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ABSTRACT
The increasing capacities of renewable energy sources and
the opportunities emerging from the smart grid technology
lead to new challenges for energy forecasters. Energy output
fluctuates stronger compared to conventional power produc-
tion. More time series data is available through the usage
of sensor technology. New supply forecasting approaches
are developed to better address those characteristics, but
meaningful benchmarks of such solutions are rare. Conduct-
ing detailed evaluations is time-intensive and unattractive
to customers as this is mostly handwork. We define and
discuss requirements for e�cient and reliable benchmarks
of renewable energy supply forecasting tools. To cope with
those requirements, we introduce the automated benchmark
framework ECAST as our proposed solution. The system’s
capability is demonstrated on a real-world scenario compar-
ing the performance of di↵erent prediction tools against a
naive method.

1. INTRODUCTION
As much as for any other industry, forecasting is tradi-

tionally an important issue for utility companies. In areas
like energy generation and distribution, load balancing or
pricing many decisions have to be made based on uncertain
data. This is the reason why beside the administration of
meter data and market communication processes, the pre-
diction of energy time series is seen as a core functionality
for Energy Data Management Systems. Nowadays, with the
technical challenges and opportunities emerging from the
world-wide increasing capacities of renewable energy sources
(RES) world-wide along with advancements like the smart
grid technology, e�cient and dedicated forecasting methods
are being developed. Such solutions are designed to better
address the typical RES characteristics like a decentralized
allocation and the mainly fluctuating output owed to the
changing nature of the underlying natural powers.
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To cope with those challenges, a lot of research has been
conducted by di↵erent communities during the past few years.
However, choosing the optimal solution for a specific fore-
casting problem remains a formidable and intensive task for
users. Despite of the large amount of available literature
and both academic and practical optimization ideas, there
is still a dominance of trial-and-error approaches. Results
of di↵erent publications can hardly be compared, as the un-
derlying experiments are conducted on dissimilar data sets.
Also, a constant form of result evaluation is missing because
di↵erent error metrics can be applied to measure output ac-
curacy. In fact, the probability for successfully replicated
results is low. Complex benchmarks tend to be time- and
cost-intensive and most of the assessment procedures re-
quire expert knowledge. Integrating state-of-the-art energy
supply forecasting systems into an automated benchmark
framework will dramatically reduce the manual evaluation
work. A suchlike composed software-supported benchmark
allows for the systematical assessment and optimization of
multiple tools including varying configuration settings, while
saving the time of human experts. Forecasting practices in
the energy sector can be improved by enabling the knowl-
edge transfer needed to bridge the gap between scientific
approaches and commercial solutions.

In this paper, we address the problem of systematic bench-
marking for energy supply forecasts and introduce the En-
ergy Forecasting Benchmark Framework (ECAST) as our
proposed solution. The remainder of the paper is organized
as follows: In Section 2 we describe the challenge of renew-
able energy supply forecasting. Then, we define and discuss
the requirements for a dedicated benchmark against that
background. In Section 3, we describe the architecture and
the functional core components of our framework as well as
the resulting data flows. We demonstrate the system’s func-
tionality by evaluating exemplary forecasting tools on a use
case in Section 4. Finally, we conclude and outline our pro-
posals for future developments in Section 5.

2. ENERGY FORECAST BENCHMARKS
Although the topic of benchmarking time series forecast-

ing approaches seems to be a mature area covered e.g. by the
M-x competition series developed by the International Insti-
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tute of Forecasters, the last activities date back more than
a decade and findings were obtained in a mostly domain-
neutral environment [10]. Considering the background pre-
viously described in Section 1, we believe that now there is
a need for benchmarks covering sophisticated energy supply
forecasting solutions. Such systems were designed consider-
ing the typical characteristics of fluctuating energy produc-
tion time series and the impact of external influences on the
forecasting results. In this section we give a brief summary
on work related to that topic and discuss the requirements
for our systematical benchmarking approach.

