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ABSTRACT 
In this paper, we report about benchmark experiments and results 
from optimizing database connectivity for querying social net-
working data from Apache Shindig in a Neo4j database. We built 
on our experiments from [1] and tried to improve performance of 
the current RESTful http connection in comparison to JDBC in 
order to fully utilize performance benefits of the graph database 
compared to relational database management systems. We imple-
mented a database driver based on WebSockets. We found that 
BSON is a better data transfer format than JSON and compression 
increases performance in some settings while decreasing it in 
others. Multiple WebSocket connections are needed to scale to a 
high number of client requests and fully utilize database perfor-
mance. Multi-threading is another key factor for scalability. Im-
plementing a kind of stored procedure, we were able to further 
increase throughput and decrease response times. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems - Query processing 

General Terms 
Performance, Experimentation. 

Keywords 
Graph query processing, social networks, performance optimiza-
tion, WebSocket, graph database 

1. INTRODUCTION 
Graph databases are a viable alternative to relational systems and 
perform especially well in domains like chemistry, biology and 
social networking [9]. In [1] we proved Neo4j to be a superior 
database backend for Apache Shindig compared to the existing 
JPA backend and MySQL. However, it seemed that RESTful http 
connections between client and server perform much worse than 
the TCP-based, permanent JDBC connection for JPA. RESTful 
http is a common choice for a NoSQL database, since it facilitates 
access from all programming languages that are able to use http 
and  you  don’t  have   to  provide  drivers   for  every  single   language.  
CouchDB, Riak and AllegroGraph are examples of NoSQL data-
bases using REST as their primary interface (see nosql-
database.org). On the other hand, there had to be good reasons for 
computer engineers some ten years ago to put considerable efforts 
into connection pooling and similar optimization strategies for 
JDBC and other database connectivity technology [12, 13, 14]. 

Therefore, we decided to proceed with our performance analysis 
and investigate different options for connecting the Neo4j 
backend to Shindig with a WebSocket-based driver (see Figure 1). 

Our goal was to identify performance tuning factors for the graph 
database connection, while keeping the graph query language 
itself stable. 

The remainder of the paper is structured as follows. We first 
discuss related work, especially other benchmarking approaches 
for graph databases of the last two years. Then we present the 
benchmark setup, discuss the relationship to previous results and 
compare performance of our WebSocket approach to embedded 
Neo4j and Cypher over RESTful http. We continue exploring the 
impact of different data transport formats and compression on 
performance and perform a detailed analysis of time measure-
ments. As a last step, we present results from multi-threading, 
clustering and multiple connections before discussing limitations, 
future work and finishing with a conclusion. 

2. Benchmark setup 
Sample data and queries were the same as in our first published 
benchmarks in [1]. To briefly sum up, our sample data set covers 
a typical Web 2.0 intranet social networking portal and contains 
2011 people, 26,982 messages, 25,365 activities, 2000 addresses, 
200 groups and 100 organizations. The  XML  file  generated  is  45  
MB in size and contains 1.5 million lines of text. Parsed into 
Neo4j, this set generates around 83,500 nodes and about 304,000 
relationships, consuming just over 40 MB of disk space. On aver-
age, a person has 25 friends, at least 1 and a maximum of 667 
resulting in about 25,000 friendship relations in total. 90% of 
people have less than 65 friends whereas the median is at 12 
friends. We did not use the larger datasets with more people, 
activities and messages used in [1], since our tests generated 
enough data already and no significant differences were expected. 
We used the same 19 queries as in [1]. They are described briefly 
and categorized in the appendix. Due to space restrictions, we 
limited the diagrams to a subset. 
In contrast to our first paper [1] we did not use VMs but physical 
hardware this time. The client with Apache Shindig was running 
on a server with AMD Opteron 870 CPUs (2 GHz) with 8 cores 
altogether and 32GB DDR RAM (400 MHz). Neo4j was running 
on one to five nodes with Intel Xeon X5355 CPUs (2,66 GHz) 
with 8 cores altogether and 32GB DDR2 RAM (667 MHz). All 
servers had a Gigabit network connection and a RAID 0 hard disk, 
but benchmarks ran completely in memory due to a warm-up that 
filled the caches. Monitoring data confirmed that there was less 
than one disk I/O operation per second in all benchmarks. 
Our software consists of a client and a server part with a Web-
Socket connection in between (see Figure 1). Our benchmark 
client is based on Apache Shindig 2.5u1, the OpenSocial refer-
ence implementation, and creates the queries (step 1). This step 
also includes serialization of the query. This serialized query is 
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then transferred to the server using a pre-existing WebSocket 
connection (step 2). The connection is permanent and does not 
have to be established and closed for every single query, which is 
a major improvement compared to RESTful http. The server 
receives the query, deserializes it and executes it against the em-
bedded Neo4j server (step 3). The driver (server part) and Neo4j 
database are running within the same process.  

