
Performance optimization for querying social network data
Florian Holzschuher

iisys – Hof University
Alfons-Goppel-Platz 1,
95183 Hof, Germany
+49 9281 409 6214

florian.holzschuher@iisys.de

René Peinl
iisys – Hof University
Alfons-Goppel-Platz 1
95183 Hof, Germany
+49 9281 409 4820

rene.peinl@iisys.de

ABSTRACT
In this paper, we report about benchmark experiments and results
from optimizing database connectivity for querying social net-
working data from Apache Shindig in a Neo4j database. We built
on our experiments from [1] and tried to improve performance of
the current RESTful http connection in comparison to JDBC in
order to fully utilize performance benefits of the graph database
compared to relational database management systems. We imple-
mented a database driver based on WebSockets. We found that
BSON is a better data transfer format than JSON and compression
increases performance in some settings while decreasing it in
others. Multiple WebSocket connections are needed to scale to a
high number of client requests and fully utilize database perfor-
mance. Multi-threading is another key factor for scalability. Im-
plementing a kind of stored procedure, we were able to further
increase throughput and decrease response times.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Performance, Experimentation.

Keywords
Graph query processing, social networks, performance optimiza-
tion, WebSocket, graph database

1. INTRODUCTION
Graph databases are a viable alternative to relational systems and
perform especially well in domains like chemistry, biology and
social networking [9]. In [1] we proved Neo4j to be a superior
database backend for Apache Shindig compared to the existing
JPA backend and MySQL. However, it seemed that RESTful http
connections between client and server perform much worse than
the TCP-based, permanent JDBC connection for JPA. RESTful
http is a common choice for a NoSQL database, since it facilitates
access from all programming languages that are able to use http
and you don’t have to provide drivers for every single language.
CouchDB, Riak and AllegroGraph are examples of NoSQL data-
bases using REST as their primary interface (see nosql-
database.org). On the other hand, there had to be good reasons for
computer engineers some ten years ago to put considerable efforts
into connection pooling and similar optimization strategies for
JDBC and other database connectivity technology [12, 13, 14].

Therefore, we decided to proceed with our performance analysis
and investigate different options for connecting the Neo4j
backend to Shindig with a WebSocket-based driver (see Figure 1).

Our goal was to identify performance tuning factors for the graph
database connection, while keeping the graph query language
itself stable.

The remainder of the paper is structured as follows. We first
discuss related work, especially other benchmarking approaches
for graph databases of the last two years. Then we present the
benchmark setup, discuss the relationship to previous results and
compare performance of our WebSocket approach to embedded
Neo4j and Cypher over RESTful http. We continue exploring the
impact of different data transport formats and compression on
performance and perform a detailed analysis of time measure-
ments. As a last step, we present results from multi-threading,
clustering and multiple connections before discussing limitations,
future work and finishing with a conclusion.

2. Benchmark setup
Sample data and queries were the same as in our first published
benchmarks in [1]. To briefly sum up, our sample data set covers
a typical Web 2.0 intranet social networking portal and contains
2011 people, 26,982 messages, 25,365 activities, 2000 addresses,
200 groups and 100 organizations. The XML file generated is 45
MB in size and contains 1.5 million lines of text. Parsed into
Neo4j, this set generates around 83,500 nodes and about 304,000
relationships, consuming just over 40 MB of disk space. On aver-
age, a person has 25 friends, at least 1 and a maximum of 667
resulting in about 25,000 friendship relations in total. 90% of
people have less than 65 friends whereas the median is at 12
friends. We did not use the larger datasets with more people,
activities and messages used in [1], since our tests generated
enough data already and no significant differences were expected.
We used the same 19 queries as in [1]. They are described briefly
and categorized in the appendix. Due to space restrictions, we
limited the diagrams to a subset.
In contrast to our first paper [1] we did not use VMs but physical
hardware this time. The client with Apache Shindig was running
on a server with AMD Opteron 870 CPUs (2 GHz) with 8 cores
altogether and 32GB DDR RAM (400 MHz). Neo4j was running
on one to five nodes with Intel Xeon X5355 CPUs (2,66 GHz)
with 8 cores altogether and 32GB DDR2 RAM (667 MHz). All
servers had a Gigabit network connection and a RAID 0 hard disk,
but benchmarks ran completely in memory due to a warm-up that
filled the caches. Monitoring data confirmed that there was less
than one disk I/O operation per second in all benchmarks.
Our software consists of a client and a server part with a Web-
Socket connection in between (see Figure 1). Our benchmark
client is based on Apache Shindig 2.5u1, the OpenSocial refer-
ence implementation, and creates the queries (step 1). This step
also includes serialization of the query. This serialized query is

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

232

then transferred to the server using a pre-existing WebSocket
connection (step 2). The connection is permanent and does not
have to be established and closed for every single query, which is
a major improvement compared to RESTful http. The server
receives the query, deserializes it and executes it against the em-
bedded Neo4j server (step 3). The driver (server part) and Neo4j
database are running within the same process.

