp2set(set2pp(t)) = t and set2pp(pp2set(u)) = u. This
means that any equation satisfied by all set-bx translates to an equa-
tion that holds for all put-bx, and vice versa. So, we can work with
set-bx or put-bx as convenient, justifying our overloaded notation
t : A M() B.

The translations are defined as follows. Given set-bx t :A M() B,
define put-bx set2pp(t) by:

set2pp(t).getA = t.getA
set2pp(t).getB = t.getB
set2pp(t).putBA a = t.setA a>> t.getB
set2pp(t).putAB b = t.setB b>> t.getA

Likewise, given put-bx u : A M() B, we define set-bx pp2set(u) as
follows:

pp2set(u).getA = u.getA
pp2set(u).getB = u.getB
pp2set(u).setA a = u.putBA a>> return ()

pp2set(u).setB b = u.putAB b>> return ()

LEMMA 1. If t : A M() B is an (overwriteable) set-bx
then set2pp(t) : A M() B is an (overwriteable) put-bx.

LEMMA 2. If u : A M() B is an (overwriteable) put-bx
then pp2set(u) : A M() B is an (overwriteable) set-bx.

LEMMA 3. Translations pp2set(·) and set2pp(·) are inverses.

3.4 Entanglement
Note that the state monad on pairs MA⇥B determines a set-bx,

with

getA = get >>=l (a, ) . return a
getB = get >>=l ( ,b) . return b
setA a = get >>=l ( ,b) . set (a,b)
setB b = get >>=l (a, ) . set (a,b)

However, this structure also satisfies stronger laws than our defini-
tions require; in particular, commutativity of sets:

setA a>> setB b = setB b>> setA a

This law is not required of a set-bx; it is consistent with the set-
bx laws that the A and B components of the state be “entangled”,
in the sense that setting one component also changes the other to
restore consistency; in other words, that setA and setB need not
commute. The monad MA⇥B arises simply as a special case of our
general analysis of algebraic bx in Section 4 below, in which the
consistency relation is universally true: setA automatically restores
consistency without the need to change B and vice versa.

4. INSTANCES
In this section we justify our view that set-bx (and hence also put-

bx) structures are a general form of state-based bx, by showing how
they capture the usual presentations such as asymmetric and sym-
metric lenses. Even though symmetric lenses subsume asymmetric
lenses and algebraic bx, it is instructive to start with the simpler
cases. We also give a simple example of a stateful bx that is not
(isomorphic to) a symmetric lens. Investigation of other instances,
and their relationships, is ongoing work.

Asymmetric lenses. Let l :A ⌦ B be a classic asymmetric lens,
i.e. l.get : A! B and l.put : A! B! A. We may construct a set-
bx l : A MA() B (where MA is the state monad on state type A, as
introduced in Section 2 above) as follows:

getA = la . (a,a)
getB = la . (l.get a,a)
setA a0 = la . ((),a0)
setB b0 = la . ((), l.put a b0)

If l is a so-called ‘well-behaved’ lens, then it also satisfies:

(GetPut) l.put a (l.get a) = a
(PutGet) l.get (l.put a b) = b

Finally, an asymmetric lens may optionally satisfy:

(PutPut) l.put (l.put a b) b0 = l.put a b0

in which case it is called very well-behaved.

LEMMA 4. If the asymmetric lens l : A ⌦ B is well-behaved,
then the above definitions indeed make l : A MA() B into a set-bx. If
l is very well-behaved, then l : A MA() B is also overwriteable.

Algebraic bxs. Let (R,
�!
R ,
 �
R ) be an algebraic bx A$ B in the

style of Stevens [5], i.e., R✓ A⇥B,
�!
R :A⇥B! B,

 �
R :A⇥B! A,

satisyfing the conditions

(Correct) (a,
�!
R(a,b)) 2 R

(Hippocratic) R(a,b))�!R(a,b) = b

and symmetrically for
 �
R . We say R is undoable if it also satisfies

(Undoable) R(a,b))�!R(a,
�!
R(a0,b)) = b

and symmetrically for
 �
R .

Let MR be the state monad over R, viewing R as a set of pairs,
R✓ A⇥B. Then we define the following operations:

getA = l (a,b) . (a,(a,b))
getB = l (a,b) . (b,(a,b))
setA a0 = l (a,b) . ((),(a0,

�!
R(a0,b)))

setB b0 = l (a,b) . ((),(
 �
R(a,b0),b0))

The condition (Correct) ensures that setA a0 and setB b0 are well-
defined functions R! ()⇥R, and thus preserve the consistency of
pairs (a,b) 2 R.