 
Figure 1: process of query execution 

Once results from Neo4j are available, they are converted into a 
transferable structure (step 4). This step does not include serializa-
tion, but mainly consists of fetching additional data, since Neo4j 
always uses lazy loading of results. We are forcing the database to 
load all data, before transferring it to the client. Results are then 
serialized and transferred back over the network (step 5). These 
two steps were initially performed by the WebSocket library in 
one call that does both transmission and serialization using a 
previously defined converter class. We separated this later on in 
order to make better use of multi-threading for serialization. Final-
ly, results are converted from the system independent transfer 
format  to  Shindig’s  object  structure  (step  6).   
We were using Neo4j 1.9.4 as a graph database, OpenJDK 7u25 
as a runtime environment, Glassfish Tyrus WebSocket library 
1.2.1, json.org 20090211 and MongoDB BSON serializer 2.11.2. 
All servers were running Ubuntu 12.04 LTS 64 bit. 
We measured response times with System.nanoTime().  “On  mod-
ern hardware and operating systems, it can deliver accuracy and 
precision in the microsecond range. Conclusion: for benchmark-
ing, always use System.nanoTime …”  [9]. This is important, since 
many of our measured values are in the range of one millisecond 
or even below. One reason for moving from VMs to physical 
servers is the reliability of this measuring instrument, which only 
seems given for physical hardware. In order to collect network 
load, CPU load and memory usage, we used Monitorix1 and modi-
fied it in order to increase time resolution from one minute to five 
seconds, since some of our tests only ran for two minutes.  

3. Related work 
In [1], we reported about our data generator for social networking 
data and performance comparison of several query languages.  

Although we did not pay so much attention to correlation, our 
graph data generator follows a similar approach as [17]. We used 
dictionaries with real names, geographies, friendship networks 
and groups [1]. However, we did not intend to create big data at 
TB scale, but concentrate on intranet scenarios, i.e. medium to 
large organizations with a few thousand employees.  

Although we did not crawl the data, but used the Stanford Large 
Network Dataset Collection as a basis instead, we followed a 
procedure similar to [7]. We also created a subset from a larger 
amount of available data that has no references regarding friend-
ship or authorship pointing to entities outside the dataset. In addi-
tion to tweets (which we call messages), we are using activities 
like  “Person  x commented document y in System z”,  or  “Person  a 
                                                                 
1 http://www.monitorix.org/ 

rated activity b with three stars in System c”.   We   also   coinci-
dentally use the same number of queries (19) for benchmarking, 
although those of [7] are analytical queries, whereas our own are 
operational queries used in Shindig. They are for example used to 
display the user profile of a person, display an activity stream or 
suggest   interesting   colleagues   for   “friendship”   formation.   [7] 
roughly classify queries in three categories,   i.e.   “social network 
queries, timeline queries, and hotspot queries”.  We  had  something  
similar and titled our query categories after the respective Shindig 
services group, person, message, activity and graph service. 
Graph service might be a misleading name, since all our queries 
are graph-oriented. These queries are for friend-of-a-friend (foaf) 
display, detection of shortest path between two people as well as 
friend and group suggestions. However,   this   doesn’t   seem   to  
describe queries well enough. [2] go further than that as part of 
the LDBC project and perform classification based on query 
characteristics. They introduce the categories select, adjacency, 
reachability, summarization and pattern matching. This seems to 
enhance traceability and we therefore tried to categorize our que-
ries in the same manner (see appendix). However, assignment is 
not always clear since several queries have more than one of the 
properties described in one category. [3] also classify queries 
regarding basic operations involved and name especially a) point 
reads (based on primary key), b) CRUD operations based on 
primary key, c) association range queries for ID, type and 
timestamp range ordered from latest to oldest and d) association 
count queries, e.g. number of friends. Our own query mix includes 
(a), e.g. selective message read, (c),  e.g.  people’s  friends  activities  
and (d), although we usually fetch friend count together with top x 
friends. We do not benchmark write, update or delete operations. 
The most extensive classification is suggested in [5]. The authors 
present a multi-dimensional classification scheme describing the 
starting point (scope), reach (radius) and result of a query. We 
classified our queries regarding those criteria in order to make 
them more traceable. The result can be seen in the appendix. 