Figure 1: process of query execution

Once results from Neo4j are available, they are converted into a
transferable structure (step 4). This step does not include serializa-
tion, but mainly consists of fetching additional data, since Neo4j
always uses lazy loading of results. We are forcing the database to
load all data, before transferring it to the client. Results are then
serialized and transferred back over the network (step 5). These
two steps were initially performed by the WebSocket library in
one call that does both transmission and serialization using a
previously defined converter class. We separated this later on in
order to make better use of multi-threading for serialization. Final-
ly, results are converted from the system independent transfer
format to Shindig’s object structure (step 6).
We were using Neo4j 1.9.4 as a graph database, OpenJDK 7u25
as a runtime environment, Glassfish Tyrus WebSocket library
1.2.1, json.org 20090211 and MongoDB BSON serializer 2.11.2.
All servers were running Ubuntu 12.04 LTS 64 bit.
We measured response times with System.nanoTime(). “On mod-
ern hardware and operating systems, it can deliver accuracy and
precision in the microsecond range. Conclusion: for benchmark-
ing, always use System.nanoTime …” [9]. This is important, since
many of our measured values are in the range of one millisecond
or even below. One reason for moving from VMs to physical
servers is the reliability of this measuring instrument, which only
seems given for physical hardware. In order to collect network
load, CPU load and memory usage, we used Monitorix1 and modi-
fied it in order to increase time resolution from one minute to five
seconds, since some of our tests only ran for two minutes.

3. Related work
In [1], we reported about our data generator for social networking
data and performance comparison of several query languages.

Although we did not pay so much attention to correlation, our
graph data generator follows a similar approach as [17]. We used
dictionaries with real names, geographies, friendship networks
and groups [1]. However, we did not intend to create big data at
TB scale, but concentrate on intranet scenarios, i.e. medium to
large organizations with a few thousand employees.

Although we did not crawl the data, but used the Stanford Large
Network Dataset Collection as a basis instead, we followed a
procedure similar to [7]. We also created a subset from a larger
amount of available data that has no references regarding friend-
ship or authorship pointing to entities outside the dataset. In addi-
tion to tweets (which we call messages), we are using activities
like “Person x commented document y in System z”, or “Person a

1 http://www.monitorix.org/

rated activity b with three stars in System c”. We also coinci-
dentally use the same number of queries (19) for benchmarking,
although those of [7] are analytical queries, whereas our own are
operational queries used in Shindig. They are for example used to
display the user profile of a person, display an activity stream or
suggest interesting colleagues for “friendship” formation. [7]
roughly classify queries in three categories, i.e. “social network
queries, timeline queries, and hotspot queries”. We had something
similar and titled our query categories after the respective Shindig
services group, person, message, activity and graph service.
Graph service might be a misleading name, since all our queries
are graph-oriented. These queries are for friend-of-a-friend (foaf)
display, detection of shortest path between two people as well as
friend and group suggestions. However, this doesn’t seem to
describe queries well enough. [2] go further than that as part of
the LDBC project and perform classification based on query
characteristics. They introduce the categories select, adjacency,
reachability, summarization and pattern matching. This seems to
enhance traceability and we therefore tried to categorize our que-
ries in the same manner (see appendix). However, assignment is
not always clear since several queries have more than one of the
properties described in one category. [3] also classify queries
regarding basic operations involved and name especially a) point
reads (based on primary key), b) CRUD operations based on
primary key, c) association range queries for ID, type and
timestamp range ordered from latest to oldest and d) association
count queries, e.g. number of friends. Our own query mix includes
(a), e.g. selective message read, (c), e.g. people’s friends activities
and (d), although we usually fetch friend count together with top x
friends. We do not benchmark write, update or delete operations.
The most extensive classification is suggested in [5]. The authors
present a multi-dimensional classification scheme describing the
starting point (scope), reach (radius) and result of a query. We
classified our queries regarding those criteria in order to make
them more traceable. The result can be seen in the appendix.

