
Graph-driven Exploration of Relational Databases for
Efficient Keyword Search

Roberto De Virgilio
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

dvr@dia.uniroma3.it

Antonio Maccioni
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

maccioni@dia.uniroma3.it

Riccardo Torlone
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

torlone@dia.uniroma3.it

ABSTRACT
Keyword-based search is becoming the standard way to ac-
cess any kind of information and it is considered today an im-
portant add-on of relational database management systems.
The approaches to keyword search over relational data usu-
ally rely on a two-step strategy in which, first, tree-shaped
answers are built by connecting tuples matching the given
keywords and, then, potential answers are ranked accord-
ing to some relevance criteria. In this paper, we illustrate a
novel technique to this problem that aims, rather, at gener-
ating directly the best answers. This is done by representing
relational data as graph and by combining progressively the
shortest join paths that involve the tuples relevant to the
query. We show that, in this way, answers are retrieved in
order of relevance and can be then returned as soon as they
are built. The approach does not require the materializa-
tion of ad-hoc data structures and avoids the execution of
unnecessary queries. A comprehensive evaluation demon-
strates that our solution strongly reduces the complexity of
the process and guarantees, at the same time, an high level
of accuracy.

1. INTRODUCTION
Today, everyone can access an incredibly large quantity

of information and this requires to rethink the traditional
methods and techniques for querying and retrieving data,
because the vast majority of users has little or no familiar-
ity with computer technology. This need has originated a
large set of proposals of non-conventional methods for ac-
cessing structured and semi-structured data. Among them,
several studies have focused on the adoption of a keyword-
based strategy for retrieving information stored in relational
databases, with the goal of freeing the users from the knowl-
edge of query languages and/or the organization of data [12,
13, 15].

Example 1. Let us consider the relational database in
Figure 1 in which employees with di↵erent skills and respon-
sibilities work in projects of an organization. A keyword-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

R

1

:Employee

ename department

t

1

Zuckerberg CS

t

2

Brown CS

t

3

Lee CS

t

4

Ferrucci IE

R

2

: WorksIn

employee project

t

5

Zuckerberg x123

t

6

Brown cs34

t

7

Lee cs34

t

8

Ferrucci m111

R

3

: Project

id pname leader

t

9

x123 Facebook Zuckerberg

t

10

cs34 Watson Ferrucci

t

11

ee67 LOD Lee

t

12

m111 DeepQA Ferrucci

R

4

: SkilledIn

person skill

t

13

Brown Algorithms

t

14

Lee Java

R

5

: Skill

sname type

t

15

Algorithms theoretical

t

16

Java technical

Figure 1: An example of relational database:
schema and its data

based query over this database searching for experts of Java
in the CS department could simply be: Q

1

= {Java,CS}. A
possible answer to Q

1

is the set of joining tuples {t
3

, t
14

, t
16

},
which involve the given keywords.

Usually, keyword-based search systems over relational
data involve the following key steps: (i) generation of tree-
shaped answers (commonly called joining tuple trees or
JTT) built by joining the tuples whose values match the
input keywords, (ii) ranking of the answers according to
some relevance criteria, and (iii) only the top-k answers are
selected and returned to the users. The core problem of
this approach is the construction of the JTT’s. In this re-
spect, the various approaches proposed in the literature can
be classified in two di↵erent categories: schema-based [2,
16, 17, 19] and schema-free [13, 14, 6]. Schema-based ap-
proaches usually implement a middleware layer in which:
first, the portion of the database that is relevant for the
query is identified, and then, using the database schema and
the constraints, a (possibly large) number of SQL statements
is generated to retrieve the tuples matching the keywords of
the query. Conversely, schema-free approaches first build
an in-memory, graph-based, representation of the database,
and then exploit graph-based algorithms and graph explo-
ration techniques to select the subgraphs that connect nodes
matching the keywords of the query.

In this paper, we present a novel technique to keyword-
based search over relational databases that, taking inspira-

208

Employee(

department(ename(

WorksIn(

employee(project(

Project(

leader(pname(

id(
SkilledIn(

person(skill(

Skill(

sname(

type(

Figure 2: An example of schema graph SG

tion from both the schema-based and the schema-free ap-
proaches, aims at generating progressively the most rele-
vant answers, avoiding the selection of bunches of potential
answers followed by their ranking, as it happens in other
approaches. A relevant feature of our approach is that, as
suggested in [18], it exploits only the capabilities of the un-
derlying RDBMS and does not require the construction and
maintenance of ad-hoc, in-memory data structures. More-
over, by avoiding redundant accesses to data, we are able
to keep the computational complexity of the overall pro-
cess linear in the size of the database. In a graph-oriented
vision of the database, the basic idea is to search and com-
bine incrementally the shortest paths of joining tuples that
are relevant to the query. This is done by first identifying
all the paths in the relational schema involving attributes
linked by primary and foreign keys. Then, without build-
ing in-memory graph-shaped structures, such paths are en-
riched with data by traversing them backward. This step
only requires simple selection and projection operations. If
the backward navigation is not able to generate an answer,
the paths are navigated forward using all the information
retrieved in the backward phase, without further accessing
the database. We show that, in this way, answers are re-
trieved in order of relevance. This eliminates the need to
compare answers and allows us to return the results to the
user as soon as they are built.