We already reviewed some older graph benchmarks in [1]. [2] 
also benchmark Neo4j and conclude that it performs well, alt-
hough a bit slower than Dex and usage of Cypher would be a 
viable option since it scales similarly well as the native API.  
Another benchmark comparison between Neo4j and Dex is re-
ported in [10], but they mainly   use   micro   operations   like   “get  
vertex”   or   “get   edge”   instead of more complex queries. They 
found out that Neo4j scales very well for in-memory graphs, 
which is the case in our benchmark, but significantly loses per-
formance when reading from disk and especially writing due to 
ACID transaction guarantees. They further mention that access of 
properties is considerably slower than access of vertices and edges 
for both Neo4j and Dex. We are accessing both vertices and prop-
erties in our benchmark. 
[6] focus their benchmark on graph traversal operations and force 
the systems to perform disk I/O due to limited memory resources. 
They also use a graph data generator (LFR) and compare Dex, 
Neo4j, and four other systems. Neo4j performed well in breadth-
first search with response times that are quite stable at less than 
7,000 ms up to network sizes of 100,000 vertices, whereas Dex 
needed 15,000 ms for 10,000 vertices already. Computation of 
connected components on the other hand is scaling much worse, 
since response times increase dramatically for network sizes 
larger than 40,000 vertices.  
A last study dealing with performance of graph databases in gen-
eral and Neo4j in particular analyzes a special kind of data, name-
ly social networking data varying over time [4]. They present a 
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detailed data model and test ten queries. Neo4j performs well in 
eight of those and needs around 2,300 ms, due to a highly con-
nected graph with up to 20,000 edges per vertex. These results are 
similar to ours, although distribution is even more extreme, since 
our slowest queries ran over 10 seconds and fastest under one ms.  

4. Comparison Cypher REST vs. Cypher WS 
We first discuss differences between new results for Cypher over 
RESTful http and embedded benchmarks compared to the previ-
ous ones published in [1], before presenting the improvements of 
our WebSocket implementation. 

4.1 Relation to previous results 
Although we tried to modify as few things as possible, the update 
from Neo4j 1.8 to 1.9 together with moving from VMs to physical 
servers influenced results. Keeping that in mind when comparing 
them, we still see Cypher performance improvements claimed by 
the vendor and anticipated in our previous paper [1] in the em-
bedded benchmarks. In Figure 2, we show the results of the new 
benchmarks in relation to the respective previous ones (100%). 
Cypher needs only 57% of the time for running our queries com-
pared to the results previously published. Native implementation 
also gains in most cases, although there are a few exceptions, 
where performance loss of 13% and 29% respectively can be 
noticed. The median is still 69%, which means that native imple-
mentation is roughly 30% faster than before.  
For Cypher, results get even better, since embedded Cypher out-
performs native implementation in our tests with multiple threads 
already at 16 threads with 1343 requests per second and reaches a 
maximum of 1370 req/sec with 64 threads, whereas native imple-
mentation reaches its maximum at 1323 req/sec with 128 threads. 
This is especially interesting, since native implementation is more 
than 30% faster for single threads.  

 
Figure 2: comparison of new results with previous ones 

The downside is that although Cypher performs better than before, 
the connection over RESTful http got worse by nearly factor two. 
This further encouraged us to move on with our own connection 
library that should provide significant performance benefits. Part 
of the performance loss could be caused by the slower physical 
network connection between servers compared to the purely 
virtual connection on the VMs in our previous experiments, alt-
hough our Gbps network connection’s   capacity was never fully 
utilized. 