We already reviewed some older graph benchmarks in [1]. [2]
also benchmark Neo4j and conclude that it performs well, alt-
hough a bit slower than Dex and usage of Cypher would be a
viable option since it scales similarly well as the native API.
Another benchmark comparison between Neo4j and Dex is re-
ported in [10], but they mainly use micro operations like “get
vertex” or “get edge” instead of more complex queries. They
found out that Neo4j scales very well for in-memory graphs,
which is the case in our benchmark, but significantly loses per-
formance when reading from disk and especially writing due to
ACID transaction guarantees. They further mention that access of
properties is considerably slower than access of vertices and edges
for both Neo4j and Dex. We are accessing both vertices and prop-
erties in our benchmark.
[6] focus their benchmark on graph traversal operations and force
the systems to perform disk I/O due to limited memory resources.
They also use a graph data generator (LFR) and compare Dex,
Neo4j, and four other systems. Neo4j performed well in breadth-
first search with response times that are quite stable at less than
7,000 ms up to network sizes of 100,000 vertices, whereas Dex
needed 15,000 ms for 10,000 vertices already. Computation of
connected components on the other hand is scaling much worse,
since response times increase dramatically for network sizes
larger than 40,000 vertices.
A last study dealing with performance of graph databases in gen-
eral and Neo4j in particular analyzes a special kind of data, name-
ly social networking data varying over time [4]. They present a

233

detailed data model and test ten queries. Neo4j performs well in
eight of those and needs around 2,300 ms, due to a highly con-
nected graph with up to 20,000 edges per vertex. These results are
similar to ours, although distribution is even more extreme, since
our slowest queries ran over 10 seconds and fastest under one ms.

4. Comparison Cypher REST vs. Cypher WS
We first discuss differences between new results for Cypher over
RESTful http and embedded benchmarks compared to the previ-
ous ones published in [1], before presenting the improvements of
our WebSocket implementation.

4.1 Relation to previous results
Although we tried to modify as few things as possible, the update
from Neo4j 1.8 to 1.9 together with moving from VMs to physical
servers influenced results. Keeping that in mind when comparing
them, we still see Cypher performance improvements claimed by
the vendor and anticipated in our previous paper [1] in the em-
bedded benchmarks. In Figure 2, we show the results of the new
benchmarks in relation to the respective previous ones (100%).
Cypher needs only 57% of the time for running our queries com-
pared to the results previously published. Native implementation
also gains in most cases, although there are a few exceptions,
where performance loss of 13% and 29% respectively can be
noticed. The median is still 69%, which means that native imple-
mentation is roughly 30% faster than before.
For Cypher, results get even better, since embedded Cypher out-
performs native implementation in our tests with multiple threads
already at 16 threads with 1343 requests per second and reaches a
maximum of 1370 req/sec with 64 threads, whereas native imple-
mentation reaches its maximum at 1323 req/sec with 128 threads.
This is especially interesting, since native implementation is more
than 30% faster for single threads.

Figure 2: comparison of new results with previous ones

The downside is that although Cypher performs better than before,
the connection over RESTful http got worse by nearly factor two.
This further encouraged us to move on with our own connection
library that should provide significant performance benefits. Part
of the performance loss could be caused by the slower physical
network connection between servers compared to the purely
virtual connection on the VMs in our previous experiments, alt-
hough our Gbps network connection’s capacity was never fully
utilized.

4.2 WebSocket performance
In this section, we discuss performance of Cypher queries over
WebSocket with JSON (Cypher JSON) compared to Cypher over
RESTful http with JSON (Cypher REST). We also introduced a
kind of stored procedure, where the client only calls the procedure
by name and passes parameters along (Native JSON). On the

server, a native procedure is then executed. This is a higher im-
plementation effort, but might prove worthwhile for single queries
like foaf where Cypher still does not perform very well. Stored
procedures using predefined Cypher queries could hardly be used
due to the dynamic nature of Shindig requests. Therefore, cypher-
rs2, a Neo4j server extension for stored Cypher queries was no
option. Figure 3 shows the results in relation to http performance
(100%). Absolute query times for Cypher REST lie in between
two and 20 seconds or in between four and 100 ms broken down
to single retrievals. However, there are three exceptions, namely
friend recommendations and both friend of a friend tests (foaf).
Due to Cypher language constraints or inefficient implementation
these queries take up to 426 seconds or between 367 and 21,330
ms on the single query level. We therefore consider them to be
spikes and discuss them separately. These spikes were already
present in our last test [1], although there were some performance
improvements for Cypher (see section 4.1).

Figure 3: comparison of WebSocket and REST performance

Cypher JSON is faster than Cypher REST in all cases. Perfor-
mance gains range from 83% for shortest path until 9% for inbox
message reads and average at 40-50%. This is fairly good, since
we were only enhancing the network connection between client
and server and not the queries. However, we were inspired by the
idea of stored procedures in relational database systems as men-
tioned above and wanted to further explore such a possibility in
Neo4j. On the server, you can register your own Java implementa-
tions of such queries using Google Guice’s injection mechanisms
without recompiling the project. The afore mentioned spikes are
good candidates for those stored procedures and the native JSON
line in Figure 3 shows that performance in these cases is about ten
times higher than RESTful http and even 200 times higher for foaf
with three levels. A mix of normal Cypher for most of the queries,
with these three “stored procedures” increased performance gains
from about factor two to factor nine, which seems impressive and
worth the effort.