To validate our approach, we have developed a tool for
keyword-based search over relational databases that imple-
ments the technique described in this paper. This tool has
been used to perform several experiments over an available
benchmark [4] that have shown a marked improvement over
other approaches in terms of both e↵ectiveness and e�-
ciency.

The rest of the paper is organized as follows. Section 2 in-
troduces a graph-based data model that we use throughout
the paper. In Section 3, we describes in detail our incre-
mental method for building top-k answers to keyword-based
queries. The experimental results are reported in Section 4
and, in Section 5, we discuss related works. Finally, in Sec-
tion 6, we sketch conclusions and future work.

2. PRELIMINARIES

2.1 A graph data model over relational data
In our approach, we model a relational database d in

terms of a pair of graphs hSG, DGi representing the schema
and the instance of d, respectively. We point out however
that only SG will be materialized while DG is just a concep-
tual notion.

Definition 1 (Schema Graph). Given a relational

Employee

department ename

t1 Zuckerberg CS t1

t2 Brown CS t2

t3 Lee CS t3

t4 Ferrucci IE t4

WorksIn(

employee(project(

t5! Zuckerberg! x123! t5!
t6! Brown! cs34! t6!
t7! Lee! cs34! t7!

t8! Ferrucci! m111! t8!

Project

leader pname id

t9 x123 Facebook t9

t10 cs34 Watson t10

t11 ee67 LOD t11

t12 m111 DeepQA t12

t9 Zuckerberg

t10 Ferrucci

t11 Lee

t12 Ferrucci

SkilledIn(

person(skill(

t13! Brown! Algorithms! t13!
t14! Lee! Java! t14!

Skill(

sname(type(

t15! t15!
t16! t16!

theoretical!

technical!

Algorithms!

Java!

Figure 3: An example of data graph DG

schema RS = hR, Ai, where R is a set of relation schemas
and A is the union of all attributes of R, a schema graph
SG for RS is a directed graph hV, Ei where V = R[A and
there is an edge (v

1

, v
2

) 2 E if one of the following holds:
(i) v

1

2 R and v
2

is an attribute of v
1

, (ii) v
1

2 A belongs
to a key of a relation R 2 R and v

2

is an attribute of R,
(iii) v

1

2 A, v
2

2 A and there is a foreign key between v
1

and v
2

.

For instance, the schema graph for the relational database
in Figure 1 is reported in Figure 2. In a schema graph the
sources represent the tables of a relational database schema
(grey nodes) and the paths represent the relationships be-
tween attributes according to primary and foreign keys. The
double-marked nodes denote the keys of a relation.

Definition 2 (Schema Path). A schema path in a
schema graph SG = {V, E} is a sequence v

1

! v

2

! . . . ! vf

where (vi, vi+1

) 2 E and v
1

is a relation node.

An example of schema path for the schema graph in Fig-
ure 2 is SkilledIn! skill! sname.

Let us now fix an injective function denoted by idx that
maps each tuple to a tuple-id (tid for short).

Definition 3 (Data Graph). Given a relational
database instance I = hR, A, I, Di, where I is the set of
all tids and D is the set of all data values occurring in the
database, a data graph DG on I is a directed graph hV, Ei
where V = R[A[I [D and there is an edge (v

1

, v
2

) 2 E if
one of the following holds: (i) v

1

2 R and v
2

is an attribute
of v

1

, (ii) v
1

2 A belongs to a key of a relation R and v
2

is the tid of a tuple for R, (iii) v
1

is a tid in I and v
2

is a
value of a tuple t such that v

1

= idx(t).

Figure 3 shows the data graph on the database of Figure 1.
Note that we assume, for the sake of simplicity, that each
relation has an explicit attribute for its tids.

We now introduce the notion of data path. Intuitively,
while a schema path represents a route to navigate relational
data for query answering, a data path represents an actual
navigation through data to retrieve the answer of a query.

209

[cl

Java

] :

0

BBB@

dp

1

: SkilledIn ! SkilledIn.skill ! t
14

! Java

dp

2

: Skill ! Skill.sname. ! t
16

! Java

dp

3

: SkilledIn ! SkilledIn.person ! x

1

! SkilledIn.skill ! t
14

! Java

dp

4

: SkilledIn ! SkilledIn.skill ! x

2

! Skill.sname ! t
16

! Java

dp

5

: SkilledIn ! SkilledIn.person ! x

3

! SkilledIn.skill ! x

4

! Skill.sname ! t
16

! Java

1

CCCA

[cl

CS

] :

0

BBBBB@

dp

6

: Employee ! Employee.department ! t
1

! CS

dp

7

: Employee ! Employee.department ! t
2

! CS

dp

8

: Employee ! Employee.department ! t
3

! CS

. . .

dp

9

: SkilledIn ! SkilledIn.person ! x

5

! Employee.ename ! x

6

! Employee.department ! t
3

! CS

. . .

