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ABSTRACT
In this paper, we investigate a critical problem in smart
meter data mining: computing electricity consumption pro-
files. We present a simple, interpretable and practical pro-
filing framework for residential consumers, which accounts
for variations in electricity consumption at di↵erent times
of day and at di↵erent external temperatures. Our approach
is to isolate the e↵ect of external temperature on electricity
consumption and apply a time-series autoregressive model to
the remaining signal. The proposed profiles may be used for
making personalized energy-saving recommendations, de-
tecting outliers, and generating very large realistic data sets
for testing the scalability of smart meter data management
systems. Using predictive power as a metric for the accu-
racy of consumption profiles, we show, using a real data
set of 1000 homes, that our approach results in improved
root-mean-squared prediction error compared to existing ap-
proaches.

1. INTRODUCTION
Smart electricity meters are rapidly replacing conventional

meters in many parts of the world. Smart metering systems
o↵er many operational advantages for energy utilities and
policy makers, including

• enabling automated collection of fine-grained (typ-
ically half-hourly or hourly) consumption readings,
thereby eliminating the need for utilities to send out
estimated bills or to dispatch personnel to customer
premises and manually read the meters,

• enabling dynamic pricing schemes that depend on the
time-of-day in order to reduce demand for electricity
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during peak times.

However, exploiting smart metering systems to their fullest
also requires mining the vast amounts of collected consump-
tion data to obtain insights into grid operations and con-
sumer behaviour [2, 4, 7, 12,16,21].

In this paper, we address the problem of computing elec-
tricity consumption profiles from smart meter data, with a
focus on residential customers. The residential sector con-
tributes a significant fraction to the total electricity demand
(30 percent in Canada [5]) and greenhouse gas emissions
(see, e.g., [19,24] for United States statistics). Furthermore,
in many regions, residential consumers are significant con-
tributors to peak demand; e.g., in Ontario, Canada, resi-
dential air conditioning load is a major contributor to peak
demand, which occurs in the afternoon of hot summer week-
days [23].

We argue that consumption profile generation is a fun-
damental smart meter data mining operation that electric-
ity providers, resellers and consultants can perform, with at
least the following applications:

• Conducting “virtual energy audits” and making per-
sonalized recommendations for saving electricity based
on the trends identified in the profiles.

• Clustering households based on the features captured
by the profiles. This may be used to understand di↵er-
ent classes of consumers and to design targeted energy
conservation and peak reduction programs for di↵erent
classes.

• Generating real-time alerts if new consumption read-
ings do not match the expected consumption predicted
by the profiles. A related application is to identify con-
sumers with “suspicious” load profiles that do not fit
in any cluster, which could indicate electricity theft,
malfunctioning meters or the presence of specialized
equipment such as electric vehicle chargers.

• Generating realistic synthetic data based on the avail-
able real data. This may be used as input to grid simu-
lation, transformer sizing, forecasting and pricing mod-
els, or to create very large realistic data sets for testing
the scalability of smart meter data management sys-
tems.
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1.1 Challenges and Contributions
In order to be useful for the above applications, we argue

that consumption profiles must satisfy the following criteria.

• First, they must be accurate, i.e., able to describe and
predict consumption with reasonable accuracy.

• Second, they must be easily interpretable; a complex
machine learning model may be accurate, but if it is
not interpretable, then actionable energy-saving rec-
ommendations cannot be easily inferred from it.

• Third, they must be practical, and therefore they
should only require data that are easily available to
utilities, such as hourly smart meter readings and
weather. While household characteristics (e.g., home
size and age, number of appliances, number of occu-
pants, etc.) and consumer demographics could be use-
ful, this information is typically not available to utili-
ties due to privacy regulations and cannot be easily ob-
tained without intrusive measurements and question-
ing.

The challenge in computing accurate and interpretable
profiles from smart meter data is that residential electricity
consumption depends on many factors, including the time
of day, weather and the occupants’ daily routines. Broadly
speaking, prior work can be divided into two approaches.
One is to compute various aggregate statistics from histori-
cal consumption data that account for typical daily activity;
examples include the average, maximum, minimum and vari-
ance of hourly or daily consumption, ratios of night-to-day
or morning-to-evening consumption, or identifying the hour
of day when peak consumption usually occurs. The other
approach has been to correlate consumption with external
temperature, e.g., using piecewise linear regression, and use
the correlation coe�cients as representatives for the cooling
and heating e�ciency of homes.

