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ABSTRACT
The SPARQL declarative query language includes innova-
tive capabilities to match subgraph patterns within a seman-
tic graph database, providing a powerful base upon which
to implement complex graph algorithms for very large data.
Iterative algorithms are useful in a wide variety of domains,
in particular in the data-mining and machine-learning do-
mains relevant to graph analytics. In this paper we describe
a general mechanism for implementing iterative algorithms
via SPARQL queries, illustrate that mechanism with im-
plementation of three algorithms (peer-pressure clustering,
graph di↵usion, and label propagation) that are valuable for
graph analytics, and observe the strengths and weaknesses
of this approach. We find that writing iterative algorithms
in this style is straightforward to implement, with scalability
to very large data and good performance.
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1. OVERVIEW
The SPARQL declarative query language [7] implements

innovative capabilities to match subgraph patterns within
a semantic graph database, providing a powerful base upon
which to implement complex graph algorithms for very large
semantic (or heterogeneous) data. SPARQL has major ad-
vantages for practical problem-solving, including its built-in
support for semantic graph querying, its status as an emerg-
ing standard from the W3C along with its companion Re-
source Description Framework (RDF) [12] data format, and
its implementation by numerous providers of both databases
and tools, including Jena [1], Sesame [10], AllegroGraph
[3], TopBraid Composer [18], and Urika [19]. The use of
SPARQL is growing, so understanding its current capabili-
ties and limitations is valuable, so it can be used to address
the widest practical range of graph-analytic problems.
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Iterative algorithms are useful in a wide variety of domains
related to graph analytics, esp. data mining and machine
learning, so having such algorithms readily implementable
in SPARQL extends the range of practical algorithms con-
siderably. We present one approach for implementing itera-
tive algorithms in SPARQL, consisting of a) a set of initial
queries that establishes a baseline state, b) a set of itera-
tive queries that updates the state (typically via SPARQL
Update constructs) and calculates the current value of con-
vergence criteria, and c) a set of final queries that creates
final results and cleans up intermediate state.

We illustrate this method via the implementation of three
algorithms that calculate per-vertex metrics that depend on
the structure of the graph. Peer-pressure clustering [15]
groups vertices into clusters based on the cluster to which
most of a vertex’s neighbors belong. Graph di↵usion [5] cal-
culates the di↵usion of an e↵ect from seeded nodes through-
out the graph, identifying both vertices that are likely to
be related as well as pathways that contribute to the rela-
tionship. Label propagation [11] propagates known outcomes
from a set of labeled data through a set of unlabeled data,
tagging vertices with their likely outcomes based on the in-
formation latent in the graph.

We find that writing iterative algorithms in this style is
straightforward to implement, with scalability to very large
data and good performance. Though there are algorithms
for which the iterative queries are so simple that the over-
head of executing any query may be a performance issue,
initially implementing such algorithms in this style delivers
correct answers quickly, with an optimized implementation
possible via other means if needed.

While there are other approaches to this problem, notably
the work on recursive database queries with Datalog [16],
our focus is on SPARQL because of its intended audience of
subject-matter experts, not professional programmers.

2. THE SPARQL 1.1 LANGUAGE
SPARQL is a query language for semantic-graph databases

containing data represented in the Resource Description
Framework (RDF) [12] , with its name being a recursive
acronym for SPARQL Protocol and RDF Query Language.
It comes from the semantic web community and is a recom-
mendation of the World Wide Web Consortium [4]. The
primary goal for RDF was to make web pages machine-
readable, and the goal for SPARQL was to enable higher-
level querying of the semantic web. The resulting capabili-
ties proved to be valuable for graphs that did not necessarily
originate as web pages; i.e., queries on highly heterogeneous
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and richly interconnected data, data that reflected the Open
World Assumption [5] that one’s set of data is never com-
plete and so tools must be built expecting to easily incorpo-
rate new data and new types of data. Readers who use SQL
[6] will find many SPARQL constructs familiar.

RDF defines data in terms of triples consisting of a sub-
ject, a predicate or relationship, and an object. For example,
the triple ”Ruth works-for Mayo-Clinic” has ”Ruth” as the
subject, ”works-for” as the predicate, and ”Mayo-Clinic” as
the object. Well-defined RDF data will use Universal Re-
source Identifiers (URIs, [9]) for subjects, predicates, and
most objects. An RDF graph is a collection of these triples.