5. Performance tuning
After these initial results, where only network connection was
changed from pure http to WebSocket, we decided to investigate
the impact of different choices regarding data transfer format
(5.1), compression (5.2) as well as conversion from Neo4js’ ob-
ject model into Shindigs object model (5.3).

5.1 JSON vs. BSON
For the primary transfer format, we considered binary JSON
(BSON) as an alternative to JSON, since it is type safe and we
didn’t need the better compatibility of JSON, since we control

2 https://github.com/jexp/cypher-rs

234

both ends of the connection. Contrary to intuition, the binary
BSON format produces slightly larger objects than the text-based
JSON due to additional metadata regarding data types. Figure 4
shows the relative response times of our queries with BSON
serialization in relation to its JSON counterparts (100%).
Native implementation gains more from using BSON instead of
JSON although Cypher usually produces larger result sets and the
full query in Cypher language has to be transferred instead of the
name of the “stored procedure” together with parameter values in
the native implementation. Therefore, one would expect that the
serialization format has a larger impact there. However, native
implementation is much faster than Cypher and therefore the
relative impact of serialization benefits is much higher. The medi-
an for performance improvements of BSON is 44% for native
implementation and 36% for Cypher. Single queries are up to
three times faster for native implementation. We therefore consid-
er BSON to be the better choice and concentrate our further re-
sults on this option.

Figure 4: response time of BSON in relation to JSON

5.2 Compression
Since we are optimizing network transmission and conversion
infrastructure, compression could be an interesting option. How-
ever, our WebSocket implementation does already transmit data
much more efficient than the original RESTful http connection. In
one of our scenarios, we measured 70 MByte/sec network load on
the client for RESTful http, whereas our WebSocket implementa-
tion needed 17.4 MByte/sec only and achieved 3.8 times the
number of requests/sec (see section 7.1), so that it is factor 15
more efficient. We tested the built-in Java zlib deflate algorithm
with fast and best compression settings. With fast compression we
were able to reduce network bandwidth usage further to 5.4
MByte/sec – again factor 3 more efficient. Best compression only
marginally further reduced network load to 4 MByte/sec, but at
the expense of slower operation and higher CPU load.

Figure 5: response time of fast in relation to no compression

Figure 5 depicts relative response times for single threaded que-
ries and fast compression compared to no compression (100%).
For BSON, fast compression achieved significantly slower answer
times (30% slower for Cypher, 50% for native). In the JSON case
some lower answer times and some higher times compensate
more or less for each other for fast compression. Best compres-
sion performed 10% worse on average.
Astonishingly, compression is still useful in some scenarios with
high throughput, although the Gbps network card is far from
saturated, so that network traffic shouldn’t be the bottleneck. We
assume that the single threaded WebSocket implementation is the
limiting factor (see section 7.3). Summed up, for 128 threads on
the client and 8 threads on the server, fast compression achieved
64% more throughput and even best compression was 45% faster
than no compression (see section 7 below).

5.3 Object model conversion and serialization
One annoying thing about querying the database is type conver-
sion. With JDBC, there is a similar problem with dates and times
(java.util.Calendar vs. java.sql.Date or java.sql.Timestamp). In
our case the problems were arrays and lists. Neo4j internally uses
arrays for multi-value properties. Both Shindig and the BSON
serializer however, use java lists exclusively, although data is
transferred as a BSON array. The same applies to JSON. There-
fore, we had to convert at multiple points from lists to arrays and
back, which is an annoying overhead, although handled by a
single call of List.toArray() and Arrays.asList() respectively.
Furthermore, we identified serialization and deserialization as a
potential performance bottleneck. In our initial tests, we let Tyrus
(the WebSocket library from Glassfish) handle serialization of
Java objects, since it conveniently performs it as part of the trans-
fer and only requires a serializer class for the desired message
format to be registered. However, this process is largely single
threaded and therefore posed a limitation for scaling as soon as we
introduced multiple client threads. Therefore, we chose to handle
serialization ourselves before transmitting raw data using Tyrus in
order to make it multi-threaded. Each client thread is creating its
own converter objects due to thread safety. We considered using a
pool of conversion objects instead of constantly instantiating new
ones, but haven’t implemented it yet.
Although we are not able to present any reliable numbers on that
particular implementation detail, we are sure that it is the founda-
tion for scaling to a large number of client requests.