4.2 WebSocket performance 
In this section, we discuss performance of Cypher queries over 
WebSocket with JSON (Cypher JSON) compared to Cypher over 
RESTful http with JSON (Cypher REST). We also introduced a 
kind of stored procedure, where the client only calls the procedure 
by name and passes parameters along (Native JSON). On the 

server, a native procedure is then executed. This is a higher im-
plementation effort, but might prove worthwhile for single queries 
like foaf where Cypher still does not perform very well. Stored 
procedures using predefined Cypher queries could hardly be used 
due to the dynamic nature of Shindig requests. Therefore, cypher-
rs2, a Neo4j server extension for stored Cypher queries was no 
option. Figure 3 shows the results in relation to http performance 
(100%). Absolute query times for Cypher REST lie in between 
two and 20 seconds or in between four and 100 ms broken down 
to single retrievals. However, there are three exceptions, namely 
friend recommendations and both friend of a friend tests (foaf). 
Due to Cypher language constraints or inefficient implementation 
these queries take up to 426 seconds or between 367 and 21,330 
ms on the single query level. We therefore consider them to be 
spikes and discuss them separately. These spikes were already 
present in our last test [1], although there were some performance 
improvements for Cypher (see section 4.1).  

 
Figure 3: comparison of WebSocket and REST performance 

Cypher JSON is faster than Cypher REST in all cases. Perfor-
mance gains range from 83% for shortest path until 9% for inbox 
message reads and average at 40-50%. This is fairly good, since 
we were only enhancing the network connection between client 
and server and not the queries. However, we were inspired by the 
idea of stored procedures in relational database systems as men-
tioned above and wanted to further explore such a possibility in 
Neo4j. On the server, you can register your own Java implementa-
tions of such queries using Google Guice’s injection mechanisms 
without recompiling the project. The afore mentioned spikes are 
good candidates for those stored procedures and the native JSON 
line in Figure 3 shows that performance in these cases is about ten 
times higher than RESTful http and even 200 times higher for foaf 
with three levels. A mix of normal Cypher for most of the queries, 
with  these  three  “stored  procedures”  increased  performance  gains 
from about factor two to factor nine, which seems impressive and 
worth the effort. 

5. Performance tuning 
After these initial results, where only network connection was 
changed from pure http to WebSocket, we decided to investigate 
the impact of different choices regarding data transfer format 
(5.1), compression (5.2) as well as conversion from Neo4js’  ob-
ject model into Shindigs object model (5.3).  

5.1 JSON vs. BSON 
For the primary transfer format, we considered binary JSON 
(BSON) as an alternative to JSON, since it is type safe and we 
didn’t   need   the   better   compatibility   of   JSON,   since   we   control  

                                                                 
2 https://github.com/jexp/cypher-rs 
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both ends of the connection. Contrary to intuition, the binary 
BSON format produces slightly larger objects than the text-based 
JSON due to additional metadata regarding data types. Figure 4 
shows the relative response times of our queries with BSON 
serialization in relation to its JSON counterparts (100%).  
Native implementation gains more from using BSON instead of 
JSON although Cypher usually produces larger result sets and the 
full query in Cypher language has to be transferred instead of the 
name  of  the  “stored  procedure”  together  with  parameter  values  in  
the native implementation. Therefore, one would expect that the 
serialization format has a larger impact there. However, native 
implementation is much faster than Cypher and therefore the 
relative impact of serialization benefits is much higher. The medi-
an for performance improvements of BSON is 44% for native 
implementation and 36% for Cypher. Single queries are up to 
three times faster for native implementation. We therefore consid-
er BSON to be the better choice and concentrate our further re-
sults on this option. 

 
Figure 4: response time of BSON in relation to JSON 

5.2 Compression 
Since we are optimizing network transmission and conversion 
infrastructure, compression could be an interesting option. How-
ever, our WebSocket implementation does already transmit data 
much more efficient than the original RESTful http connection. In 
one of our scenarios, we measured 70 MByte/sec network load on 
the client for RESTful http, whereas our WebSocket implementa-
tion needed 17.4 MByte/sec only and achieved 3.8 times the 
number of requests/sec (see section 7.1), so that it is factor 15 
more efficient. We tested the built-in Java zlib deflate algorithm 
with fast and best compression settings. With fast compression we 
were able to reduce network bandwidth usage further to 5.4 
MByte/sec – again factor 3 more efficient. Best compression only 
marginally further reduced network load to 4 MByte/sec, but at 
the expense of slower operation and higher CPU load.  