In this paper, we propose a simple and practical tech-
nique that combines the best features of existing methods,
and accounts for both temperature and activity in an ac-
curate and interpretable fashion. The idea is to remove the
e↵ects of external temperature and outliers from the raw
consumption data1, and compute typical hourly consump-
tion values from the remaining signal using a time series
auto-correlation model. This gives us typical consumption
levels of a given home at di↵erent times of the day, indepen-
dent of temperature and robust to “noise” (e.g., time periods
when the home was empty or unusually busy).

Specifically, we make the following contributions in this
paper:

• We propose a simple and interpretable technique for
computing electricity consumption profiles from house-
hold smart meter data, which may be used for per-
sonalized recommendations, forecasting, classification,
and as input to simulation models.

• Using predictive power as a metric for accuracy and
hence the representativeness of consumption profiles,

1Here, by outliers we mean consumption readings that are
much lower or higher than the average consumption for the
given home, and thus do not correspond to the typical level
of activity in this home.

we compare the proposed method to several existing
approaches. Using a real data set, consisting of a year
of hourly smart meter readings from 1000 homes in
southern Ontario, Canada, we show that our approach
outperforms existing approaches in terms of the root-
mean-squared prediction error.

1.2 Roadmap
The remainder of this paper is structured as follows. Sec-

tion 2 gives the intuition and an overview of our solution;
Section 3 presents the details of our consumption profile al-
gorithm; Section 4 describes our experimental results; Sec-
tion 5 discusses related work; and Section 6 concludes the pa-
per and discusses open problems in smart meter data man-
agement.

2. INTUITION AND SOLUTION
OVERVIEW

In this section, we give an overview of our solution and
we explain the intuition behind it. The input to our prob-
lem consists of two time series: 1) periodic (e.g., hourly)
timestamped electricity consumption readings from a given
home for some period of time (e.g, 6 months or a year), and
2) a corresponding time series with external temperature
measurements, with the same granularity and for the same
period of time, e.g., from a nearby weather station.

A very simple consumption profile could consist of 24
numbers: the average consumption for each hour of the day,
aggregated over some or all of the input data. A simple ex-
tension is to compute two such profiles: one for weekdays
and one for weekends and holidays. (We could go further
and compute separate profiles for every day of the week,
but, to keep the model simple and easily interpretable, we
will only consider weekday-weekend splits in this paper.)

Hourly averages may reveal some high-level details about
the consumption habits of a household, but we can do better.
Observe that in climates with summer air conditioning usage
and/or winter electric heating, a large part of the electric-
ity consumption is temperature-sensitive; e.g., in the United
States, roughly 40 percent of a home’s energy consumption
servers heating and cooling needs [24]. For example, Fig-
ure 1 plots the hourly consumption and external temper-
ature (measured in degrees Celcius) for a sample home in
southern Ontario, Canada, between April 2011 and Octo-
ber 2012 (we omit further details about the data source to
preserve privacy). Observe that the peak summer consump-
tion of this home is roughly 1.5 kilowatt-hours (kWh) higher
than the peak winter consumption, which is likely due to air
conditioning usage. If we could quantify the consumption of
temperature-sensitive loads and remove it from the original
consumption time series, the remaining consumption would
give us a better idea of the occupants’ routines and activi-
ties, and thus a more accurate profile.

The problem is that the relationship between consumption
and external temperature is not exact, making it di�cult
to estimate the consumption of temperature-sensitive ap-
pliances from whole-house smart meter data. Figure 2 plots
the noon-time energy consumption of the same sample home
as a function of temperature; i.e., each point represents the
noon-time consumption of this home on some day between
April 2011 and October 2012 as well as the temperature at
that time. On some days, the noon-time consumption is rel-
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Figure 1: Hourly consumption of a sample home (blue curve
with Y-axis on the left) and the temperature (green curve
with Y-axis on the right), measured between April 2011 and
October 2012.

atively high when the temperature is moderate or relatively
low, and vice-versa. Some of these “outliers”may correspond
to days when the home was empty or unusually busy. If we
could remove these outliers, we could obtain a more accurate
estimate of the temperature-sensitive load, and also a more
accurate estimate of the remaining (routine and activity)
load, which can give a more accurate and robust profile.

Our proposed solution, illustrated in Figure 3, implements
the above observations. Given the smart meter and temper-
ature time series, we will compute 48 numbers: the typi-
cal daily consumption values for each hour of the day on
weekdays and weekends, after accounting for temperature-
dependent load and outliers. The details of our solution are
presented in the next section.