6. Detailed performance analysis
After completion of the experiments described above, it seemed
that uncompressed BSON was the best option and we could not
further enhance performance of the connection. However, we did
not have the impression to fully understand which components
represented the bottleneck limiting throughput, since neither CPU
nor network were used to full capacity. Therefore, we tried to
investigate further and come up with more detailed time meas-
urements.
Single processing steps shown in Figure 1 could not be logged
consistently in all detail. However, we managed to capture times
for steps 1+2+6 (client processing time), steps 3+4 (server pro-
cessing time) and step 5 (network time). Figure 6 shows results
for some of our queries and compares JSON with BSON serializa-
tion as well as fast compression and no compression. Relative
times are depicted in bar charts, whereas absolute times are shown
in milliseconds. Numbers above the bars are total times for the
individual type of query.

235

Time reductions for BSON compared to JSON are achieved in
both serialization and deserialization, which is included in the
client and the network times depicted in Figure 6. Server times are
only marginally reduced, since only deserializing the query is part
of this time measure, which requires less effort than deserializing
the response, which is up to 500 kB in size for friend recommen-
dation and up to 200 kB for FOAF responses.
Compression is slower in all three parts for BSON and is especial-
ly striking in the network times that nearly double due to com-
pression of the server response that is included in this time. Faster
transfer of the reduced message size is negligible in relation to
compression time when using a Gbps network connection.

Figure 6: processing times split into client, server and net

7. Scaling tests
Having seen results for single threads, we additionally tested how
threading on client and server impacted the results. We switched
benchmarking measurements from time per request to requests per
second. In order to better capture real relations, we limited queries
to those that were not identified as spikes before (see section 4.2).

7.1 Threading
Initially, we used a single thread only in order to understand
performance impacts of different options. Now, we wanted to
explore the scalability with multiple threads. On the client side,
we used 4, 16, 64 and 128 threads. On the server side we used
powers of two up to 16. Figure 7 shows the results without com-
pression. Numbers along the x-axis represent server threads.

Figure 7: results with multi-threading in requests per sec.

For our native implementation the server didn’t scale very well:
only 37% for the step from one to two server threads and only 3%
more for 16 threads. Cypher scaled better and gained an astonish-
ing 229% for two threads but only additional 31% for the step to 4
threads. Afterwards, it gains only 7% for eight threads and even
loses 8% for 16 threads. Since the server has 8 cores and neither
CPU nor network are saturated, we suspected the comparably
slow memory of the client and the single threaded WebSocket

implementation to be the bottleneck. The good thing about the
different scalability of native and Cypher implementations is that
Cypher BSON reaches 86% of the maximum throughput and
outperforms the old Cypher REST by more than factor three. This
performance gain is in a similar order of magnitude as reported in
[11].
Although we assumed that compression could not provide per-
formance improvements in our setup, we included it in our thread-
ing benchmarks. This led to surprising results, since fast compres-
sion already proved to be superior to no compression with a single
server thread and reached about 66% higher performance for eight
server and 128 client threads (see Figure 8). Scaling results per se
are quite similar to uncompressed results, but at a slightly higher
level. Native implementation only scales well up to two server
threads and only marginally gains for more threads. Cypher per-
formance improves by a surprising 112% for two threads and an
additional 57% and 50% for four and eight threads. 16 threads did
not increase throughput further, which is not surprising due to the
fact that the server only has eight cores.

Figure 8: results with multi-threading and fast compression

7.2 Cluster
The next step was to move from a single server to use multiple
Neo4j servers in a cluster. We implemented a cluster-enabled
client driver that distributes requests evenly with a round robin
algorithm. It works similarly to C-JDBC [12]. Based on our scal-
ing tests (see section above) we configured the server to run with
eight threads, which means one per core. This setup scales rela-
tively well from one to three nodes, as can be seen in Figure 9.

Figure 9: requests/sec with different cluster setups

Native implementation gains 133%, Cypher does not scale quite
as well and reaches 105%. That still seems acceptable compared
to the increase in hardware resources of 200%. Although exact
numbers are not visible very well in the 3D diagrams presented in
[11], it seems that our performance gains lie between MySQL and
PostgreSQL with C-JDBC [11]. Performance gains for further

236

increasing hardware resources to five nodes are considerably
lower with 39%, so that native implementation reaches 223% of
single node throughput and Cypher 185%.
Compression turns out to be an important option in this scenario
as well. Even with one node, throughput is between 43% (Cypher)
and 74% (native) higher with fast compression than without com-
pression. Maximum throughput with five nodes and 256 client
threads is even 77% (Cypher) and 79% (native) higher than that
without compression. This is mainly due to better scaling from
three to five nodes. Whereas performance gains for moving from
one to three nodes is similar for fast compression to no compres-
sion (131% for native and 129% for Cypher), the step from three
to five nodes leads to another 48% (native) and 52% (Cypher)
performance improvement for fast compression, which is signifi-
cantly higher than the 39% for no compression.