2.1 Related Work
In order to make energy supply planning rational, fore-

casts of RES production have to be made considering weather
conditions. Certainly the most influencing factors for energy
output determination are the quality of the global irradia-
tion forecast in the case of solar panels and wind speed and
-direction for wind mills, respectively. Consequently, the
use of precise weather forecast models is essential before re-
liable energy output models can be generated for such units,
thus leading to the typical two-step approach presented in
Figure 1. Weather forecast models can be derived using
techniques like Numerical Weather Prediction (NWP), Sky
Image Processing or statistical models [15]. However, this
step is considered as orthogonal to our work, as grid oper-
ators and energy producers can usually purchase such data
from reliable meteorological services.

Figure 1: RES forecasting approach

As for the second step, any output obtained from the
weather models is converted into electric energy output.
This is done by integrating historical observation data and/or
additional context information like the RES production unit’s
technical details or geographical location. According to the
underlying methodology, existing solutions for energy mod-
els can be classified into the categories of physical, statistical
and hybrid models.

Identifying the optimal energy forecasting approach or the
best-fitting software solution out of hundreds of published
papers related to renewable energy supply prediction is dif-
ficult. Fortunately, there are reviews and surveys available
like the work of Glassley et al. [5], who give an overview
on literature for solar power forecasting but focused on ir-
radiation prediction. A benchmark of such methods was
conducted by Lorenz et al. [9] but does not cover energy
models. In contrast, the work of Pedro and Coimbra [13]

assesses a couple of state-of-the-art solar energy forecasting
techniques while completely excluding all exogenous inputs
in their reviewed models. For wind power prediction, liter-
ature reviews are provided e.g. by Giebel et al. [4] or Mon-
teiro et al. [11]. Another interesting approach is the Global
Energy Forecasting Competition (GEFCom), having numer-
ous participating research teams evaluating their models on
a set of normalized wind power time series. The insights
published by Hong et al. [6] show that such a competitive
approach has di�culties with the simulation of real-world
situations where forecasts have to be provided on a daily
(or even shorter) basis. This means that newly arriving ob-
servation data is used and the forecast origin shifts with
every day, thus leading to multiple time-intensive forecast-
ing phases.

2.2 Benchmark Requirements
A well designed benchmark is beneficial to both system

optimizing developers and evaluating customers. In this
context, we observe the two vertical levels of application
depicted in Figure 2: Benchmarks are commonly used to
evaluate (A) a system’s overall technical performance while
executing predefined tasks on di↵erent use cases or (B) the
functional quality like e.g. the result accuracy of an algo-
rithm or software implementation of interest. This can be
done either (1) in a domain-neutral environment like in the
case of TPC-H database benchmarks [12] or time series fore-
casting competitions, or (2) for a product dedicated to a
specific industrial application like energy data management
systems or specialized energy forecasting tools.

Figure 2: Benchmark design methodologies

Forecasting tools are traditionally implemented in di↵er-
ent ways: As simple but robust spreadsheet add-ins, mod-
ules in statistical programs like R or SPSS or as dedicated
stand-alone business software. Previous research in this area
has shown that the latter category o↵ers the best score for
the implementation of the forecasting principles, as such
software generally includes e↵ective data preparation proce-
dures and integrates expert knowledge for method selection
support [14]. The weakness of those systems is that even
by using batch versions, task automation is generally low
which handicaps an e�cient execution of complex bench-
marks where multiple choices of conditions and parameter
settings have to be tested. A more recent trend is the in-
tegration of forecasting functionality directly into database
systems (e.g. [3]). This is a promising approach when con-
sidering energy supply forecasting as a massive and data
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intensive process, thus requiring a higher level of automa-
tion to cope with the challenges raised from decentralized
production and smart meter technology. Since this converts
the forecasting tool itself into a black box thus complicating
its proper adjustment and also creates dependencies on the
underlying database system, we focus our work on stand-
alone forecasting software.