1

CCCCCA

Figure 4: Clusters of data paths for Q
1

= {Java, CS}

Definition 4 (Data Path). Given a schema path sp
= R ! A

1

! A

2

! . . . ! Ak the data path dp following sp is
the path R ! A

1

! ⌧

1

! . . . Ak ! ⌧k ! v, where: (i) each ⌧i

denotes either a variable denoting a tid or the tid of a tuple
belonging to the relation involving Ai and (ii) v is a value
belonging to the tuple with tid ⌧k.

Let us consider again the example in Figure 3. The data
path that follows the schema path sp = SkilledIn ! skill !
sname is the following:

dp
1

: SkilledIn! skill! x
1

! sname! t
15

! Algorithms

Basically, this path describes the fact that the sname of
the tuple with tid t

15

is related to the skill of a tuple x
1

in
relation SkilledIn.

An instance of a data path dp is a function � that as-
sociates a tid with each variable occurring in dp. As an
example, an instance of the data path dp

1

above associates
t
13

with x
1

.

2.2 Answers to a keyword-based query
We consider the traditional Information Retrieval ap-

proach to value matching adopted in full text search and
we denote the matching relationship between values with ⇡.
We have used standard libraries for its implementation and
since this aspect is not central in our approach, it will not
be discussed further. Given a tuple t and a value v, we then
say that t matches v, also denoted for simplicity by t ⇡ v, if
there is a value v0 in t such that v ⇡ v0.

Definition 5 (Answer). An answer to a keyword-
based query Q is a set of tuples S such that: (i) for each
keyword q of Q there exists a tuple t in S that matches q
and (ii) the tids of the tuples in S occur in a set of data
path instances having at least one tid in common.

An example of answer, with reference to the query Q
1

=
{Java, CS}, is the set of tids {t

3

, t
14

, t
16

} that are contained
in the instances of the set {dp

5

, dp
9

} of data path in Figure 4.
Note that we assume the AND semantics for the keywords

in Q. Note also that our notion of answer basically corre-
sponds to the notion of joining tuple tree (JTT) [11].

As usual, an answer S
1

is considered more relevant than
another answer S

2

if S
1

is “more compact” than S
2

since,
in this case, the keywords of the query are closer between
each other [5]. This is captured by a scoring function that
simply returns cardinality of S.

Brown
person

Lee
Algorithms
skill

Java

SkilledIn

theoretical
type

technical
Algorithms
sname

Java

Skill

!skill="Java"(SkilledIn)

t13
t14

t15
t16

skill sname JavaSkilledIn person ?x3 ?x4 t16

dp5

P = { (t16 , 1) }

Figure 5: Backward exploration at work for dp
5

(se-
lection)

Problem Statement. Given a relational database d and
a keyword search query Q = {q

1

, q
2

, . . . , q
|Q|

}, where each
qi is a keyword, we aim at finding the top-k ranked answers
S

1

, S
2

, . . . , Sk.

3. PATH-ORIENTED SEARCH
Given a keyword-based query Q, our technique consists of

two main phases, clustering and building. They guarantee
a monotonic construction of the answers (i.e. the answer
generated in the i-th step is always more relevant than that
of the i + 1-th step) and a linear time complexity with re-
spect to the size of the input. This makes possible to return
answers as soon as they are computed.

3.1 Clustering
In the first phase all the data paths having an ending node

that matches one of the keywords in Q are generated and
grouped in clusters. There is one cluster for each keyword
qi 2 Q. In particular, we start from each data path R !
A ! tid ! v such that qi ⇡ v. Then we generate the data
paths following the route of each schema path sp ending into
the attribute A. The clusters are kept ordered according to
the length of the data paths, with the shortest paths coming
first. As an example, given the query Q

1

= {Java, CS} and
the relational database in Figure 1, we obtain the clusters
shown in Figure 4.

3.2 Building
The second phase aims at generating the most relevant

answers by combining the data paths generated in the first
step. This is done iteratively by picking, in each step, the
shortest data paths from each cluster: if there is an instance
of these data paths having a tuple in common, we have found

210

Brown
person

Lee
Algorithms
skill

Java

SkilledIn

theoretical
type

technical
Algorithms
sname

Java

Skill

t13
t14

t15
t16

skill sname JavaSkilledIn person t16t14t14

dp5

P = { (t14 , 1)
 (t16 , 1) }

Figure 6: Backward exploration at work for dp
5

(pro-
jection)

Algorithms
skill

Java

SkilledIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

ename depart
ment CSt3

t13
t14

IEFerrucci
Lee

Brown
person

Lee

CS

t1
t2
t3
t4

SkilledIn person ?x5 t3

P = { (t3 , 1)
 (t14 , 1)