An example of SPARQL graph matching comes from the
Lehigh University Benchmark (LUBM) query #2 [6]:
(SPARQL keywords are shown in upper case for clarity)

1 PREFIX rdf: <http ://www.w3.org /1999/02/22 -
rdf -syntax -ns#>

2 PREFIX ub: <http ://www.lehigh.edu/~zhp2
/2004/0401/ univ -bench.owl#>

3 SELECT ?student ?faculty ?course
4 WHERE {
5 ?student rdf:type ub:Student .
6 ?faculty rdf:type ub:Faculty .
7 ?course rdf:type ub:Course .
8 ?student ub:advisor ?faculty .
9 ?faculty ub:teacherOf ?course .

10 ?student ub:takesCourse ?course
11 }

SPARQL variables are denoted by an initial ? or $ charac-
ter, e.g, ?student in the example above. The statements
within the WHERE clause, known as a basic graph pat-
tern, can be interpreted as ”find all triples (?student, ?fac-
ulty, ?course) where (lines 5-7) ?student, ?faculty, and
?course are of the corresponding types, and there exists
(8) an edge of type ub:advisor from the ?student vertex
to the ?faculty vertex, (5) an edge of type ub:teacherOf
from the ?faculty vertex to the ?course vertex, and (6) an
edge of type ub:takesCourse from the ?student vertex to
the ?course vertex.” In natural language, the query can be
stated ”find triples of Student, Faculty, and Course where
the student takes a course taught by her advisor.”

Once a graph pattern has been matched, the interme-
diate solution can be further processed or combined with
other intermediate solutions. E.g., LUBM query #2 could
be modified as follows. The inner SELECT query (lines 4-
14 below) matches the basic graph pattern in the WHERE,
groups those results first by ?faculty and then within a sin-
gle ?faculty value by ?student; then those groups are ag-
gregated by selecting the (unique, per group) distinct value
of ?faculty and ?student and by COUNTing the instances
of ?course per group, and then keeping only the results
that have a ?courseCount greater than 2. The outer query
takes the results of the inner query, groups them by ?fac-
ulty and COUNTs the number of students (per faculty) who
have taken more than one course from their advisor. The
full result is faculty members who have advisees who have
taken more than one course from them, sorted in descend-
ing order of the count of such advisees per faculty member.

1 SELECT ?faculty
2 (COUNT(? student) AS ?studentCount)
3 WHERE {
4 SELECT ?faculty ?student
5 (COUNT(? course) AS ?courseCount)
6 WHERE {
7 ?student rdf:type ub:Student .
8 ?faculty rdf:type ub:Faculty .
9 ?course rdf:type ub:Course .

10 ?student ub:advisor ?faculty .
11 ?faculty ub:teacherOf ?course .
12 ?student ub:takesCourse ?course
13 } GROUP BY ?faculty ?student
14 HAVING (? courseCount > 1)
15 } GROUP BY ?faculty
16 ORDER BY DESC(? studentCount)

We note other SPARQL constructs, including named graphs,
each of which segregates a set of triples from the main body
(default graph) of the graph database, enabling its simple
identification for a specific use. SPARQL also supports ag-
gregate functions and mathematical operators su�cient for
basic computations on query results. FILTER limits results
by various function comparisons rather than graph pattern.
MINUS, EXISTS, and NOT EXISTS o↵er di↵erent ways of
reducing results by graph pattern matching. OPTIONAL is
like SQL’s LEFT JOIN, allowing bindings that may not be
present for some results.

SPARQL 1.1 also includes a set of Update capabilities [4],
including INSERT, which adds triples to the database based
on matching within the existing data (like the WHERE basic
graph patterns above); DELETE, as the converse; LOAD,
which reads data from a disk file or other source into the
graph database; and DROP, which deletes a graph.

The execution flow of a (sub)query is (1) the basic graph
pattern in the WHERE, (2) any GROUP BY or HAVING
and any aggregation or projection (i.e., the operations after
the SELECT keyword), and (3) any trailing solution modi-
fiers, such as ORDER BY or LIMIT.

3. ITERATIVE ALGORITHMS IN SPARQL
SPARQL 1.1 as a language does not support iteration,

so iterative algorithms will need a construct external to
SPARQL to implement iteration. We have used JavaScript
and Python scripts to implement the iterative code that calls
SPARQL queries. The coarse structure is captured in the
following pseudocode, where any of lines 1, 3, 4, or 6 could
consist of multiple SPARQL queries.