LEMMA 5. For any algebraic bx (R,
�!
R ,
 �
R ), the above opera-

tions make MR into a set-bx. If (R,
�!
R ,
 �
R ) is undoable, then MR is

also overwriteable.

Symmetric lenses. Let l : A C ! B be a symmetric lens as pre-
sented by Hofmann et al. [2]. That is, let l = (putl,putr) consist of
a pair of functions
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putl : A⇥C! B⇥C
putr : B⇥C! A⇥C

which satisfy

(PutRL) putr (a,c) = (b,c0)) putl (b,c0) = (a,c0)
(PutLR) putl (b,c) = (a,c0)) putr (a,c0) = (b,c0)

Let Ml be the state monad MT over the set T of consistent states in
A⇥B⇥C, i.e., those triples (a,b,c) 2 A⇥B⇥C satisfying

putr (a,c) = (b,c) and putl (b,c) = (a,c)

Then define the following operations for Ml:

getA = l (a,b,c) . (a,(a,b,c))
getB = l (a,b,c) . (b,(a,b,c))
putBA a0 = l (a,b,c) . let(b0,c0) = putr (a0,c) in(b0,(a0,b0,c0))
putAB b0 = l (a,b,c) . let(a0,c0) = putl(b0,c) in(a0,(a0,b0,c0))

We need to show that these operations are well defined in the sense
that they preserve consistency of the state, and this is where we
need the symmetric lens laws – once this is done, it is easy to see
that these definitions satisfy the put-bx laws.

LEMMA 6. Given any symmetric lens l= (putl,putr) :A C ! B,
the above operations are well-defined and make Ml into a put-bx.

Stateful bx. We now consider an example that performs I/O side-
effects, and thus by definition cannot be a symmetric lens (or any
of the other bx mentioned above). We define a monad M that com-
bines stateful updates (just on integer states, for simplicity) with
Haskell-style monadic I/O; the latter is captured via a monad IO
and an operation print : String! IO (). The return and >>= oper-
ations of M are therefore defined in terms of those of IO, so to be
explicit we use subscripts below to disambiguate.

M A = Integer! IO (A, Integer)
returnM x = l s . returnIO (x,s)
ma>>=M f = l s . ma s>>=IO l (a,s0) . f a s0

getA = l s . returnIO (s,s)
getB = l s . returnIO (s,s)
setA a = l s . (if a 6⌘ s

then print "Changed A"
else returnIO ())>>IO returnIO ((),a)

setB b = l s . (if b 6⌘ s
then print "Changed B"
else returnIO ())>>IO returnIO ((),b)

That is, a computation in monad M yielding a result of type A
amounts to an IO-computation yielding a pair of an A and a new
Integer state, given as input an old Integer state. This is a set-bx:
in particular, its behaviour satisfies the laws (GG), (GS) and (SG).
Its set operations are side-effecting, but the side-effects only occur
when the state is changed. For simplicity, we have taken the un-
derlying bidirectional transformation to be trivial, but we should be
able to add similar stateful behaviour to any (symmetric) lens or
algebraic bx following a similar pattern.

5. CONCLUSIONS
Lenses are traditionally presented asymmetrically, whereas many

bx applications such as model synchronisation are entirely symmet-
ric. Symmetric lenses [2] and algebraic bx [5] cover the more gen-
eral symmetric case, but both formulations go beyond equational
logic. We have shown a very simple equational characterisation

that unifies lenses, symmetric lenses, and algebraic bx, by a natural
generalisation of the ‘get’ and ‘set’ operations of the state monad.
Interestingly, the notions of consistency for algebraic bx and com-
plement disappear into the hidden state of the monad. We expect
to be able to accommodate bx with richer complements or witness
structures in the same way. Moreover, our approach offers the pos-
sibility of generalisation to reconcile effects such as I/O, nonde-
terminism, exceptions, or probabilistic choice with bidirectionality,
drawing on the rich theory of monads, and possibly leading to a
theory of bidirectional programming with effects.

This is work in progress. We are currently investigating the cen-
tral issues of equivalence and composition of entangled state mon-
ads. Symmetric lenses are quotiented by an equivalence relation in
order for properties such as associativity of composition to hold.
We expect something similar to be needed for entangled state mon-
ads. Indeed, the question of whether entangled state monads can
be composed seems nontrivial; some restrictions on the class of
monads considered may be necessary for composability.

We have considered entangled state monads only in relatively
standard settings, such as the category of sets and functions (in the
guise of Haskell types and functions). Another interesting direc-
tion may be to explore other settings, such as partial orders, metric
spaces, or topologies, which may offer insights into notions of least
change or predictable behaviour.
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