 (t16 , 1) }

πename (!tid=t3
(Employee))

dp9

Figure 7: Backward exploration at work for dp
9

(pro-
jection)

an answer. The search proceeds in this way with longer data
paths that follow in the clusters. In detail, following the Al-
gorithm 1, we extract all top data paths (i.e. the shortest
ones) from each cluster into a set DP (lines 5-6). This task
is supported by the procedure dequeueTop. Then we gen-
erate all possible combinations C of paths within DP (line
12) in order to find the best candidates to be answers (i.e.
the task is performed by the procedure validCombinations).
Each combination c is a connected directed graph that has to
contain exactly one data path from each cluster: two paths
from the same cluster cannot belong to the same combina-
tion and all clusters have to participate in each combination,
i.e. AND-semantics of answers. We try to combine paths
with the same length. However two clusters could provide
their longest paths with di↵erent length. In this case, to sat-
isfy the AND-semantics, if a cluster cli becomes empty then
we re-enqueue those data paths dp 2 DP such that dp B cli
(lines 9-11). Note that, given a cluster cli corresponding to
a keyword qi, if qi ⇡ last(dp) then we denote dp B cli. In
this case we combine also data paths with di↵erent length.

For instance referring to our example with the clusters in
Figure 2, at the first running of the algorithm we have to
combine dp

1

, dp
2

from clJava with dp
6

, dp
7

, dp
8

from clCS .
To avoid a possible exponential number of combinations
and useless path processing, we check, through the proce-
dure validCombinations, before combining paths if all those
paths cross a common table. This is a necessary condition
for finding a common tid node. Intuitively the best answer
contains tuples strictly correlated, e.g., a tuple containing
all the keywords or tuples directly correlated by foreign key
constraints.

Referring to our example there is no valid combination
in the first two runs of the algorithm. Therefore we have
to extract longer data paths from CL and we find the first
valid combination that is c = {dp

5

, dp
9

}. Now we have
to verify if c brings an answer: if the test is positive, we
extract all tids of c, i.e. the answer Si, to include in the

Algorithm 1: Building

Input : The clusters CL, a query Q, the number k.
Output: The set of answers S.

finished false;1

S ;;2

while ¬finished do3

DP ;;4

foreach cli 2 CL do5

DP DP [dequeueTop(cli);6

if CL = ; then finished true;7

else8

foreach cli 2 CL: cli = ; do9

foreach dp 2 DP : dp B cli do10

cli.enqueue(dp);11

C validCombinations(DP);12

foreach c 2 C do13

P ;; Cd ;;14

foreach dp 2 c do15

is sol 16

backward_exploration(dp, Q, P, Cd);

if is sol then17

S.enqueue(P.keys);18

else if forward_exploration(P, Cd) then19

S.enqueue(P.keys);20

if |S| = k then21

return S;22

return S;23

set S. This means to instantiate a set set of data paths
DP = {dp

1

, . . . , dpn} and verifying if the results have a
tuple in common. This evaluation is performed by the pro-
cedures backward_exploration and forward_exploration,
as follows. Such procedures keep a map P where the key is
a tid and the value is the number of occurrences of the tid in
the combination c. If c brings an answer, then Si is the set
of keys extracted from P (line 18 and line 20). The building
ends when we computed k answers (line 22) or the set CL is
empty (line 7).

Backward Exploration. Each data path dp of a combi-
nation is analysed independently from the others, i.e. in
our example dp

5

and dp
9

. They are navigated backward
starting from the last node. In other terms we follow the

Algorithms
skill

Java

SkilledIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

ename depart
ment CSt3

t13
t14

IEFerrucci
Lee

Brown
person

Lee

CS

t1
t2
t3
t4

SkilledIn person t3

!person="Lee"(SkilledIn)

t14

P = { (t3 , 1)
 (t14 , 2)

 (t16 , 1) }

S = { (t3 , t14 , t16) }

dp9

Figure 8: Backward exploration at work for dp
9

(se-
lection)

211

[cl

Brown

] :

0

BBBBB@

dp

1

: Employee ! Employee.name ! t
2

! Brown

dp

2

: WorksIn ! WorksIn.employee ! t
6

! Brown

dp

3

: SkilledIn ! SkilledIn.name ! t
13

! Brown

. . .

dp

i

: WorksIn ! WorksIn.project ! x

1

! WorksIn.employee ! x

2

! Employee.ename ! t
2

! Brown

. . .

1

CCCCCA

[cl

F errucci

] :

0

BBBBB@

dp

4

: Employee ! Employee.ename ! t
4

! Ferrucci

dp

5

: WorksIn ! WorksIn.employee ! t
8

! Ferrucci

dp

6

: Project ! Project.leader ! t
10

! Ferrucci

. . .

dp

j

: WorksIn ! WorksIn.project ! x

3

! Project.id ! x

4

! Project.leader ! t
10

! Ferrucci

. . .

1

CCCCCA

Figure 9: Clusters of data paths for Q
2

= {Brown, Ferrucci}

foreign and primary key constraints contrariwise. The back-
ward_exploration procedure takes as input a data path dp
to analyse, the query Q, a map P and a set Cd of conditions,
whose functionality will be described in the forward explo-
ration. Given dp

5

, we start from the node Java, we meet
the tid t

16

and the algorithm updates P inserting the pair
{t

16

, 1}. Then, we proceed until the variable x
4

is encoun-
tered (Figure 5).