1 establish initial state
2 do {
3 update state
4 measure convergence criteria
5 } while (convergence criteria not met)
6 establish final state and clean up

This structure reflects the assumptions that a) the interme-
diate state updated in line 3 is large enough that we want
to retain it within the SPARQL endpoint for performance
reasons, rather than transmitting it back to a client system
for processing, and b) that the convergence criteria can be
summarized to no more than a few scalars (e.g., the number
of vertices changing cluster assignment on this iteration, for
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peer-pressure clustering). In the algorithmic implementa-
tions described here, we have chosen to place intermediate
state (e.g., cluster assignment) in a named graph for sim-
plicity (i.e., ease of finding inserted triples for debugging
and other purposes) and performance (i.e., eliminating a set
of intermediate values via DROP of a named graph is fast
compared with finding all the appropriate triples intermin-
gled with other data), but placing the intermediate state
in the default graph may be appropriate in some circum-
stances. Another degree of freedom for the algorithm devel-
oper is whether to preserve all intermediate named graphs
until the algorithm completes (at the cost of more memory)
or to delete intermediate named graphs just after their last
use (at the cost of debuggability). Preserving intermediate
graphs requires emitting a query where the intermediate-
graph name changes from iteration to iteration.

A similar choice for the algorithm developer is whether to
place the final results in the default graph or a named graph.
Given the extreme flexibility of RDF and SPARQL, an itera-
tive algorithm could be called with di↵erent parameters, for
example propagating labels through vertices of types A-C on
one call and types B-G on a later call; the ability to name a
graph with this information simplifies the other URIs within
that data (e.g., avoiding the need to express in the predicate
(in this example) the specific set of vertex types considered).

A programming note is that nothing in the SPARQL end-
point precludes multiple instances of an iterative algorithm
running simultaneously, each sending queries to the end-
point, so some means of avoiding collisions in intermediate
graph names will be warranted for general use.

4. PEER-PRESSURE CLUSTERING
Peer-pressure clustering belongs to the class of algorithms

that are e↵ective by calculating simply on very large data.

4.1 The Algorithm
Peer-pressure clustering takes as its input a set of edges,

each between a pair from a set of vertices, and calculates
each vertex’s assignment to a cluster. The number of clus-
ters to be found need not be specified. For heterogeneous
graphs, even for clustering vertices of homogeneous type,
creating links between the vertices is an initial step whose
definition is problem-dependent; see Section 4.6.1 below for
details.

Reprising the structure from the figure above, peer-pressure
clustering can be expressed via the following pseudocode.

1 assign each vertex to an initial cluster
2 do {
3 (re -) assign each vertex to the cluster

to which a plurality of its
neighbors belong

4 count the number of vertices that
changed cluster in the prior step

5 } while (enough vertices changed or other
criteria)

In our implementation the initial assignment is to a cluster
with the same name as the vertex.

4.2 Relevant Use Cases
Clustering can be useful to understand the group struc-

ture of a set of homogeneous vertices. Use cases include the
spread of influence in online social networks [8, 2].

4.3 Implementation via SPARQL Queries
We chose to place intermediate assignments in named

graphs whose names have a common quasi-random seed,
”xjz” in the examples below, to avoid collisions.

The first initial query assigns each vertex to a default
cluster (named by the vertex name).

1 DROP GRAPH <urn:ga/g/xjz0 >
2 CREATE GRAPH <urn:ga/g/xjz0 >
3 INSERT {
4 GRAPH <urn:ga/g/xjz0 >
5 {?s <urn:ga/p/inCluster > ?s }
6 } WHERE {
7 SELECT DISTINCT ?s
8 WHERE {
9 ?s <urn:ga/p/hasLink > ?o .

10 }
11 }

Line 1 DROPs (deletes from the database) any existing
graph of the same name and thus any triples in such a graph.
Line 2 CREATEs a new (empty) graph of the same name,
which is not strictly necessary before the INSERT but can
aid in debugging. The SELECT clause on lines 7-10 finds
all vertices in the default graph that are the subject of a
hasLink predicate and, for each unique such vertex, then on
lines 3-5 INSERTs into the named graph a new triple of the
same subject, the inCluster predicate, and the subject (as
the cluster assignment). (We omit the text of a trivial initial
query that counts the number of vertices to be clustered.)