 
Figure 5: response time of fast in relation to no compression 

Figure 5 depicts relative response times for single threaded que-
ries and fast compression compared to no compression (100%). 
For BSON, fast compression achieved significantly slower answer 
times (30% slower for Cypher, 50% for native). In the JSON case 
some lower answer times and some higher times compensate 
more or less for each other for fast compression. Best compres-
sion performed 10% worse on average. 
Astonishingly, compression is still useful in some scenarios with 
high throughput, although the Gbps network card is far from 
saturated, so that network traffic shouldn’t  be the bottleneck. We 
assume that the single threaded WebSocket implementation is the 
limiting factor (see section 7.3). Summed up, for 128 threads on 
the client and 8 threads on the server, fast compression achieved 
64% more throughput and even best compression was 45% faster 
than no compression (see section 7 below). 

5.3 Object model conversion and serialization 
One annoying thing about querying the database is type conver-
sion. With JDBC, there is a similar problem with dates and times 
(java.util.Calendar vs. java.sql.Date or java.sql.Timestamp). In 
our case the problems were arrays and lists. Neo4j internally uses 
arrays for multi-value properties. Both Shindig and the BSON 
serializer however, use java lists exclusively, although data is 
transferred as a BSON array. The same applies to JSON. There-
fore, we had to convert at multiple points from lists to arrays and 
back, which is an annoying overhead, although handled by a 
single call of List.toArray() and Arrays.asList() respectively. 
Furthermore, we identified serialization and deserialization as a 
potential performance bottleneck. In our initial tests, we let Tyrus 
(the WebSocket library from Glassfish) handle serialization of 
Java objects, since it conveniently performs it as part of the trans-
fer and only requires a serializer class for the desired message 
format to be registered. However, this process is largely single 
threaded and therefore posed a limitation for scaling as soon as we 
introduced multiple client threads. Therefore, we chose to handle 
serialization ourselves before transmitting raw data using Tyrus in 
order to make it multi-threaded. Each client thread is creating its 
own converter objects due to thread safety. We considered using a 
pool of conversion objects instead of constantly instantiating new 
ones, but haven’t  implemented it yet.  
Although we are not able to present any reliable numbers on that 
particular implementation detail, we are sure that it is the founda-
tion for scaling to a large number of client requests. 

6. Detailed performance analysis 
After completion of the experiments described above, it seemed 
that uncompressed BSON was the best option and we could not 
further enhance performance of the connection. However, we did 
not have the impression to fully understand which components 
represented the bottleneck limiting throughput, since neither CPU 
nor network were used to full capacity. Therefore, we tried to 
investigate further and come up with more detailed time meas-
urements.  
Single processing steps shown in Figure 1 could not be logged 
consistently in all detail. However, we managed to capture times 
for steps 1+2+6 (client processing time), steps 3+4 (server pro-
cessing time) and step 5 (network time). Figure 6 shows results 
for some of our queries and compares JSON with BSON serializa-
tion as well as fast compression and no compression. Relative 
times are depicted in bar charts, whereas absolute times are shown 
in milliseconds. Numbers above the bars are total times for the 
individual type of query. 
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Time reductions for BSON compared to JSON are achieved in 
both serialization and deserialization, which is included in the 
client and the network times depicted in Figure 6. Server times are 
only marginally reduced, since only deserializing the query is part 
of this time measure, which requires less effort than deserializing 
the response, which is up to 500 kB in size for friend recommen-
dation and up to 200 kB for FOAF responses.  
Compression is slower in all three parts for BSON and is especial-
ly striking in the network times that nearly double due to com-
pression of the server response that is included in this time. Faster 
transfer of the reduced message size is negligible in relation to 
compression time when using a Gbps network connection. 

 
Figure 6: processing times split into client, server and net 

7. Scaling tests 
Having seen results for single threads, we additionally tested how 
threading on client and server impacted the results. We switched 
benchmarking measurements from time per request to requests per 
second. In order to better capture real relations, we limited queries 
to those that were not identified as spikes before (see section 4.2). 

7.1 Threading 
Initially, we used a single thread only in order to understand 
performance impacts of different options. Now, we wanted to 
explore the scalability with multiple threads. On the client side, 
we used 4, 16, 64 and 128 threads. On the server side we used 
powers of two up to 16. Figure 7 shows the results without com-
pression. Numbers along the x-axis represent server threads. 

 
Figure 7: results with multi-threading in requests per sec. 