According to the information carried by this data path,
the only possible substitution for x

4

is t
14

, that is the tid of
the tuple that has as SkilledIn.skill the same value oc-
curring in Skill.sname of the tuple with tid t

16

, i.e. Java.
In this case we are following a foreign key constraint and we
extract the new tid by a simple selection. As shown in Fig-
ure 6, it turns out that x

3

= t
14

as well, since x
4

and x
3

refer
to the same tuple in the SkilledIn relation. In this case we
are following a primary key constraint and the procedure
extracts the data value associated to the attribute A of the
same tuple with a simple projection. The exploration of dp

5

terminates. Similarly we explore dp
9

. In Figure 7, we start
from the data value CS, we insert t

3

in P and then we meet
the variable x

6

. It belongs to the same relation Employee of
t
3

. Therefore x
6

corresponds to t
3

and it is extracted by a
projection.

Finally, we meet the variable x
5

as depicted in Figure 8.
Since we are following a foreign key constraint, we execute
the selection �person=“Lee00(SkilledIn) and we retrieve the
tid t

14

. In this case t
14

exists in P: we have to increment
the value associated to t

14

in P. If P contains a pair {t, n},
where n = |Q|, then ty represents the tuple able to reach
all tuples matching the keywords of Q: in this case the tids
in P represent an answer to insert in S; in our example we
have the answer {t

3

, t
14

, t
16

}.

Forward Exploration. If in the backward exploration we
find a multiple substitutions for some variable the analysis
of the current data path stops. In this case we would need
to fork the exploration for each retrieved result: we could
trigger a large number of branches and consequently explore
all the database d more times, similarly to schema free ap-
proaches.

Therefore, the backward exploration determines a condi-
tion � in terms of a triple hR, A, vi. The condition says that
a tuple in the relation R having the data value v associated
to the attribute A is desired. All the conditions are kept
in a set Cd. Starting from the information captured by the
conditions we use a forward strategy, where data paths are

employee ename Brownt2WorksIn project

dpi

x123
project

WorksIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

t5
t6

IEFerrucci
Lee

Zuckerberg
employee

CS

t1
t2
t3
t4

P = { (t2 , 1)
 (t6 , 1) }

cs34Lee
cs34Ferrucci

t7
t8

Brown

t6

cs34

t6

(a)

id leader Ferruccit10WorksIn project ?x3

dpj

!project="cs34"(WorksIn)

x123
project

WorksIn

Zuckerberg
leader

x123
id
Project

t5
t6

Ferruccim111
ee67

Zuckerberg

employee

Lee

t9
t10
t11
t12

P = { (t2 , 1)
 (t6 , 1)

 (t10 , 1) }

Lee
cs34Ferrucci

t7
t8

Brown

t10

Facebook

pname

Watson

DeepQA
LOD

cs34cs34
cs34

C = { <WorksIn, project, cs34> }

Ferrucci

(b)

Figure 10: Backward exploration at work for Q
2

navigated forward using all the tids retrieved in the first step
as substitutions for the remaining variables.

For instance, let us consider a second query Q
2

=
{Brown, Ferrucci}. In this case we would retrieve infor-
mation about Brown and how he is related to Ferrucci. We
obtain the two clusters depicted in Figure 9. In this case the
first desired answer should be S

1

= {t
2

, t
6

, t
10

}, i.e. Brown
works in the CS department and he works in the Watson
project with id cs34 whose director is Ferrucci. In Figure 10
we depict the backward exploration at work to process the
query Q

2

.
The first combination c useful to generate S

1

is (dpi, dpj).
However, in this case the backward exploration is not able
to provide an answer. Through the selection

�employee=“Brown00(WorksIn)

it is possible to instantiate the variables x
1

and x
2

with t
6

in dpi, as shown in Figure 10.(a). In dpj the variable x
4

is
trivially instantiated with t

10

, but the procedure stops when
it tries to resolve the variable x

3

. This is due to perform the

212

selection �project=“cs3400(WorksIn), resulting more than one
tid, i.e. t

6

and t
7

. At the end of the backward exploration
we have P = {(t

2

, 1), (t
6

, 1), (t
10

, 1)} and the condition �
1

=
hWorksIn, project, “cs3400

i in the set Cd. To retrieve S
1

the
forward exploration has to disambiguate between t

6

and t
7

.
Since t

7

is not in P, we do not consider it. Incrementing the
value associated to t

6

in P we obtain the pair (t
6

, 2), i.e. we
find the first answer S

1

= {t
2

, t
6

, t
10

}.
In general, the projection step could fail: a single condition

� is not able to disambiguate tuples, i.e. @ty 2 P : ty |= �.
In this case we have to retrieve new tids from d. Therefore
the forward exploration provides the selection step. In Cd,
we search multiple conditions involving the same relation R,
i.e. �

1

= hR, A
1

, v
1

i, �
2

= hR, A
2

, v
2

i, . . ., �n = hR, An, vni,
and then we check if these multiple conditions can retrieve
a new tid ty in R.