7.3 Multiple WebSocket connections
We finally tried to use multiple WebSocket connections (conns)
between client and server to get either CPU or network fully
utilized. We directly aimed for eight connections and skipped tests
for two and four, but varied the number of server threads per
connection. Figure 10 shows results from one server node, 128
client threads, the depicted number of connections and server
threads per connection. Results are shown for Cypher BSON and
Native BSON without compression (left bar group) and fast com-
pression (right bar group).

Figure 10: requests/sec with multiple WebSocket connections

It turned out, that this was indeed the limiting factor and none of
our previous measurements had revealed that. Results for native
implementation without compression, eight connections and eight
server threads per connection outperforms both three node (45%
higher throughput) and even five node cluster results (11% higher
throughput) with one connection and otherwise identical settings.
For fast compression at least the three node cluster is beaten by
5%. Unfortunately, Cypher does not benefit equally from multiple
connections. Where native implementation gains impressive
245% when moving from one to 8 connections with 8 server
threads (uncompressed), Cypher gains only 91% and therefore
reaches only 52% of native throughput. This is due to CPU usage,
as shown in Figure 11.
Small usage spikes at the beginning represent warm-up procedure.
Then native tests starting briefly before 16:30 are utilizing all
eight CPUs at roughly 60% with spikes up to 75%. Then again a
warm-up is run and Cypher tests start around 16:32:30. CPU load
is near 100% there. Looking at single CPU cores, we see that all
except one core are saturated at 100% and the last one at 90%.
This state is nearly reached for native implementation with fast
compression, where global CPU load averages at 95%. Network

load is not the limit. It reaches 50 MByte/sec without compression
and 12 MByte/sec for fast compression. We did not manage to run
all the multi-connection tests in the cluster, but gave the most
promising constellation a shot and achieved 2544 req/sec for
3 nodes Native BSON and fast compression (2489 req/sec for
5 nodes) and 1824 req/sec for 5 nodes with Cypher BSON (1266
req/sec for 3 nodes). Results without compression were lower.

Figure 11: global kernel usage on the server (Monitorix)

That means that Cypher scales nearly linearly with the number of
nodes (300% nodes => 281% performance, 500% nodes => 404%
performance) with multiple WebSocket connections. This is better
than the results for a cluster with a single WebSocket connection
per server (see Table 1). Native implementation, on the other
hand, reaches a limit at the three node cluster setup (225% per-
formance) and does not scale further (220% for 5 nodes). The
client was not able to issue more requests.
Table 1: throughput for cluster with single and multiple conns

 Native Cypher
3 nodes, single conn 1.148 r/s (231%) 926 r/s (229%)

3 nodes, 8 conns 2.544 r/s (225%) 1.266 r/s (281%)
5 nodes, single conn 1.705 r/s (342%) 1.405 r/s (347%)

5 nodes, 8 conns 2.489 r/s (220%) 1.824 r/s (404%)

8. Limitations
Our benchmark queries are directly derived from Apache Shindig.
However, some of them are only present in our extended version
of Shindig that supports friend and group recommendations as
well as shortest path analysis like many other social networks
provide them (e.g. Xing). The single queries are not weighted
based on frequency of use in normal user scenarios.
Furthermore, we did not make any efforts to optimize RESTful
http, so that it uses one thread per request, which leads to some
overheads. We did not consider using an asychronous event-
driven implementation instead [16] that might positively impact
performance when carefully tuned [15]. We didn’t test alternative
JSON serialization libraries, although we were pointed to an
interesting resource lately, showing very fast implementations3.
We also did not test all alternatives with multiple WebSocket
connections, since some early tests with this feature proved un-
successful so that we did not consider it for inclusion up to a few
days before submission. When we remembered to retest it with
our other improvements and physical machines it turned out to
make a big difference. Therefore, we could only conduct the few
tests discussed here instead of the full suite. Finally, it would have
been desirable to have different hardware options in order to gain
further insight into how different CPU speeds and cores affect

3 https://github.com/eishay/jvm-serializers/wiki

237

overall performance or whether speed of system memory really is
a limiting factor in some tests.