For our native implementation the server didn’t   scale  very well: 
only 37% for the step from one to two server threads and only 3% 
more for 16 threads. Cypher scaled better and gained an astonish-
ing 229% for two threads but only additional 31% for the step to 4 
threads. Afterwards, it gains only 7% for eight threads and even 
loses 8% for 16 threads. Since the server has 8 cores and neither 
CPU nor network are saturated, we suspected the comparably 
slow memory of the client and the single threaded WebSocket 

implementation to be the bottleneck. The good thing about the 
different scalability of native and Cypher implementations is that 
Cypher BSON reaches 86% of the maximum throughput and 
outperforms the old Cypher REST by more than factor three. This 
performance gain is in a similar order of magnitude as reported in 
[11]. 
Although we assumed that compression could not provide per-
formance improvements in our setup, we included it in our thread-
ing benchmarks. This led to surprising results, since fast compres-
sion already proved to be superior to no compression with a single 
server thread and reached about 66% higher performance for eight 
server and 128 client threads (see Figure 8). Scaling results per se 
are quite similar to uncompressed results, but at a slightly higher 
level. Native implementation only scales well up to two server 
threads and only marginally gains for more threads. Cypher per-
formance improves by a surprising 112% for two threads and an 
additional 57% and 50% for four and eight threads. 16 threads did 
not increase throughput further, which is not surprising due to the 
fact that the server only has eight cores.  

 
Figure 8: results with multi-threading and fast compression 

7.2 Cluster 
The next step was to move from a single server to use multiple 
Neo4j servers in a cluster. We implemented a cluster-enabled 
client driver that distributes requests evenly with a round robin 
algorithm. It works similarly to C-JDBC [12]. Based on our scal-
ing tests (see section above) we configured the server to run with 
eight threads, which means one per core. This setup scales rela-
tively well from one to three nodes, as can be seen in Figure 9. 

 
Figure 9: requests/sec with different cluster setups 

Native implementation gains 133%, Cypher does not scale quite 
as well and reaches 105%. That still seems acceptable compared 
to the increase in hardware resources of 200%. Although exact 
numbers are not visible very well in the 3D diagrams presented in 
[11], it seems that our performance gains lie between MySQL and 
PostgreSQL with C-JDBC [11]. Performance gains for further 
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increasing hardware resources to five nodes are considerably 
lower with 39%, so that native implementation reaches 223% of 
single node throughput and Cypher 185%.  
Compression turns out to be an important option in this scenario 
as well. Even with one node, throughput is between 43% (Cypher) 
and 74% (native) higher with fast compression than without com-
pression. Maximum throughput with five nodes and 256 client 
threads is even 77% (Cypher) and 79% (native) higher than that 
without compression. This is mainly due to better scaling from 
three to five nodes. Whereas performance gains for moving from 
one to three nodes is similar for fast compression to no compres-
sion (131% for native and 129% for Cypher), the step from three 
to five nodes leads to another 48% (native) and 52% (Cypher) 
performance improvement for fast compression, which is signifi-
cantly higher than the 39% for no compression. 

7.3 Multiple WebSocket connections 
We finally tried to use multiple WebSocket connections (conns) 
between client and server to get either CPU or network fully 
utilized. We directly aimed for eight connections and skipped tests 
for two and four, but varied the number of server threads per 
connection. Figure 10 shows results from one server node, 128 
client threads, the depicted number of connections and server 
threads per connection. Results are shown for Cypher BSON and 
Native BSON without compression (left bar group) and fast com-
pression (right bar group). 

 
Figure 10: requests/sec with multiple WebSocket connections 

It turned out, that this was indeed the limiting factor and none of 
our previous measurements had revealed that. Results for native 
implementation without compression, eight connections and eight 
server threads per connection outperforms both three node (45% 
higher throughput) and even five node cluster results (11% higher 
throughput) with one connection and otherwise identical settings. 
For fast compression at least the three node cluster is beaten by 
5%. Unfortunately, Cypher does not benefit equally from multiple 
connections. Where native implementation gains impressive 
245% when moving from one to 8 connections with 8 server 
threads (uncompressed), Cypher gains only 91% and therefore 
reaches only 52% of native throughput. This is due to CPU usage, 
as shown in Figure 11.  
Small usage spikes at the beginning represent warm-up procedure. 
Then native tests starting briefly before 16:30 are utilizing all 
eight CPUs at roughly 60% with spikes up to 75%. Then again a 
warm-up is run and Cypher tests start around 16:32:30. CPU load 
is near 100% there. Looking at single CPU cores, we see that all 
except one core are saturated at 100% and the last one at 90%. 
This state is nearly reached for native implementation with fast 
compression, where global CPU load averages at 95%. Network 