Note that the forward navigation has been already ex-
ploited in data graph algorithms [9, 12] to improve backward
explorations individuating connections from potential root
nodes to keyword nodes. Similarly, our forward exploration
supports the backward navigation, still preserving our com-
petitive advantages: it does not require to keep extra infor-
mation of the exploration and it only exploits selection (�)
and projection (⇡) operations.

4. EXPERIMENTAL RESULTS
We developed our approach in YaaniiR, a system for

keyword search over relational databases. YaaniiR is im-
plemented entirely with a procedural language for SQL.
In particular PL/pgSQL since we used PostgreSQL 9.1 as
RDBMS. In our experiments we used the only available
benchmark, which is provided by Co↵man et al. [4]. It sat-
isfies criteria and issues [3, 20] from the research community
to standardize the evaluation of keyword search techniques.
In [4], by comparing the state-of-the-art keyword search
systems, the authors provide a standardized evaluation on
three datasets of di↵erent size and complexity: IMDb (1,67
million tuples and 6 relations), Wikipedia (206.318 tuples
and 6 relations), and a third ideal counterpoint (due to its
smaller size), Mondial (17.115 tuples and 28 relations). For
each dataset, we run the set of 50 queries (see [4] for details
and statistics). Experiments were conducted on a dual core
2.66GHz Intel Xeon, running Linux RedHat, with 4 GB of
memory, 6 MB cache, and a 2-disk 1TB striped RAID array,
and we used PostgreSQL 9.1 as RDBMS. We remark that
we keep schema and instance of all datasets.

Implementation. The implementation plays an essen-
tial role in our framework. Here we provide some tech-
nical details in order to show the feasibility to implement
keyword-based search functionality in a RDBMS and conse-
quently to introduce an SQL keyword search operator. We
implemented the algorithms of the paper by using only a
procedural language for SQL and the RDBMS data struc-
tures. Similarly to all the approaches we employ inverted
indices and full-text queries to have direct access to the tu-
ples of interest. Modern RDBMSs already integrate general
purpose full-text indices and related query operators. In
some case they can be customized by the DB administrator
and applied on a limited number of attributes, i.e. usually
the attributes relevant to the user or containing text data.
We implement schema and data paths as integer arrays, i.e.
text values are encoded by hash functions provided by the
RDBMS. Each element of the array corresponds to a node

1"

10"

100"

1000"

10000"

Ya
an
iiR
"

DIS
CO
VE
R"

DIS
CO
VE
R0I
I"

SP
AR
K"

EA
SE
"

BL
IN
KS
"

BA
NK
S"

DP
BF
"ex

ec
u%

on
(%
m
e(
(s
)(-
(lo
g(
sc
al
e(IMDB(

1"

10"

100"

1000"

10000"

Ya
an
iiR
"

DIS
CO
VE
R"

DIS
CO
VE
R0I
I"

SP
AR
K"

EA
SE
"

BL
IN
KS
"

BA
NK
S"

DP
BF
"ex

ec
u%

on
(%
m
e(
(s
)(-
(lo
g(
sc
al
e(Wikipedia(

Figure 11: Performance comparison with schema-
free approaches

in the path. Schema paths are retrieved by the computa-
tion of the metadata (schema) of d. The management of
tuple-ids is already implemented in many RDBMSs. In our
case, we use the PostgreSQL clause WITH OIDS updating the
definition of a table, in case. It creates a column named OID
containing the identifiers of the tuples. Each cluster is in
practice a priority queue where the priority decreases with
the increasing length of a path. A cluster is implemented
with a table, having the length of the paths as indexed at-
tribute. All the loops of the algorithms are supported by
the definition and usage of cursors. In our implementation
we apply a straightforward cache mechanism for the tuples.
In the cache we trace the already accessed tuples. So before
executing an access to the disk we search within the cache.
In this way a tuple is accessed only once. Such simple mech-
anism speeds-up significantly the execution time.

Our algorithms have been implemented in terms of
PL/pgSQL procedures to add in d. Such procedures
exploit a simple index based on the permanent table
SG(attribute,path) and the procedure DG. The former stores
all schema paths while the latter retrieve all data paths at
runtime. In SG, path implements a schema path in terms
of an array of hash numbers (i.e. hashing of table and at-
tributes names in the schema) while attribute is the value
of the ending node of the path implemented as a hash value
(i.e. on attribute we define a B-tree index). An e�cient im-
plementation of a BFS traversal supports the computation
of all schema paths (i.e. we compute all paths between tables
and attributes, not only the shortest ones). The procedure
DG, similarly, implements a data path in terms of an array
of hash numbers and defines a tsvector value on all text
attributes of d on which imposes a GIN index for full-text
search. Such pre-configuration (e.g., the building of the SG
table) is built e�ciently: from few milliseconds on Mondial
to a couple of minutes on IMDb and Wikipedia. The last
datasets, i.e. IMDb and Wikipedia, present 516MB and
550 MB of size, respectively. The resulting index increases
the starting data size of few MBs.