The update query works as follows. Lines 13-20, for each
vertex, return the vertex, the cluster assignments of its neigh-
bors, and the per-cluster count of neighbor vertices. Lines
10-22 calculate the maximum cardinality of the clusters of
the neighbors of each vertex. Lines 23-31 calculate the clus-
ter assignment of that maximum-cardinality cluster. (SPARQL
lacks a construct that returns the maximum value of one in-
termediate result and the corresponding element of another
intermediate result.) Lines 8-30 join the maximum cardinal-
ity with the cluster name and also, in the case of a tie in
maximum cardinality, break any tie by SAMPLEing a clus-
ter assignment for each cluster. Lines 3-6 INSERT the new
cluster-assignment triples into the named graph. (For all
graph names, the non-SPARQL ”[i] ” and ”[i+1] ” syntax
denotes that the appropriate iteration count is placed into
the string by the code that creates the SPARQL query.)
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1 DROP GRAPH <urn:ga/g/xjz[i+1]>
2 CREATE GRAPH <urn:ga/g/xjz[i+1]>
3 INSERT
4 {
5 GRAPH <urn:ga/g/xjz[i+1]>
6 { ?s <urn:ga/p/inCluster > ?clus3 }
7 } WHERE {
8 { SELECT ?s (SAMPLE (?clus) AS ?clus3)
9 WHERE {

10 { SELECT ?s
11 (MAX(? clusCt) AS ?maxClusCt)
12 WHERE {
13 SELECT ?s ?clus
14 (COUNT(?clus) AS ?clusCt)
15 WHERE
16 {
17 ?s <urn:ga/p/hasLink > ?o .
18 GRAPH <urn:ga/g/xjz[i]>
19 {?o <urn:ga/p/inCluster > ?clus}
20 } GROUP BY ?s ?clus
21 } GROUP BY ?s
22 }
23 { SELECT ?s ?clus
24 (COUNT(?clus) AS ?clusCt)
25 WHERE
26 {
27 ?s <urn:ga/p/hasLink > ?o .
28 GRAPH <urn:ga/g/xjz[i]>
29 {?o <urn:ga/p/inCluster > ?clus}
30 } GROUP BY ?s ?clus
31 } FILTER (? clusCt = ?maxClusCt)
32 } GROUP BY ?s
33 }
34 }

The second query executed in each iteration (below) counts
the number of vertices that changed cluster assignment in
the just-completed iteration.

1 SELECT (COUNT(?oNew) as ?vccCt)
2 WHERE {
3 GRAPH <urn:ga/g/xjzi >
4 {?s <urn:ga/p/inCluster > ?oOld}
5 GRAPH <urn:ga/g/xjzi+1>
6 {?s <urn:ga/p/inCluster > ?oNew}
7 FILTER (?oOld != ?oNew)
8 }

The JavaScript code that constructs the queries and calls
the SPARQL endpoint is straightforward and hence omitted.

4.4 Validation
We initially validated the implementation with synthetic

data. The first phase of this was with predictable cluster-
ing characteristics, generated with the number of clusters
set to log(n)1.5 where n is the number of vertices. The gen-
erator then considers all edge pairs and adds inter cluster
edges with probability X (0.02 in this case) and intracluster
edges with probability Y (0.1). This data contained 100,000
vertices and 15,736,484 triples.

The second phase of validation with synthetic data was
block two-level Erdős–Rényi (BTER) data created by the
MATLAB generator by Pinar et al [14], whose output we
converted into RDF. The parameters we used, in addition

to power-law degree distribution, were � = 2, maxdegree =
100, ⇢init = 0.99, and ⇢decay = 0.8. This data contained
1,643,915 vertices and 7,322,102 triples.

4.5 Performance
For the initial set of synthetic data (100,000 vertices and

15.7M edges), on a 64-processor, 2TB Urika appliance, peer-
pressure clustering converged after 5 iterations, consuming
200.2 seconds in total. For the BTER synthetic data (1.6M
vertices and 7.3M edges) it executed for 3h:09m, though it
did not converge after 20 iterations, which was the maxi-
mum iteration setting. We also tried to apply the algorithm
to the Smackdown data created by Mayo Clinic, both small
portions and the full 2G (2 billion triples) dataset, where
we encountered the quadratic issue described in the follow-
ing section. We had wondered whether per-query overhead
might be a performance issue, but with the overhead far
below 1 second, it proved not to be an issue in practice.