3. COMPUTING CONSUMPTION PRO-
FILES

We now describe the proposed solution, beginning with an
overview of the time series model that we employ (Section
3.1), followed by a discussion of how outliers and temper-
ature e↵ects are taken into account (Section 3.2) and how
model parameters are chosen (Section 3.3). We then show
how to extract consumption profiles from our time series
model (Section 3.4) and we discuss several applications of
the proposed profiles (Section 3.5).

3.1 The PARX Model
The main idea behind our solution is to apply a time series

autoregression model, specifically Periodic Auto Regression
with eXogenous variables (PARX) [17]. Table 1 lists the sym-
bols used in the remainder of the paper; in our case, we have
24 “seasons”, each corresponding to a particular hour of the
day, as we will be building separate consumption models for
each hour.

In general, a PARX model of order p represents a time
series in terms of 1) its recent history (the most recent p
data points), 2) exogenous variables, and 3) a white noise
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Figure 2: Hourly consumption measured at noon in a sam-
ple home versus the external temperature. The dashed
line represents best linear fit for temperatures higher than
20! Celsius.

component. In our case, this can be written as

Yt =
p!

i =1

! i sYt " i +
n!

j =1

" j sX j
t + Cs + #t , t 2 s (1)

where Yt is the electricity consumption at a particular hour
at time t, n is the number of exogenous variables (i.e., the
X j ’s), #t is the value of the white noise component2 at time
t, Cs is an intercept term, and s is the “season” index. The
model parameters Cs , ! i s , " j s , and $2

s depend on the season.
Intuitively, Equation (1) states the following. Pick a “sea-

son”, i.e., some hour of the day, say, noon. The electricity
consumption at noon is a linear function of the consumption
at noon on the previous p days3, and of the n exogenous vari-
ables (such as temperature), plus a constant intercept term
and an error term. Since each hour of the day is a separate
season with its own model, the values of the coe�cients ! i

and " j may be di↵erent for di↵erent hours. That is, this
method is flexible enough to capture the possibility that at
some hours of the day (e.g,. night-time), temperature has
a stronger relationship with consumption, whereas at other
hours of the day (e.g., dinner-time), the load is more a↵ected
by the occupants’ activities.

3.2 Exogenous Variables
As mentioned in Section 2, we want to compute the typi-

cal hourly consumption of a household, after accounting for
temperature and “outliers” corresponding to periods of very
low or very high consumption. This is exactly the purpose
of exogenous variables. The e↵ects of other unknown fac-
tors on the overall consumption (i.e., other appliances, daily
routines and patterns) will be captured in the resulting con-
sumption profile via the auto-regressive part of the model.

2We assume that the white noise process is a sequence of in-
dependent and identically distributed random variables with
zero mean and finite variance $2

s .
3More precisely, it is a function of the previous p week-
days for the weekday profile and the previous p week-
ends/holidays for the weekend/holiday profile.
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Figure 3: Overview of the proposed consumption profile approach.

Yt

The original time series of house-
hold electricity consumption at
time t

Y #
t

The time series at time t obtained
after removing the e↵ects of exoge-
nous variables, representing tem-
perature and outliers

XT1, XT2, XT3
Temperature related exogenous
variables

XO1, XO2
Occupancy related exogenous vari-
ables

$s The standard deviation of season s

#t
The value of the white noise com-
ponent at time t

! i s The coe�cient of Yt " i in season s

" j s
The coe�cient of the jth exogenous
variable in season s

Cs The intercept term of season s

Table 1: List of symbols used in this paper

First, we deal with temperature. Recall Figure 2 and no-
tice that the e↵ect of temperature in the summer may be
very di↵erent to the e↵ect of temperature in the winter. In
southern Ontario, the regression line has a positive slope
at high temperatures, corresponding to the increasing in-
tensity of air conditioning usage as temperatures climb. On
the other hand, the winter e↵ects of temperature are less
pronounced, because the majority of homes, including our
sample home, mainly use natural gas for heating.

The above observation implies that we cannot use a sin-
gle exogenous variable to account for temperature. Instead,
following previous work on modelling the e↵ect of temper-
ature on electricity consumption (e.g., [5, 13]), we use three
variables: XT1, XT2, and XT3. They are defined in Equa-
tions (2),(3) and (4). The coe�cients of these variables rep-
resent the cooling (temperature above 20 degrees), heating
(temperature below 16 degrees), and overheating (tempera-
ture below 5 degrees) slopes, respectively.