Performance. For query execution evaluation, we
compared our system (YaaniiR), with the most related

213

1"

10"

100"

1000"

YaaniiR" POWER"(CT)" POWER"(DC)" POWER"(DR)" META"

ex
ec
u%

on
(%
m
e(
(s
)(-
(lo
g(
sc
al
e(IMDB(

1"

10"

100"

1000"

YaaniiR" POWER"(CT)" POWER"(DC)" POWER"(DR)" META"

ex
ec
u%

on
(%
m
e(
(s
)(-
(lo
g(
sc
al
e(Wikipedia(

Figure 12: Performance comparison with schema-
based approaches

schema-free approaches: SPARK [16], EASE [14], and
Blinks [9], DPBF [7], DISCOVER [11] and the refined
version DISCOVER-II [10]. Moreover we made a compar-
ison with schema-based approaches: Power [18], using all
the algorithms under the three semantics – connected tree
(CT), distinct core semantics (DC), distinct root semantics
(DR)1 – and Meta [2].

We evaluated the execution time that is the time elapsed
from issuing a query until an algorithm terminates. Such
execution computes the top-100 answers. We performed
cold-cache experiments (by dropping all file-system caches
before restarting the systems and running the queries) and
warm-cache experiments (without dropping the caches). We
repeated all the tests three times and measured the mean
execution times. For space constraints, we report only cold-
cache experiments, but warm-cache experiments follow a
similar trend. As in [4], we imposed a maximum execution
time of 1 hour for each technique (stopping the execution
and denoting a timeout exception). Moreover we allowed
⇡5 GB of virtual memory and limit the size of answers to 5
tuples.

Figure 11 and Figure 12 show box plots of the execu-
tion times for all queries on each dataset w.r.t schema-free
approaches and schema-based approaches, respectively. In
general our system outperforms consistently all approaches.
In particular the range in execution times for schema-free
approaches is often several orders of magnitude: the per-
formance of these heuristics varies considerably (i.e. the
evaluation of the mean execution time cannot report such
behavior). In the figures, we do not report box plots for
Blinks since it always required more than one hour or en-
countered an OutOfMemoryError. Similarly, DISCOVER,
BANKS, DPBF failed many queries due to time out excep-
tion. Spark and EASE perform worse but they completed
most of the queries. Our system completed all 50 queries
in each dataset without computing useless answers or set
of tuples to combine. This is due to our incremental strat-
egy reducing the space overhead and consequently the time
complexity of the overall process w.r.t. the competitors that

1We refer to the most e�cient version of both DC and DR

0 

0,2 

0,4 

0,6 

0,8 

1 

0,1  0,2  0,3  0,4  0,5  0,6  0,7  0,8  0,9  1 

P
re
ci
si
o
n
 

Recall 

YaaniiR  schema‐free  schema‐based 

Figure 13: Precision-Recall curves

spend much time traversing a large number of tuples (nodes)
and computing and ranking the candidates to be (in case)
answers.

With respect to schema-based approaches, we imple-
mented the three algorithms of Power in Java 1.6 and
JDBC to connect to PostgreSQL. In particular we used the
same parameters for IMDb testing as described in [18] for
all datasets. On the other hand, we used the implementa-
tion of Meta o↵ered by the same authors. Also in this case,
the results confirm the significant speed-up of our approach
with respect to the others. In this case the number of tuples
generated by the join operations is e↵ective to generate the
answers of interest, i.e. the cost to evaluate each candidate
network is limited. The DC and DR algorithms perform
worse due to the more complex technique to evaluate the
candidate networks. In some queries, a larger number of key-
words in Q increases the complexity to evaluate a candidate
network and consequently the number of tuples to evaluate.
In this context the CT algorithm and Meta are compara-
ble while our system performs significantly better due to the
lowest (or missing) overhead introduced in our incremental
strategy. However schema-based approaches completed all
50 queries in each dataset and provide a more regular be-
havior in the execution time.

E↵ectiveness. We have also evaluated the e↵ectiveness
of results. We measured the interpolation between preci-
sion and recall to find the top-10 answers, on the queries
on all datasets. We compare our curve with the interpo-
lated precision curves averaged over both schema-free and
schema-based approaches. Figure 13 shows the results. As
to be expected, the precision of the other systems dramati-
cally decreases for large values of recall. The overhead intro-
duced by all competitors damages the quality of the results.
On the contrary our strategies keeps values on the range
[0.6,0.9]. Such result confirms the discussion of Section 3,
that is the feasibility of our system that produces the top-k
answers in linear time.

5. RELATED WORK
The common assumption made by the various proposals to

keyword search over relational databases is that an answer is
a joining tuple tree(JTT) in which the nodes represent tuples
and the edges represent references between them, according
to the foreign keys defined on the database schema. The
various approaches to keyword-based query answering are
commonly classified into two categories, schema-based and
schema-free, even if some recent works have questioned the
state of the art and suggested alternative techniques to solve

214

the problem. We discuss all of them in order.