4.6 Issues Encountered

4.6.1 Creating links for clustering
Peer-pressure clustering uses predicates of a given type

(hasLink in our implementation) as the edges to consider,
which can be viewed as similarity links between the vertices.
For heterogeneous data, the data must typically be prepared
by deciding the similarity criteria, and for vertex pairs which
pass the criteria or threshold, creating the edge. We exper-
imented with di↵erent similarity functions, mirroring what
subject-matter experts may do in practice, tweaking the sim-
ilarity function until the resulting clusters are useful in the
context of the subject matter.

If this approach is used to calculate the edges, the simple
approach of comparing all vertices to all other vertices is
di�cult to scale to large numbers of vertices, as the O(n2)
cost of this step becomes prohibitively time-consuming for
databases containing O(100M) or more vertices. The clus-
tering algorithm doesn’t require all similar vertices to have
similarity links, but can work with a more sparsely con-
nected graph, and a sparse pre-processing step would be
appropriate for large-scale use. Note that this cost is in the
pre-processing step, and that limiting the number of edges
created would keep the core peer-pressure clustering algo-
rithm relevant for very large data.

4.6.2 SPARQL constructs
Careful readers may note that the inner SELECTs at lines

13-21 and 23-30 in the iterative update query are identical.
While developing a complex nested query like this, needing
to keep the same code in two spots identical is cumbersome.
SPARQL 1.1 contains no good mechanism to define this code
once and reuse it, like a function in a procedural language.
The SQL WITH clause defines by name such a code block
that can be executed wherever its results are needed.

The second and third queries above both have minor changes
from one instance to the next (e.g., substituting ”xjz2”, and
”xjz3” into the graph name). While these are not hard to
cope with in JavaScript code that creates the queries, it
does mean that the query is literally di↵erent each time it
is executed, and hence the SPARQL endpoint will have to
reinterpret and re-optimize the query each time, which could
at some point become time-consuming. SQL?s placeholder
capability enables the passing of a value (of a given type) at
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execution time that is inserted at the placeholder’s position
in the query, avoiding reinterpretation.

5. GRAPH DIFFUSION
Graph di↵usion is an algorithm that models natural trans-

port phenomena on the connectivity of the graph, much like
random walk approaches, but simultaneously moving across
all possible edges. Di↵usion can be used to characterize
semantic data in several ways. It can be used to compute
neighborhoods of ”close”connectivity or find nodes with sim-
ilar features. Some applications are models for cascading be-
haviors such as social network analysis, virus propagation,
parallel load balancing, and chemical compound classifica-
tion [5] [13] [17].

5.1 The Algorithm
The graph di↵usion algorithm propagates values (typically

numeric scores) from specific initial vertices, through con-
necting edges to neighboring vertices, and by iteration, to
the rest of the graph. Each vertex accumulates values as
the expanding wavefront propagates through it. Semantic
graphs, with named edges, can have a propagation weight
assigned to each edge type, increasing or decreasing the dif-
fusion values. In general matrix notation, graph di↵usion
can be characterized as an iterative update process accord-
ing to the equation, N t+1

i =
P

j EijWijN
t
j , where N is a

node (vertex), E is the binary adjacency matrix (represent-
ing edges between nodes), and W contains the edge weights
associated with di↵usion. In this formulation, E and W are
static and can be combined. The di↵usion algorithm can run
a fixed number of iterations, or (with edge weights < 1.0)
can continue until a steady state is reached. There are many
algorithm parameters which can be adjusted, including ini-
tial conditions, treatment of edges as directed or undirected,
and computation of aggregate scores.

A simple implementation of graph di↵usion is character-
ized by this pseudocode.

1 assign edge weights by type
2 seed initial diffusion value(s)
3 do {
4 for each vertex with a value {
5 save value as accumulated score
6 propagate value to neighbors
7 }
8 } until completion criteria met

5.2 Relevant Use Cases
One potential use case for di↵usion in healthcare is finding

patients with similar clinical features. For example, patients
are admitted into a hospital for a variety of di↵erent clinical
conditions; however, once admitted, apparently dissimilar
patients develop common presentations of disease. We ap-
plied di↵usion to a semantic graph of two years of hospital
records for 114,943 patient stays. Di↵usion seed values were
attached to sub-populations of patients with known condi-
tions of interest. Di↵usion values propagated over 74 di↵er-
ent edge types (representing demographic, clinical, nursing,
and lab measurements) from the initial patients to all others
in the dataset. The resulting di↵usion values represent each
patient’s similarity to the initial patient sub-population.