load is not the limit. It reaches 50 MByte/sec without compression 
and 12 MByte/sec for fast compression. We did not manage to run 
all the multi-connection tests in the cluster, but gave the most 
promising constellation a shot and achieved 2544 req/sec for 
3 nodes Native BSON and fast compression (2489 req/sec for 
5 nodes) and 1824 req/sec for 5 nodes with Cypher BSON (1266 
req/sec for 3 nodes). Results without compression were lower.  

 
Figure 11: global kernel usage on the server (Monitorix) 

That means that Cypher scales nearly linearly with the number of 
nodes (300% nodes => 281% performance, 500% nodes => 404% 
performance) with multiple WebSocket connections. This is better 
than the results for a cluster with a single WebSocket connection 
per server (see Table 1). Native implementation, on the other 
hand, reaches a limit at the three node cluster setup (225% per-
formance) and does not scale further (220% for 5 nodes). The 
client was not able to issue more requests. 
Table 1: throughput for cluster with single and multiple conns 

 Native Cypher 
3 nodes, single conn 1.148 r/s (231%) 926 r/s (229%) 

3 nodes, 8 conns 2.544 r/s (225%) 1.266 r/s (281%) 
5 nodes, single conn 1.705 r/s (342%) 1.405 r/s (347%) 

5 nodes, 8 conns 2.489 r/s (220%) 1.824 r/s (404%) 

8. Limitations 
Our benchmark queries are directly derived from Apache Shindig. 
However, some of them are only present in our extended version 
of Shindig that supports friend and group recommendations as 
well as shortest path analysis like many other social networks 
provide them (e.g. Xing). The single queries are not weighted 
based on frequency of use in normal user scenarios.  
Furthermore, we did not make any efforts to optimize RESTful 
http, so that it uses one thread per request, which leads to some 
overheads. We did not consider using an asychronous event-
driven implementation instead [16] that might positively impact 
performance when carefully tuned [15]. We  didn’t  test  alternative  
JSON serialization libraries, although we were pointed to an 
interesting resource lately, showing very fast implementations3. 
We also did not test all alternatives with multiple WebSocket 
connections, since some early tests with this feature proved un-
successful so that we did not consider it for inclusion up to a few 
days before submission. When we remembered to retest it with 
our other improvements and physical machines it turned out to 
make a big difference. Therefore, we could only conduct the few 
tests discussed here instead of the full suite. Finally, it would have 
been desirable to have different hardware options in order to gain 
further insight into how different CPU speeds and cores affect 
                                                                 
3 https://github.com/eishay/jvm-serializers/wiki 
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overall performance or whether speed of system memory really is 
a limiting factor in some tests. 

9. Future work  
In parallel to our work described here, Neo Technology is finish-
ing work on Neo4j 2.0. Keen on any enhancements the new ver-
sion is providing, we did a preliminary test with Neo4j 2.0 M06 
dating from 15th of October 2013. We found that due to introduc-
tion of multiversion concurrency control (MVCC), neither the 
native implementation nor Cypher queries ran without changes. 
We had to make significant changes and to introduce at least one 
transaction for every query. This leads to decreased performance 
in most of our tests. Native implementation loses the most with 
19% in embedded and 30% in WebSocket BSON benchmark. For 
Cypher there have been further language optimizations so that 
some of the Cypher tests gained performance, most notably foaf 
(20-50%) as well as friend and group recommendation (20%-
30%). Still, overall performance decreased here as well losing 
12% in embedded and WebSocket and 7% in our REST bench-
mark. These results have to be interpreted with caution, since we 
did not use all new query features and did not optimize our que-
ries and algorithms for the new version. All we did were changes 
to get queries running. There is e.g. a whole new transactional http 
API that finally gets rid of the superfluous URLs that were deliv-
ered with every result and led to the tremendous overhead report-
ed in [1]. We have not investigated this new endpoint yet.  
Being confident that we optimized the network connection quite 
well, we plan to further explore end-to-end performance of Shin-
dig together with the database and use jMeter to query the Shindig 
REST API instead of using our own benchmarking tool. It could 
be the case that Shindig is not able to benefit from our optimiza-
tions due to own internal inefficiencies. Another influence could 
come from switching from running a standalone client and server 
to running them in Apache Tomcat and Glassfish. 
We also plan to use much higher volumes of data, so that Neo4j 
has to access disks, instead of caching all data in main memory. 
Finally, we aim at including benchmarks for writing data to 
Neo4j, since all our current queries are read-only. Neo4j provides 
single master replication within all nodes of an enterprise cluster, 
which we were using in our cluster tests. It will be interesting to 
see how well write operations scale and how fast replication 
between nodes really is. 