Following the principles of time series forecasting devel-
oped by Armstrong [1], we can derive the relevant require-
ments for our purpose:

Conditions. First, the overall conditions for the experi-
ment must be described. This includes e.g. the definition
of the applied forecast horizon (static or continuous), the
periods for the used original time series and the validation
method to be applied on results. Possible sources of bias
should be eliminated or at least described in detail if not
avoidable at all.

Data. Usually the benchmark’s underlying scenario pro-
vides the foundations for its requirements and is therefore
one of the major influences for the credibility and under-
standability of the obtained results. To simulate a coher-
ent business context for the target sector, the included us-
age models must have enough characteristics of meaning-
ful real-world situations although it is clear and perfectly
understandable that no benchmark can cover all existing
use cases [16]. Applied to the energy producing sector, this
means that a benchmark should include a wide range of ob-
served energy supply time series obtained from installations
allocated across di↵erent geographical regions, including all
relevant and measurable external influences. Having such a
use case repository allows for the easy extension of experi-
ments to assess their generalization potential. Further, the
experimental setup should match the formulated forecast-
ing problem. This means that the underlying source data
must be selected carefully considering the possible impacts
on results by using real-world or synthetic or analogous data.
Researchers often depend on the latter of those, as their ac-
cess to real-world use cases is limited. If so, trying to find
or create similar situations out of the available use cases
might o↵er suitable alternatives. In any case access to the
test data should be provided for the public (e.g. raw data
for the M-competitions is always downloadable1). However,
this can be problematic with real-world data sets like in the
case of private energy demand and supply, because the own-
ers will consider their data as confidential. Transformation
techniques like normalization help to make the origin unrec-
ognizable.

Transparency. Also, the implementation details of the
evaluated methods should be disclosed in order to make sure
that users understand them. This is naturally di�cult when
assessing commercial solutions due to the need of knowledge
protection. However, identifying optimization potential for
the conceptual or physical implementation layer of the sys-
tem under test will be more likely if replication tests are
possible. The same applies to guaranteeing both the relia-
bility and the validity of data.

1http://forecasters.org/resources/time-series-data/

Result Evaluation. When it comes to forecast accuracy
evaluation, multiple error measures should be used to com-
pare the obtained results as the choice of an accuracy metric
can a↵ect the ranking of the forecasting methods. The dis-
cussions frequently observable in literature show that there
is no all-dominating standard accuracy evaluation criteria
for time series forecasts (e.g. compare Hyndman and Koehler
[7] or Chen and Yang [2]). Despite of all proposed improve-
ments, we think that the chosen metric should be simple,
easy to explain and tailored to the decision to be derived
from the results. For example, the di↵erence between over-
and underestimating a wind park’s expected energy output
can lead to di↵erent financial penalties for its owner depend-
ing on the contractual situation.

Limitations. The desired benchmark is first and foremost
defined as an accuracy benchmark, but anyhow under cer-
tain consideration of the calculation time which is used as
a simple performance measure of the tools under test. It
is definitely not meant to test the usability of the revised
solutions (except parameter configuration), their result pre-
sentation quality nor every possible feature or function. We
do not focus on a competitive character but want to o↵er sys-
tematic decision support when comparing existing systems.
Other common aspects of measuring like update frequency,
continuous data integration, or system reliability are con-
sidered as not being relevant for this purpose. This is why
conducting an explicit cost-benefit analysis is not reasonable
and excluded from our study.

3. SYSTEM ARCHITECTURE
In this section we describe the general architecture of our

implementation. The ECAST conceptual framework is com-
posed of four principal components as displayed in Figure 3:

1. A Database Management System (DBMS) as central
data storage unit,

2. the Core Logic Component (CLC) representing a con-
tainer used to encapsulate all necessary functions for
system configuration, time series management, task
creation and output evaluation,

3. the Prediction-Interface (PAPI) as connector to the
forecasting systems represented by the internal and ex-
ternal predictors and finally

4. the Graphical User Interface (GUI) for necessary con-
figurations, interactions and result presentation.