5.3 Implementation via SPARQL Queries
Edge (predicate) weights and di↵usion values were stored

in named graphs, separating them from each other and the
patient data in the default graph. Propagation values were
stored in numbered named graphs (e.g., iter_0). Propaga-
tion values were accumulated for each patient at the end of
the process, avoiding per-iteration updates to vertex coun-
ters. The SPARQL code for the first di↵usion iteration uses
values in iter_0 to create values in named graph iter_1 .

1 PREFIX diff: <urn:diffusion/>
2 DROP GRAPH diff:iter_[i+1];
3 CREATE GRAPH diff:iter_[i+1];
4 INSERT {
5 GRAPH diff:iter_[i+1]
6 {? vertex diff:cntr ?value .}
7 } WHERE {
8 SELECT ?vertex (SUM(? edgeVal) AS ?value)
9 WHERE {

10 GRAPH diff:iter_[i]
11 {? otherVertex diff:cntr ?otherCntr}
12 GRAPH diff:weights
13 {?edge diff:weight ?weight .}
14 { {? otherVertex ?edge ?vertex .}
15 UNION
16 {? vertex ?edge ?otherVertex .} }
17 BIND(? otherCntr *? weight AS ?edgeVal)
18 } GROUP BY ?vertex
19 }

The graph pattern in lines 10-11 matches di↵usion values
from the previous iteration; lines 12-13 identify edge weights
in a separate named graph; and the UNION operation at
line 15 matches both incoming and outgoing edges of the
vertex, making di↵usion bidirectional. The BIND on line
17 computes the edge-weighted di↵usion value, and the sub-
query on line 9 aggregates the values. For this implemen-
tation, both incoming and outgoing edges of the same type
are weighted equally, but a straightforward extension would
provide di↵erent weights based on edge direction.

All iterations use identical SPARQL code, save for incre-
menting the graph number on lines 2, 3, 5, and 10. Note that
due to the nature of intermediate solution sets and group-
ing by ?vertex, this code computes a new di↵usion value
for a vertex from its neighbors, as opposed to propagating a
vertex’s value to its neighbors as shown in the pseudocode.

After di↵usion is complete, the per-patient similarity scores
are found in the final iteration’s named graph, iter_4. More
generally, aggregate di↵usion scores are computed by sum-
ming vertex counters in all iteration-named graphs.

5.4 Validation
This implementation of graph di↵usion, applied to this

in-hospital patient care dataset, generates a score ranking
all patients’ similarity to the seed patient. The similarity
score is computed over all 74 dimensions (edge types) in the
semantic model. Inspection of the values for ”similar” and
”dissimilar” patients, one dimension at a time, reveals that
the most similar patients do, in fact, have characteristics
similar to the seed patient.

5.5 Performance
We ran four iterations of the di↵usion algorithm on a se-

mantic dataset of 89 million vertices and 1.8 billion edges
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on a 64 processor Urika appliance with 2 TB of main mem-
ory. The first two iterations, propagating from the initial
patient URIs to all associated values recorded for those pa-
tients, took 202 and 207 seconds, respectively. The third
and fourth iterations, propagating back to all other patient
URIs, took 1,302 seconds and 1,124 seconds, respectively.

5.6 Issues Encountered
For this RDF dataset, extracted from tabular data, the

basic structure and relationships between patient URIs, mea-
surement events, and associated data values were well known.
This structure allowed us to determine that four iterations
of di↵usion were su�cient to propagate from the initial pa-
tient URI to all other patient URIs. In the more general
case, a scoring query would be needed after every UPDATE
iteration to determine if the di↵usion had completed.

6. LABEL PROPAGATION
Label propagation [11] is a clustering algorithm similar to

peer-pressure clustering whose purpose is to find clusters of
vertices where the clustering is based on the edges linking
to neighboring vertices.

6.1 The Algorithm
Clustering via label propagation takes as its input a set of

edges, each between a pair of vertices, and calculates each
vertex’s assignment to a cluster based on its neighbors.

Reprising the structure from the figure above, label prop-
agation can be expressed via the following pseudocode:

1 assign each vertex to a distinct cluster
2 (cluster label might be some integer

primary key of the vertex)
3 do {
4 re-assign each vertex to a cluster based

on neighbors in the previous step
5 - choose cluster to which a plurality

of first -degree neighbors belong
6 - optional self -voting
7 - tie -breaking rule: sort order of

label
8 } while not stopping conditions

6.2 Implementation via SPARQL Queries
In this implementation, the intermediate assignments are

placed in the same (default) graph, but with a distinct predi-
cate name. This makes little di↵erence functionally, and the
SPARQL queries are easier to only a minor degree because
the syntax for specifying multiple di↵erent graphs is more
verbose.