XT1 =

"
T � 20 if T > 20
0 otherwise

(2)

XT2 =

"
16 � T if T < 16
0 otherwise

(3)

XT3 =

"
5 � T if T < 5
0 otherwise

(4)

Now, we show how to handle “outliers” corresponding to
unusually low or high consumption. The first step is as fol-
lows. For each season (i.e., hour of the day), logically we
produce a plot similar to that in Figure 2, which illustrates
the relationship between temperature and consumption at
that particular hour of the day across di↵erent days, using
all the historical data given as input. For each value of tem-
perature, we then compute the 10th and 90th percentiles of
the consumption values. Using these values, we then define
two new exogenous variables, XO1 and XO2, as follows.

• At any time t, XO1 is equal to one if the consumption
at t is higher than the 90th percentile of the consump-
tion at that hour of the day and that specific temper-
ature, as described above. It is zero otherwise.

• Similarly, XO2 is equal to one if the consumption at t
is less than the 10th percentile of the consumption at
that hour of day and that specific temperature. It is
zero otherwise.

We chose the 10th and 90th percentile values heuristically
to define XO1 and XO2, corresponding to very low con-
sumption (when the home may have been empty for a long
while) and very high consumption (when the household is
unusually busy). We refer to XO1 and XO2 as occupancy-
related variables.

Using all five exogenous variables, our PARX model be-
comes

Yt =
p!

i =1

! i sYt " i + "
1sXT1t + "

2sXT2t + "
3sXT3t

+ "
4sXO1t + "

5sXO2t + Cs + #t , for t 2 s (5)
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3.3 Parameter Estimation
The first parameter that we need to set is p, the number

of previous days to include in the auto-regressive part of
the model. For each of our 24 seasons (hours of day), we
tried di↵erent values of p between 1 and 48, and computed
the Bayesian Information Criterion (BIC) [25]. Based on our
data set of 1000 homes, p = 3 gave the best results (i.e., the
lowest BIC).

Once we have determined an optimal value of p, we use
the standard Ordinary Least Squares (OLS) method to de-
rive the coe�cients of the PARX model for each hour of
the day (repeating the process for weekdays only, and for
weekends/holidays).

3.4 Putting it All Together
Having presented the details of our PARX framework, we

are now ready to describe how the consumption profiles are
derived. First, we compute our PARX model for each hour
of day, separately for weekdays and weekends/holidays. We
then generate a new consumption time series by taking the
original values and removing the temperature-sensitive con-
sumption as well as the outliers. For each hour of day (and
separately for weekdays and weekends/holidays), we do this
simply by “reversing” the model and subtracting the e↵ects
of exogenous variables. Let Y #

t be the new consumption time
series after removing temperature- and occupancy-sensitive
components:

Y #
t = Yt � "

1sXT1t � "
2sXT2t � "

3sXT3t

� "
4sXO1t � "

5sXO2t for t 2 s (6)

That is, what remains in Y #
t is just the auto-regressive part

of the model.
Finally, we take the hourly averages of the corresponding

Y #
t ’s, separately for weekdays and weekends/holidays, which

completes the discussion of the process shown in Figure 3.
Thus, our profiles consist of two vectors of 24 values, where
the ith value is the typical consumption level of the given
home at the ith hour of the day, after removing the e↵ects
of exogenous variables.

Figures 4 and 5 illustrate the weekday and weekend pro-
files of our sample home. Note that the profiles are easy to
interpret and contain a great deal of useful information . For
example, it is easy to see that 1) the typical hourly consump-
tion is higher on weekdays than weekends, 2) peak weekday
load occurs at 19:00 with a small peak at 9:00, while peak
weekend load occurs at 17:00, and 3) the occupants of this
home appear to consume more electricity between 8:00 and
11:00 on weekends than weekdays.

3.5 Applications
We conclude this section with a brief description of how

the proposed consumption profiles can be used for two of
the motivating applications listed in Section 1.