Database Management System.
The Database Management System (DBMS) represents

the frameworks’ central data storage unit. Its relational
data structure o↵ers tables for the purpose of storing (1) the
reference parameters used for system and experiment con-
figuration, (2) all originally observed energy- and influence
time series data files which are needed for the experiments,
(3) the generated forecasting tasks and (4) the obtained fore-
cast output from the predictors. Besides the predicted time
series data, the latter also includes the calculated error val-
ues and the total computation time for each experiment.
For the DBMS, this results in frequent interactions in form
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Figure 3: ECAST system architecture overview

of reading and writing operations carried out by the CLC
modules Time Series Manager, Task Creator and Output
Evaluator. Once source time series are stored in the DBMS,
they form part of the use case repository thus easily extend-
ing the available scenarios. Data files belonging together
are grouped in bundles. Additional context information like
geographical location, energy type or technical installation
details can be added in the use case description. That facil-
itates the re-identification of the stored use cases at a future
date, for instance for replication tests or parameter adjust-
ments.

Core Logic Component.
As the name suggests, the Core Logic Component (CLC)

is the heart of the framework. It contains the functionality
needed to configure the system accordingly, handle input
and output data for the experiments and forecasting task
automation procedures. This is realized in separate mod-
ules (compare Figure 3), some of those will be described
more in detail hereinafter.

Time Series Manager. This is responsible unit for time se-
ries data preparation and transformation. Frequently, fore-
casters face the problem that their source time series are too
short, too noisy or having too many missing values. Over-
looking the quality of source data can lead to large forecast-
ing errors. However, we decided to reduce this functional-
ity to input format conversion and source data validation
only for the following reasons: (1) Data cleansing proce-
dures are usually provided by Energy- or Meter Data Man-
agement Systems as this is considered being one of their
core functions and (2) o↵ering data quality improvements
in the framework would bias the stand-alone performance of
the forecasting tools under test, due to the fact that many
of them include more or less complex data pre-processing
steps as well. In order to guarantee the framework’s inter-
operability, all imported time series are converted into an

internal character format treating them as equidistant data
structures of identical granularity throughout each scenario.
This allows for an e�cient storing in the use case repository
and data transport to the external predictors and back, but
creates a slight drawback for the human forecaster who will
have to prepare the input data accordingly.

Task Creator. All forecast queries belonging to an exper-
iment lead to forecast tasks. This means that the chosen
settings and parameters are persisted and stored until their
final execution or rather until their handover to the predic-
tors. Depending on the experimental setup, a single forecast
query can lead to multiple tasks. For example, an experi-
ment including 2 external and the default naive predictor
will lead to 3 tasks which then are sequentially executed on
the same source time series. In case of predefined loops us-
ing a variable data history length for model creation or con-
tinuous forecasting horizons the number of generated tasks
increases accordingly. Currently, task scheduling function-
ality is spared so tasks are executed immediately once the
creation is completed.

Output Evaluator. It computes the statistical error met-
rics that can be applied on the output data in order to evalu-
ate the forecast accuracy. Regarding the energy domain, the
Root Mean Square Error (RMSE) is a recommended mea-
sure and main evaluation criterion especially for intra-day
forecasts, as is addresses the likelihood of extreme values
better [8]. The RMSE is found by

RMSE =

rPn
t=1

(Pt � P 0

t )2

n
(1)

where Pt is the observed value, P 0

t is the predicted value and
n is the number of tuples to be compared. As the RMSE
returns absolute values, we add a normalized version to al-
low for the comparison of the models’ performance across
di↵erent scenarios thus eliminating the variance of results
when including power output curves of di↵erent aggregation
scales. The Normalized Root Mean Square Error (nRMSE)
is achieved by

nRMSE =
RMSE
Pmax

⇤ 100 (2)

with Pmax being the maximum power output observed (only
applicable if Pmax > 0). In the case of forecasts with day-
ahead horizons or above, the mean absolute or percentage
di↵erence between observed and predicted power output can
be the more appropriate evaluation criterion for users. The
Mean Absolute Error (MAE) computes as