The initial cluster label is denoted by the grouping0 pred-
icate, and assigned the integer primary key of the vertex.
The predicate pkey is specific to the source data model.

The p:similar predicate is also specific to the data model;
it represents the network linking the vertices (?entity),
analogous to hasLink in the peer-pressure clustering section.

1 INSERT {
2 ?entity lprop:grouping0 ?initial_group
3 } WHERE {
4 ?entity p:similar ?x .
5 ?entity p:pkey ?initial_group .
6 } ;

In each iteration, the grouping predicate is incremented to
keep them distinct, lprop:grouping0 in the WHERE to look at
the previous iteration, and INSERTing into lprop:grouping1.

The query consists of the INSERT and a WHERE with nested
sub-queries. Sub-queries are joined on bindings of the same
names, in the same way as simple basic graph patterns. (The
query is shown below broken into multiple code listings.)

1 INSERT { ?entity lprop:grouping1 ?group .
2 } WHERE {

The sub-query selects the entity and group. The GROUP BY
at the end is on ?entity because the query needs one so-
lution for each entity. The MIN of the group is chosen to
break ties in popularity. That is, if multiple groups have
the same popularity, the lowest pkey value wins. This is an
arbitrary rule, but consistent.

1 {
2 SELECT ?entity
3 ( MIN( ?groupx ) AS ?group )
4 WHERE {

The first sub-sub-query measures the popularity of the la-
bels of each entity’s first-degree neighbors. The GROUP BY
includes ?entity to find results per entity; and ?group so it
can COUNT the neighbors (?first).

In addition, we’ve chosen to use self-voting, adding 1 to
the popularity score for the entity’s group (?self). Note
that this query alone might have multiple binding-sets for an
entity, one for each group, and that multiple groups might
have the same popularity.

1 {
2 SELECT ?entity ?groupx
3 (( COUNT( ?first ) +
4 IF( ?self = ?groupx , 1, 0))
5 AS ?popularity )
6 WHERE {
7 ?entity p:similar ?first .
8 ?entity lprop:grouping0 ?self .
9 ?first lprop:grouping0 ?groupx .

10 } GROUP BY ?entity ?self ?groupx
11 }

The next sub-sub-query contains another sub-query which
is the same popularity query as above, with the binding
names changed so the outer query can use the correct names.
The outer query selects the MAX popularity for each entity.
However, SPARQL does not have a direct mechanism to se-
lect the group(s) that have that popularity. This is the rea-
son for duplicating the popularity query. This query below
and the one above are joined on ?entity and ?popularity,
which leaves the ?groupx in the results.

(Closing out the query is the GROUP BY explained above.)

1 {
2 SELECT ?entity
3 ( MAX( ?popularityx ) AS ?

popularity )
4 WHERE {
5 {
6 SELECT ?entity ?groupx
7 ( ( COUNT( ?first ) +
8 IF( ?self = ?groupx , 1,

0 ) )
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9 AS ?popularityx )
10 WHERE {
11 ?entity p:similar ?first .
12 ?entity lprop:grouping0 \\?

self .
13 ?first lprop:grouping0 \\?

groupx .
14 }
15 GROUP BY ?entity ?self ?

groupx
16 }
17 } GROUP BY ?entity
18 }
19 } GROUP BY ?entity
20 }
21 }

A variation would be to count second-degree (or greater)
neighbors instead of (or besides) first-degree neighbors.

There are a number of conditions for stopping the itera-
tion. As with the peer-pressure algorithm above, the percent
or number of vertices changed, and simply the maximum
number of iterations are considered. There is also a property
to the algorithm such that one iteration can make numerous
changes, but the next iteration will reverse them, resulting in
oscillation that only ends with the max number of iterations.
Our implementation detects this by counting the di↵erences
between each iteration (below grouping0 and grouping1),
then also the previous iteration (which would be grouping0
and grouping2). If either of these group_diff_counts are
0, the algorithm halts.

1 SELECT ( COUNT( ?entity ) AS ?
group_diff_count )

2 WHERE {
3 ?entity lprop:grouping0 ?label .
4 ?entity lprop:grouping1 ?next .
5 FILTER( ?label != ?next )
6 }

6.3 Validation
We generated synthetic, semi-random data, with some

number of groups expected, and some links fully random,
not belonging to the expected groups.