Personalized recommendations for saving electricity
Normally, we expect the hourly consumption of a typical
household to decrease at night, when there is little to no
activity in the home. If the consumption profile suggests
that the nightly consumption of a given household remains
high, then we can recommend a new refrigerator or another
appliance that is always on. Note that this recommendation
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Figure 4: Weekday consumption profile of a sample home.
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Figure 5: Weekend/holiday consumption profile of a sample
home.

makes sense because we have removed temperature-sensitive
load before computing the profiles. Otherwise, we would not
know if the high nightly load is caused by heating and cool-
ing or by another appliance. Similarly, if the profile shows
high consumption during expensive on-peak hours regard-
less of temperature, then we can recommend shifting some
activities (such as laundry) to o↵-peak hours.

Furthermore, we can generate comparative feedback by
clustering similar consumers based on the hourly loads con-
tained in their profiles and/or the coe�cients of their ex-
ogenous variables. For instance, if a household belongs to a
cluster in which other households have similar hourly loads
but lower coe�cients of the temperature-related exogenous
variables, then we can hypothesize that this household has
an ine�cient air conditioning system.
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Generating realistic synthetic data as input to forecast-
ing models or to test the scalability of smart meter data
management systems
Here, the objective is to create realistic synthetic “house-
holds” based on the profiles computed from a real data set.
One way to do this is as follows. First, we use a clustering al-
gorithm such as k-means to group together similar profiles.
To generate a new consumption time series, we randomly
choose a cluster and use its centroid as the consumption
profile of the new household. We can then choose the ex-
ogenous variable coe�cients from a random member of this
cluster, generate a weather forecast time series, and use this
information to create the new consumption time series.

4. EXPERIMENTS
In this section, we evaluate the predictive power of our

consumption profiles and compare it to the predictive power
of representative profiling techniques from prior work—one
that focuses on hourly consumption aggregates, one that
uses temperature alone, and one that uses both tempera-
ture and hourly averages. We implemented the algorithms
in Matlab.

Our dataset is comprised of aggregate hourly electricity
consumption levels of 1000 homes from a city in south-
ern Ontario, Canada. Measurements were taken between
March 2011 and October 2012. We also obtained the ambient
air temperature data of that region from the Environment
Canada Website.

4.1 Methodology
We use two thirds of the consumption dataset of each

home as the training data set for building the model, and
the rest, including 170 days from April 2012 to October 2012,
as the testing data set for evaluating its predictive power.
For instance, to evaluate the predictive power of a model
on April 1, 2012, we use consumption measurements from
March 2011 to March 2012 as the training set. We extend
the training set by adding days from the test set which are
prior to the day for which we evaluate the predicative power.
For example, April 1, 2012 is added to the training set when
we evaluate predictive power for April 2, 2012.

We predict the consumption of each home using the fol-
lowing four profiling approaches, assuming that the hourly
temperature forecast is available one day in advance.

The first is our approach, labeled PARX. We predict the
hourly consumption on the test day, for a given hour h, as
follows. First, we look up the average hourly consumption
for that hour from the profile, call it Ph . We then add in the
contribution of exogenous variables for that hour using the
coe�cients of that hour’s model. This gives us an estimate
of the consumption for that hour, call it Ŷh :

Ŷh = Y #
h + "

1h XT1h + "
2h XT2h + "

3h XT3h

+ "
4h

!XO1h + "
5h

!XO2h (7)

Note that in order to use our consumption profiles for
predicting future consumption, we must use estimated val-
ues of the occupancy-related exogenous variables, denoted
"XO1 and "XO2, since we obviously do not know their true
values when making the prediction. Here, we simply use
the observed value of these variables in the previous hour

( !XO1h = XO1h " 1

and !XO2h = XO2h " 1

), although more
sophisticated methods could be used to estimate these vari-
ables and further improve the predictive power of our ap-
proach.

The second approach represents methods that compute
hourly aggregates from the consumption time series. In par-
ticular, we compute hourly averages over the training set
and use these for prediction. We call this approach Hourly
Mean.

The third approach represents methods that focus on the
correlation between consumption and temperature [5]. This
algorithm fits a three-piece linear regression model after re-
moving very-low and very-high consumption values and uses
the temperature of the test day to predict consumption. We
refer to this technique as 3-Line.

Finally, the fourth approach, proposed in [13], uses a time
series model similar to PARX and also takes temperature
into account (but does not account for outliers, which we
do). We call this algorithm Convergent Vector since it com-
putes typical hourly consumption by finding the convergent
vector of the input time series.

The real value of the hourly electricity consumption on the
test day is then compared with the predicted values to com-
pute the root-mean-square error (RMSE) of each approach
for each day.

4.2 Results
We compared the predictive power of the above four ap-

proaches using all 1000 homes in our dataset. Our findings
are as follows.