MAE =
1
n

Xn

t=1

��Pt � P 0

t

�� (3)

while the percentage di↵erence is expressed by the Mean
Absolute Percentage Error (MAPE) defined as

MAPE =
1
n

Xn

t=1

����
Pt � P 0

t

Pt

���� (4)

which also implies that all tuple having Pt = 0 are excluded
from error calculation. As energy supply time series contain
only positive values the MAPE is biased because it will favor
low forecasts. Adjusted versions of MAPE are known like
the Symmetric Mean Absolute Percentage Error (sMAPE)
being one of them. Having a lower and an upper bound,
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the sMAPE can provide error values between 0% and 100%
which are much easier to interpret. Therefore the formula is
implemented as follows

sMAPE =
1
n

Xn

t=1

|Pt � P 0

t |

Pt + P 0

t

(5)

Another aspect of evaluation is the data range on which
the error measure is applied. Commonly, all forecast values
are included which leads to one returning error value based
on the whole predicted time series. In addition, especially
when considering the diurnal character of RES time series,
also fractions of the obtained data might be interesting, for
example to analyze the variance of model output accuracy
on certain days. Therefore, in addition to the total error
value, errors can be computed for arbitrary periods of the
forecasted time series thus for example returning error time
series of hourly, daily or weekly granularity.

Prediction API.
The Prediction Interface realizes the connection to each

prediction tool in terms of configuration, calling the calcu-
lation method as well as the output retrieval. Several pa-
rameters are taken from the DBMS and are o↵ered to the
predictors as displayed in Figure 4: (1) The energy time se-
ries, containing the historical observation values Pt for the
training and forecasting periods, (2) the influencing time se-
ries, containing the corresponding external influences to be
included in the model, (3) the starting and the ending date
of the training period, (4) the prediction period, indicating
the start and end date of the wanted forecast and finally (5)
the tool configuration, represented by a set of parameters
which are passed to the respective prediction tool. With
the help of those input parameters, the framework is able
to externally set the configuration of the prediction tools
and execute the calculations. Afterwards, the API returns
the forecasted values P 0

t and the total calculation time con-
sumed by the predictor to calculate the forecast model and
the forecast itself.

Figure 4: Prediction API methods

Due to the fact that sometimes even simple extrapolation
methods may be reasonable, we include an internal Naive
Predictor that assumes that things will not change between
one day and another in a form like:

P 0

t = Pt�k (6)

with k being the number of values per day, i.e. k = 96 having
a granularity of 15min. Such persistence-based methods are
easy to implement and commonly used to compare with the
performance of more sophisticated forecasting techniques,
that are represented by the external predictors connected to

ECAST. Using complex forecasting tools is worthwhile only
if they are able to clearly outperform such trivial models.

Graphical User Interface.
The user interface is designed to facilitate the experimen-

tal setup by including sophisticated functionality and trig-
gering the internal data flows (compare Figure 5). One core
function is the upload of data files into the use case reposi-
tory. The external data arrives in a specified comma sepa-
rated value (CSV) file, this being the lowest common form
of time series data exchange and frequently seen in the en-
ergy market. Alternatively, previously stored raw time series
can be selected from the use case repository. Further, the
selection of tools and parameters to be assessed and the con-
ditions needed for the generation of forecasting queries can
be configured. This includes e.g. the history length of train-
ing data, forecasting horizons and loop frequencies. The
setting is transformed into a XML file and later on passed
to the task creator. In the post-experimental phase, the in-
terface o↵ers prototypical functions for output presentation
like output time series plotting and error display.

Figure 5: Logical data flow in the ECAST system

4. DEMONSTRATION
In order to demonstrate the functionality of the bench-

mark framework we conducted experiments evaluating the
performance of the integrated prediction tools on two sce-
narios taken from the use case repository. In the following
we describe the setup of the experiments and discuss the
observed results.