When run on real data, reports were generated by SPARQL
queries (not shown) to show the averages and modes of var-
ious attributes for each group, from which we could see that
the groups did have distinct sets of attributes.

6.4 Performance
Generation of synthetic data was done in Python, but

all other processing of big data was performed by SPARQL
within the Urika database. A 64-processor, 2TB Urika ap-
pliance was used for running label propagation.

Using a semi-random network of 1.8M vertices and 8M
edges, the process stopped after 20 iterations, in 16 min-
utes, resulting in 48 groups. With 3.6M vertices and 16M
edges, the process stopped after 20 iterations, in 26 minutes,
resulting in 49 groups.

Calculating the same“popularity” sub-query twice in each
iteration is redundant and expensive. The alternative is to
first insert the results of that once, then use the results twice.

The trade-o↵ is the cost of inserting a very large result set,
which may take more time than building it twice.

6.5 Issues Encountered
Long SPARQL queries with repeated (and slightly modi-

fied) sections are di�cult to maintain. The program driving
the iteration and calls to the SPARQL endpoint was imple-
mented in Python. A simple module was written to templa-
tize SPARQL text to make portions reusable within a query
and across queries, while avoiding the need to mix Python
and SPARQL code.

Manually debugging any algorithm like this can be chal-
lenging, especially with large data. Since the data never
leaves the database during processing, the usual practices
for debugging software (such as a Python script) do not ap-
ply. In addition, the algorithm operates di↵erently from how
many scripts are written: breadth first rather than depth
first. Using a smaller dataset makes the manual inspection
approachable, but this changes the results. Also, to under-
stand the results of each iteration requires more SPARQL
queries to inspect or count the results.

Running this type of algorithm can take many hours. If
the process stops early because of error, or because the user
needs it stopped, starting over from the beginning wastes a
lot of time. Inserting metadata into the database itself as
each step is completed, allows for the process to be restarted,
continuing where it was stopped.

7. DISCUSSION
SPARQL as a query language possesses several positive

features that lend to rapid prototyping of graph analysis
workflows. These features include easy graph preparation,
the expressibility of algorithms in the language, and the ac-
cessibility of the language to individuals who possess rele-
vant domain expertise but may not possess su�cient knowl-
edge of lower-level graph languages to e↵ectively use them.

Building graphs from real world data on which to apply
these algorithms tends to require graph preparation. This
graph preparation step is expressible in SPARQL. This step
serves to focus analyst and developer attention on ques-
tions about which types of data and aspects of that data
are most relevant to the domain-specific problem being an-
alyzed. This focusing is an important part of the graph
workflow prototyping process as it forces critical thought to
the practicalities of the data representation and associated
algorithms.

The three algorithms have di↵erent execution speeds, mea-
sured in edges/second, reflecting the di↵erent natures of the
algorithms and the newness of these results. In future work,
we will explore how much of these speed di↵erences are in-
herent to the algorithms and how much could be overcome
by query changes or query-engine optimizations.

Iterative algorithms are a valuable component of graph
analysis workflows. These algorithms produce analytically
relevant results, as shown in the rest of the paper, and they
are expressible in SPARQL.

Developing, prototyping, and evaluating graph analysis
workflows tend to be laborious, human-intensive processes.
This development and prototyping requires expertise in graph
analysis and the specific domain under analysis. Practition-
ers with these experiences tend to have less knowledge and
familiarity with lower-level graph processing frameworks and
languages. SPARQL as a high-level graph query language is
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more approachable to these practitioners and requires less
time to learn than C++ or another lower-level language.
This smaller ramp-up time translates to a faster idea-to-
functioning-workflow when using SPARQL than other graph-
workflow development languages.

8. SUMMARY
We present a method of mapping iterative algorithms on

to a combination of SPARQL queries and code in a proce-
dural language (Python and JavaScript, in our examples)
that calls the SPARQL queries. We find that writing itera-
tive algorithms in this style is straightforward to implement,
with scalability to very large data and good performance.
Though there are algorithms for which this approach may
be problematic (e.g., when iterative queries are so simple
that query overhead is a performance issue, or the interme-
diate state between iterations is prohibitively large), initially
implementing such algorithms in this style delivers correct
answers quickly, with an optimized implementation possible
via other means if needed.
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