9. Future work
In parallel to our work described here, Neo Technology is finish-
ing work on Neo4j 2.0. Keen on any enhancements the new ver-
sion is providing, we did a preliminary test with Neo4j 2.0 M06
dating from 15th of October 2013. We found that due to introduc-
tion of multiversion concurrency control (MVCC), neither the
native implementation nor Cypher queries ran without changes.
We had to make significant changes and to introduce at least one
transaction for every query. This leads to decreased performance
in most of our tests. Native implementation loses the most with
19% in embedded and 30% in WebSocket BSON benchmark. For
Cypher there have been further language optimizations so that
some of the Cypher tests gained performance, most notably foaf
(20-50%) as well as friend and group recommendation (20%-
30%). Still, overall performance decreased here as well losing
12% in embedded and WebSocket and 7% in our REST bench-
mark. These results have to be interpreted with caution, since we
did not use all new query features and did not optimize our que-
ries and algorithms for the new version. All we did were changes
to get queries running. There is e.g. a whole new transactional http
API that finally gets rid of the superfluous URLs that were deliv-
ered with every result and led to the tremendous overhead report-
ed in [1]. We have not investigated this new endpoint yet.
Being confident that we optimized the network connection quite
well, we plan to further explore end-to-end performance of Shin-
dig together with the database and use jMeter to query the Shindig
REST API instead of using our own benchmarking tool. It could
be the case that Shindig is not able to benefit from our optimiza-
tions due to own internal inefficiencies. Another influence could
come from switching from running a standalone client and server
to running them in Apache Tomcat and Glassfish.
We also plan to use much higher volumes of data, so that Neo4j
has to access disks, instead of caching all data in main memory.
Finally, we aim at including benchmarks for writing data to
Neo4j, since all our current queries are read-only. Neo4j provides
single master replication within all nodes of an enterprise cluster,
which we were using in our cluster tests. It will be interesting to
see how well write operations scale and how fast replication
between nodes really is.

10. Conclusion
We’ve presented results from optimizing the database connection
to Neo4j for querying social networking data from Apache Shin-
dig. We’ve thoroughly analyzed several options for the transfer
including JSON vs. BSON as a data transfer format, different
compression options, multiple WebSocket connections as well as
multi-threading on client- and server-side for achieving the high-
est possible throughput. We then went from a single server data-
base to a cluster of three and five nodes in order to analyze scala-
bility. Results show that BSON is more efficient than JSON,
especially regarding (de-)serialization. Compression reduces
network load significantly and performs better for a high number
of client requests. Multiple WebSocket connections increase
maximum throughput significantly (up to 245%).
The database cluster is able to increase throughput and achieves a
maximum of 181% performance increase for 200% additional
server resources with Cypher. Scaling to five servers did not result
in better throughput for native implementation. It might be the
case that the client was the limiting factor there. Cypher however,
was able to gain an additional 44% of performance compared to

three nodes which lead to a 304% performance increase altogether
in comparison to a single node. Table 2 summarizes results of our
test in relation to Cypher over RESTful http. Values in parenthe-
ses represent the performance relative to REST.

Summed up, we can state that it is worthwhile to pay attention to
network connectivity between application server and database
server. We are convinced that many NoSQL databases are experi-
encing similar problems causing them to not fully expose their
internal performance over a standard RESTful http interface. It
would be interesting to measure performance of our approach
compared to RexPro and Rexster from the tinkerpop project, that
aim at providing a kind of JDBC-like standardization to graph
databases. With systematic analysis and consequent enhancement
of our database driver, we were able to increase speed by factor
5.6 for Cypher and up to 13.3 when using our “stored procedures”
that ran native queries on the database server. When considering
extreme graph queries like three level foaf, performance differ-
ences are even higher.

Table 2. Summary of results

 REST Native BSON Cypher BSON
single thread
response time 100% 17% 38%

128 threads
throughput (r/s) 70 215 (3.1x) 83 (1.2 x)

Max 1 node
throughput (r/s) 85 1131 (13.3x) 476 (5.6x)

Global max
throughput (r/s) 85 2544 (29.9x) 1824 (21.5x)

Although the benchmark is specific to Apache Shindig, the Neo4j
driver is generic and can be used in any project. As an intended
side effect of our efforts, open source projects with a more liberal
license like APL v2 can now use GPL v3 licensed Neo4j, without
fear of the viral GPL, since a pure network connection separates
client and server part of our driver, so that GPL does not affect
client code. This is another major improvement compared to our
efforts in [1]. Therefore, we hope that our Neo4j backend will
soon become the default for Apache Shindig.

11. REFERENCES
[1] Holzschuher, F., and Peinl, R. 2013. Performance of graph

query languages: comparison of cypher, gremlin and native
access in Neo4j. Joint EDBT/ICDT Workshop GraphQ 2013.
Genoa, Italy. 22.03.2013. 195-204

[2] Angles, R., Prat-Pérez, A., Dominguez-Sal, D., and Larriba-
Pey, J. L. (2013) Benchmarking database systems for social
network applications. 1st International Workshop on Graph
Data Management Experiences and Systems. ACM. 15

[3] Armstrong, T. G., Ponnekanti, V., Borthakur, D., and Calla-
ghan, M. (2013) LinkBench: a Database Benchmark Based
on the Facebook Social Graph. ACM SIGMOD, June 2013.
1185–1196

[4] Cattuto, C., Quaggiotto, M., Panisson, A., and Averbuch, A.
(2013) Time-varying social networks in a graph database: a
Neo4j use case. In 1st International Workshop on Graph Data
Management Experiences and Systems. ACM. 11

[5] Grossniklaus, M., Leone, S., and Zäschke, T. (2013) To-
wards a benchmark for graph data management and pro-
cessing. Technical Report KN-2013-DBIS-01, University of
Konstanz, Department of Computer and Information Science

238

[6] Ciglan, M., Averbuch, A., and Hluchy, L. (2012) Bench-
marking traversal operations over graph databases. In Data
Engineering Workshops (ICDEW 2012). 186-189. IEEE.