Schema-based approaches. Schema-based ap-
proaches [11, 16, 17] make use, in a preliminary phase,
of the database schema to build trees called candidate
networks (CNs) whose nodes represent subsets of the tuples
in a relation. CNs must be complete (i.e., involving all
the keywords in the query) and duplicate-free. Duplicate
elimination relies on graph isomorphisms, which requires a
high computational cost. For this reason, in [17] the authors
have proposed an approach to CN duplicate elimination
that does not rely on graph isomorphism. CNs are then
evaluated by means of a (possible large) number of SQL
queries that, once submitted to the RDBMS, return the final
JTTs. Unfortunately, it has been shown that finding the
best execution plan from a set of CNs is an NP-Complete
problem [11]. Moreover, empty results can occur and this
can make the process ine�cient and introduce noise in the
final result. Our approach fits in this category in that we
take advantage from database schema and constraints to
build the data paths (see Definition 4) without accessing
the database.

Schema-free approaches. Schema-free approaches [6, 7,
13, 14] first build a graph-based representation G of the
database in which the nodes of G represent the tuples of the
database and its edges represent primary or foreign key con-
straints. Then, they make use of graph algorithms and graph
exploration techniques to select the subgraphs of G that con-
nect nodes matching the keywords of the query. Usually,
apart from [6], all of them materialize G in main memory,
which is clearly hard to scale. Query evaluation usually con-
sists in finding a set of (minimal) Steiner trees [8] of G. This
problem is known to be NP-Complete [8]. Therefore, the
various proposals rely on complex heuristics aimed at gen-
erating approximations of Steiner trees. We actually took
inspiration from these approaches by modeling the prob-
lem in terms of graph search. However, we do not build
in-memory graph-based structures and resort on a simple
technique for building the answers that is linear in the size
of the database and does not require complex graph algo-
rithms of high computational cost.

New approaches. As observed by several authors (e.g., [1,
4]), the solutions proposed so far are not e�cient and reliable
enough for a spread usage. Indeed, it should be mentioned
that none of them has been implemented in a commercial
system. The authors in [18] argue that the main drawback
of existing approaches is the limited use of the functionality
of the RDBMS in which data is stored. The work in [1]
proposes to compute the answers within a time limit and
to show to the user the unexplored part of the database, so
that she can refine the results. We have indeed followed this
clue in that our approach only relies on the capabilities of
the underlying RDBMS.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel approach to keyword

search query over relational databases, by providing a linear
strategy for top-k query answering. Such strategy enables
the search to scale seamlessly with the size of the input.
Experimental results confirmed our algorithms and the ad-
vantage over other approaches. This work now opens several
directions of further research. From a theoretical point of
view, we are investigating algorithms to keyword search over

distributed environments, retaining the results achieved in
this paper. From a practical point of view, we are widening
optimization techniques to speed-up the query evaluation
and to improve the e↵ectiveness of the result, implementing
an SQL operator.

7. REFERENCES
[1] A. Baid, I. Rae, J. Li, A. Doan, and J. F. Naughton.

Toward scalable keyword search over relational data.
PVLDB, 3(1):140–149, 2010.

[2] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and
Y. Velegrakis. Keyword search over relational databases: a
metadata approach. In SIGMOD, pages 565–576, 2011.

[3] Y. Chen, W. W. 0011, Z. Liu, and X. Lin. Keyword search
on structured and semi-structured data. In SIGMOD, pages
1005–1010, 2009.

[4] J. Co↵man and A. Weaver. An empirical performance
evaluation of relational keyword search techniques. TKDE,
99(PrePrints):1, 2012.

[5] J. Co↵man and A. C. Weaver. Learning to rank results in
relational keyword search. In CIKM, pages 1689–1698,
2011.

[6] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword
search on external memory data graphs. VLDB,
1(1):1189–1204, 2008.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. In
ICDE, pages 836–845, 2007.

[8] M. R. Garey, R. L. Graham, and D. S. Johnson. The
complexity of computing Steiner minimal trees. SIAM
Journal on Applied Mathematics, 32(4):835–859, 1977.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD, pages 305–316,
2007.

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
E�cient IR-style keyword search over relational databases.
In VLDB, pages 850–861, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[12] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB, pages
505–516, 2005.

[13] B. Kimelfeld and Y. Sagiv. Finding and approximating
top-k answers in keyword proximity search. In PODS,
pages 173–182, 2006.

[14] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an
e↵ective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In SIGMOD, pages
903–914, 2008.

[15] F. Liu, C. Yu, W. Meng, and A. Chowdhury. E↵ective
keyword search in relational databases. In SIGMOD, pages
563–574, 2006.

[16] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k
keyword query in relational databases. In SIGMOD, pages
115–126, 2007.

[17] A. Markowetz, Y. Yang, and D. Papadias. Keyword search
on relational data streams. In SIGMOD, pages 605–616,
2007.

[18] L. Qin, J. X. Yu, and L. Chang. Keyword search in
databases: the power of RDBMS. In SIGMOD, pages
681–694, 2009.

[19] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying
communities in relational databases. In ICDE, pages
724–735, 2009.

[20] W. Webber. Evaluating the e↵ectiveness of keyword search.
IEEE Data Eng. Bull., 33(1):54–59, 2010.

215

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