4.1 Experimental Setup
The forecast quality of the external prediction tools pre-

sented in Table 1 will be compared: (1) an academic imple-
mentation originally developed for the MIRABEL project,
(2) the commercial product ePredict and (3) OpenForecast,
a domain-neutral open-source forecasting library. All of the
chosen tools use stochastic models based on multiple regres-
sion analysis. To the best of our knowledge, none of them in-
clude relevant data pre-processing steps. Output data post-
processing is reduced to the correction of negative values or
completely missing as in the case of OpenForecast.

As for data, we decided to evaluate all tools on a solar- and
a wind-power prediction use case. The solar power scenario
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Model Applied Algo-
rithm

Data Prepa-
ration

Data Post-
Processing

Source

Naive Predictor Diurnal persistence
(compare equ. 6)

No No -

Mirabel Principal component
analysis + Multiple
linear regression

No Negative
value correc-
tion

http://www.mirabel-project.eu/

ePredict Multiple non-linear
regression (MARS)

No Negative
value correc-
tion, ARIMA

http://www.robotron.de/

OpenForecast Multiple linear re-
gression

No No http://www.stevengould.org/
software/openforecast/

Table 1: Benchmarked forecasting tools

consists of an observed energy output time series taken from
a single PV-installation located in central Germany. Data is
available for the year 2012 having a resolution of 15 minutes.
Corresponding influences are provided by a nearby weather
station in form of hourly measurements of irradiation, out-
side temperature and wind speed. The usage of observed
instead of forecasted influence values eliminates the pre-
diction error naturally included in the underlying weather
model thus allowing for an evaluation of the energy model
performance itself. While we use the first eleven months
for training, the month of December serves as prediction pe-
riod. For the second scenario, a normalized wind power time
series from the GEFCom 2012 wind track2 was used. The
installation’s location remains unknown. Historical data is
available from July 2009 to December 2010 including the cor-
responding forecasts for wind speed and -direction, all with
hourly resolution. Concurrent to the solar use case, we take
all observation data except the last month for training. The
forecast queries are configured with a continuous 24h-ahead
horizon using a moving origin for the model. Accordingly,
31 forecasting tasks are generated for each predictor and sce-
nario, therefore a total of 248 tasks has to be executed.

4.2 Benchmark results
Comparing the results for solar power prediction presented

in Table 2, we can point out that all prediction tools out-
perform the naive benchmark in terms of RMSE, nRMSE,
MAE, and MAPE. As for the sMAPE, the values for Open-
Forecast (0.75) and ePredict (0.70) are relatively high con-
sidering the relative position on a scale from 0 to 1. This
can be explained by the impact of tuples having forecasted
values P 0

t close to 0 and observation values Pt = 0 on the
total error value. Forecasting tools optimized for solar en-
ergy can include the possibility of cutting all forecast values
before dawn and after sunset (derived from geographical lo-
cation) to solve such issues if properly configured. Not taken
into account all tuples with Pt = 0 for error calculation, the
sMAPE values can be reduced to 0.32 and 0.34, respectively.

In Figure 6 the daily sMAPE values are displayed for
the whole forecasting period. While the naive model has
a strong fluctuation between one day and another, the ex-
ternal predictors show a more stable performance. More-
over, on December 12th no energy output was observed (e.g.

2http://www.kaggle.com/c/GEF2012-wind-
forecasting/data

due to snow coverage or technical failures) which explains
the high error obtained from all prediction tools on that
day. Figure 7 compares the measured energy output and
the predicted output calculated by all predictors for Decem-
ber, 8th, as according to the daily error analysis good val-
ues were obtained for this period. We notice that Mirabel
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Figure 6: Daily sMAPE values for solar power pre-
diction

and OpenForecast perform almost identical for that period,
while ePredict seems to have slight advantages when cap-
turing small peak values. It is a common drawback of using
regression-based prediction models not to be able to reach
peak values, as the estimations for model parameters are
done by using average regression coe�cients. The naive per-
sistence method does not have that problem because data
is simply copied from the previous period and accidentally
energy output is very similar on both days. Also, the peak
value was reached later thus leading to a shifted plot. In
suchlike conditioned periods, diurnal persistence can be con-
sidered as a useful prediction method. However, it does not
reach the average accuracy of the sophisticated tools using
weather-aware forecasting models.