• PARX outperformed Hourly Mean for 982 homes, 3-
Line for 960 homes, and Convergent Vector model for
901 homes.

• The average RMSE was 0.70 for PARX, 0.81 for Hourly
Mean, 0.94 for 3-Line, and 0.77 for Convergent Vec-
tor. This means that our model’s RMSE was 14 per-
cent lower than that of Hourly Mean, 26 percent lower
than that of 3-Line, and 9 percent lower than that of
Convergent Vector.

Thus, although 3-Line and Convergent Vector obtained
a slightly lower prediction error for a few homes, on aver-
age their prediction error is considerably higher than that
of PARX. This confirms that, in most cases, incorporat-
ing historical hourly consumption, temperature dependence,
and occupancy dependence results in a more representative
model. Nevertheless, in some cases, temperature is highly
correlated with electricity consumption, and therefore incor-
porating occupancy does not improve prediction accuracy.
This is most likely because the bulk of the electricity con-
sumption of these homes serves heating and cooling needs,
and thus temperature alone is a very good predictor.

Figure 6 shows the average RMSE on the testing days
for 20 randomly selected homes along with the RMSE val-
ues averaged over all 1000 homes on the testing days. The
RMSE of PARX is lower than the RMSE of the other three
approaches for all but two of these homes.

5. RELATED WORK
A considerable body of previous work has developed

various consumption modelling techniques from household
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Figure 6: Average RMSE of the four approaches on 20 randomly selected homes measured on 170 testing days.

smart meter data, with applications ranging from cluster-
ing similar consumers, planning and forecasting, tari↵ de-
sign, electricity loss and theft detection, to providing per-
sonalized feedback on how to save electricity. Our technique
may be used in many of these applications in regions where
some fraction of the electricity consumption is correlated
with temperature.

From a technical standpoint, previous work has ap-
proached the consumption profiling problem from two di-
rections. One was to examine historical consumption val-
ues and compute various representative aggregates; see, e.g.,
[3,8–10,14,20,22]. The other direction has been to focus on
the relationship between electricity consumption and tem-
perature; see, e.g., [1, 5]. There are also techniques that
combine aggregated values with temperature correlations,
e.g., [13]. In this paper, our goal was to design a simple and
interpretable but also accurate profiling algorithm by com-
bining the best features of existing methods.

In particular, the two approaches most closely related to
ours are by Espinoza et al. [13] and Birt et al. [5]. Our ap-
proach combines the time series modelling approach of [13]
with the temperature model of [5], and additionally takes
outliers into account. As we experimentally showed in Sec-
tion 4, by combining and enhancing the best features of prior
models, our techniques resulted in a lower prediction error.

In general, energy data management is an emerging field
of study, with recent work on smart grid data management
and analytics [6, 15], using Hadoop to manage smart meter
data [11], imputing missing data in smart meter time series
[18], and symboling representation of smart meter time series
[26].

6. CONCLUSIONS AND OPEN PROB-
LEMS

In this paper, we described a simple and interpretable
technique for computing electricity consumption profiles
from residential smart meter data combined with temper-
ature data. Our solution relies on auto-regressive time se-
ries modelling with exogenous variables to take into account
various factors influencing electricity consumption, such as
temperature and the occupants’ daily habits. Experimental
evaluation using a real data set of smart meter readings from
1000 homes revealed the advantages of our method over pre-
vious work in terms of prediction accuracy.

One limitation of the proposed approach is that it is e↵ec-
tive only for regions where some fraction of household elec-
tricity consumption is correlated with temperature, such as
those with heavy air conditioning use during the summer.
If this is not the case, simpler profiling techniques may be
used, such as computing the average electricity consumption
in each hour of the day.

We are currently building a prototype smart meter data
management system, in which the proposed consumption
profiling method will play a central role. We highlight several
open problems in this area that we intend to study:

• Smart meter data quality: missing values are common,
and unusually low or high values may indicate failing
meters that need to be replaced.

• E�cient and scalable smart meter analytics: there is
very little work that focuses on exploiting modern data
analytics platforms, such as Hadoop, data stream en-
gines or time series databases, for smart meter data.
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• In addition to smart electricity meters, smart wa-
ter meters are being introduced in many juris-
dictions, including Toronto, Canada, as described
at torontowatermeterprogram.ca . This will enable
large-scale water data analytics and require smart me-
ter data management system to handle water data in
addition to electricity data.
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