[7] Ma, H., Wei, J., Qian, W., Yu, C., Xia, F., & Zhou, A. (2013)
On benchmarking online social media analytical queries. In
1st International Workshop on Graph Data Management Ex-
periences and Systems. ACM. 10

[8] Boyer, B. (2008) Robust Java benchmarking, Part 1- Under-
stand the pitfalls of benchmarking Java code.
http://www.ibm.com/developerworks/java/library/j-
benchmark1/index.html

[9] Miller, J. J. (2013). Graph Database Applications and Con-
cepts with Neo4j. Proceedings of the Southern Association
for Information Systems Conference, Atlanta, GA, USA
March 23rd-24th, 2013.

[10] Macko, P., Margo, D., and Seltzer, M. (2013). Performance
introspection of graph databases. In Proceedings of the 6th
International Systems and Storage Conference. ACM. 18

[11] Unde, P., Vin, H., Natu, M., Kulkarni, V., Thomas, D.,
Vasudevan, S., and Pathak, R. (2012) Architecting the Data-
base Access for a IT Infrastructure and Data Center Moni-
toring tool. In IEEE 28th International Conference on Data
Engineering Workshops (ICDEW), 2012. 351-354

[12] Cecchet, E. (2004) C-JDBC: a Middleware Framework for
Database Clustering. IEEE Data Engineering. Bulletin.
27(2), 19-26.

[13] Karlsson, M., Moore, K. E., Hagersten, E., & Wood, D. A.
(2003). Memory system behavior of Java-based middleware.
In 9th int. Symposion on High-Performance Computer Archi-
tecture,. HPCA-9 2003. (pp. 217-228). IEEE.

[14] Li, Y., & Lü, K. (2000). Performance issues of a Web data-
base. In Database and Expert Systems Applications (pp. 825-
834). Springer Berlin Heidelberg.

[15] Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J.,
Kanemasa, Y., & Pu, C. (2010). Empirical analysis of data-
base server scalability using an n-tier benchmark with read-
intensive workload. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing. 1680-1687.

[16] Harji, A. S., Buhr, P. A., & Brecht, T. (2012). Comparing
high-performance multi-core web-server architectures. 5th
Annual International Systems and Storage Conference (p. 2).

[17] Pham, M.-D., Boncz, P. & Erling, O. (2012) S3G2: A Scala-
ble Structure-Correlated Social Graph Generator. 4th TPC
Technology Conference, Istanbul, Turkey, 27.08.2012

Appendix: Query classification
Query Description Scope Radius Result Type
2000 * people for a group Group x => members node neighbors nodes select

2000 * groups for a person Person x => group membership node neighbors nodes select
200 friend recommendations Person x => friend => friend[not x’s friend]

sort by friends in common
node neighbors nodes pattern

matching
200 group recommendations Person x => friend => group[not x’s group]

sort by num friends with this group
node neighbors nodes pattern

matching
20 friends of friends reads
(3 levels)

Person x => friend => friend => friend
[not x’s friend]

node neighbors nodes pattern
matching

20 friends of friends reads
(2 levels)

Person x => friend => friend
[not x’s friend]

node neighbors nodes pattern
matching

200 shortest path reads Person x, y => shortest path between path path subgraph reachability

2000 inbox message reads Person x => message collection[inbox]
=> messages

node neighbors nodes select

2000 message collection reads Person x => message collections incl. num
messages per collection

node neighbors nodes summariza-
tion

2000 people themselves
(profile page)

Person x => all first level properties => some
second level properties

node neighbors subgraph adjacency

200 * 10 people themselves Person a, b, …, j => all first level properties
=> some second level properties

subgraph neighbors subgraph adjacency

200 * 10 people's friends Person a, b, …, j => friends subgraph neighbors nodes adjacency

2000 people's friends Person x => friends node neighbors nodes adjacency

2000 single activities for people Person x => activities[a] node neighbors nodes select
2000 people's own activities Person x => activities node neighbors nodes adjacency

200 * 10 people's activities Person a, b, …, j => activities subgraph neighbors nodes adjacency

200 * 10 activity lists for people Person x => activities[a, b, …, j] node neighbors nodes select

200 people's friends'
activities, limit: 100

Person x => friends => activities =>
sort by created descending [1..100]

path neighbors nodes adjacency

239

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