Similar results can be observed on the wind power sce-
nario. In contrast to the solar use case, the underlying
power time series has been normalized thus limiting the
cross-scenario result comparison to the percental accuracy
measures. Regarding the MAPE, all models show lower re-
sults than for solar power prediction. Possible explanations
are higher fluctuation of wind power as there are no diurnal
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Model RMSE nRMSE MAE MAPE sMAPE Time
Naive 5.43 11.41 1.93 1.89 0.51 <1 ms
Mirabel 3.89 8.18 1.36 1.10 0.43 851 ms
ePredict 3.68 7.73 1.46 1.65 0.70 999 s
OpenForecast 3.76 7.90 1.50 1.33 0.75 2389 ms

Table 2: Average forecast accuracy for 24h-ahead solar power prediction

Model RMSE nRMSE MAE MAPE sMAPE Time
Naive 0.27 31.48 0.20 2.91 0.53 <1 ms
Mirabel 0.21 24.44 0.14 1.85 0.41 511 ms
ePredict 0.19 22.82 0.16 3.18 0.44 60.8 s
OpenForecast 0.20 24.13 0.17 3.48 0.46 379 ms

Table 3: Average forecast accuracy for 24h-ahead wind power prediction

cycles and the use of weather forecasts instead of observa-
tions for model parameter estimation and forecast calcula-
tion. Those superior computation times result mainly from
the smaller number of included data points, as all time se-
ries have a lower resolution and instead of 3 only 2 weather
influences were used in the regression models.
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Figure 7: Model performance comparison for solar
power prediction

5. CONCLUSIONS AND FUTURE WORK
Typical requirements for benchmarking energy forecast-

ing tools are the definition of the overall conditions, the se-
lection of appropriate test data and evaluation criteria and
finally providing transparency. These principles were con-
sidered in the ECAST framework design: Evaluations can
be conducted by configuring the desired conditions on own
scenarios or given ones from the use case repository. Ex-
perimental results and initial parameter configurations are
persisted in the DMBS to ease future replication attempts.
Technical details of the tools under test are described as far
as possible. The demonstrated use cases show that both
revised energy forecasting tools really o↵er added value as
they perform better than naive or domain-neutral methods,

although the selection of appropriate evaluation criteria in-
fluences their ranking. Basic functionality of result presenta-
tion is o↵ered because visual inspection of plotted raw data
is common and hard to replace as it helps to reveal unusual
data points. Further, the e�ciency of such assessments is
increased by using a graphical interface for creating forecast
query definitions and by substituting manual steps with au-
tomated task creation and execution.

Regarding our future work, we identified the main direc-
tions to follow: First, the Prediction API needs to be ex-
panded as it is currently limited to statistical approaches,
but physical models have to be included. They are popular
especially amongst planners and investors because instead
of depending on historical observation data, the production
units’ technical properties are used to estimate the future en-
ergy output and once they are fitted, they are accurate. We
are also planning to increase the number of available exter-
nal predictors, for instance, by adding for instance solutions
provided by the machine learning community - variety is the
key for making benchmarks more representative. Second,
ECAST can be converted into decision support technology.
By systematically evaluating all reasonable parametrization
options, the forecasting tools will be self-adjusted to a pre-
defined accuracy threshold. Also, combining forecasts o↵ers
additional optimization options whenever there is no solu-
tion to be found that individually outperforms in all given
use cases. Using appropriate combination criteria allows for
the creation of flexible hybrid models across di↵erent fore-
casting tools.
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