10. Conclusion 
We’ve  presented  results  from  optimizing   the database connection 
to Neo4j for querying social networking data from Apache Shin-
dig. We’ve thoroughly analyzed several options for the transfer 
including JSON vs. BSON as a data transfer format, different 
compression options, multiple WebSocket connections as well as 
multi-threading on client- and server-side for achieving the high-
est possible throughput. We then went from a single server data-
base to a cluster of three and five nodes in order to analyze scala-
bility. Results show that BSON is more efficient than JSON, 
especially regarding (de-)serialization. Compression reduces 
network load significantly and performs better for a high number 
of client requests. Multiple WebSocket connections increase 
maximum throughput significantly (up to 245%).  
The database cluster is able to increase throughput and achieves a 
maximum of 181% performance increase for 200% additional 
server resources with Cypher. Scaling to five servers did not result 
in better throughput for native implementation. It might be the 
case that the client was the limiting factor there. Cypher however, 
was able to gain an additional 44% of performance compared to 

three nodes which lead to a 304% performance increase altogether 
in comparison to a single node. Table 2 summarizes results of our 
test in relation to Cypher over RESTful http. Values in parenthe-
ses represent the performance relative to REST.  

Summed up, we can state that it is worthwhile to pay attention to 
network connectivity between application server and database 
server. We are convinced that many NoSQL databases are experi-
encing similar problems causing them to not fully expose their 
internal performance over a standard RESTful http interface. It 
would be interesting to measure performance of our approach 
compared to RexPro and Rexster from the tinkerpop project, that 
aim at providing a kind of JDBC-like standardization to graph 
databases. With systematic analysis and consequent enhancement 
of our database driver, we were able to increase speed by factor 
5.6  for  Cypher  and  up  to  13.3  when  using  our  “stored  procedures”  
that ran native queries on the database server. When considering 
extreme graph queries like three level foaf, performance differ-
ences are even higher.  

Table 2. Summary of results 

 REST Native BSON Cypher BSON 
single thread 
response time  100% 17% 38% 

128 threads 
throughput (r/s) 70 215 (3.1x) 83 (1.2 x) 

Max 1 node 
throughput (r/s) 85 1131 (13.3x) 476 (5.6x) 

Global max 
throughput (r/s) 85 2544 (29.9x) 1824 (21.5x) 

Although the benchmark is specific to Apache Shindig, the Neo4j 
driver is generic and can be used in any project. As an intended 
side effect of our efforts, open source projects with a more liberal 
license like APL v2 can now use GPL v3 licensed Neo4j, without 
fear of the viral GPL, since a pure network connection separates 
client and server part of our driver, so that GPL does not affect 
client code. This is another major improvement compared to our 
efforts in [1]. Therefore, we hope that our Neo4j backend will 
soon become the default for Apache Shindig. 
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Appendix: Query classification 
Query Description Scope Radius Result Type 
2000 * people for a group Group x => members node neighbors nodes select 

2000 * groups for a person Person x => group membership node neighbors nodes select 
200 friend recommendations Person   x   =>   friend   =>   friend[not   x’s   friend] 

sort by friends in common 
node neighbors nodes pattern 

matching 
200 group recommendations Person   x   =>   friend   =>   group[not   x’s   group] 

sort by num friends with this group 
node neighbors nodes pattern 

matching 
20 friends of friends reads   
(3 levels) 

Person x => friend => friend => friend 
[not  x’s  friend] 

node neighbors nodes pattern 
matching 

20 friends of friends reads  
(2 levels) 

Person x => friend => friend  
[not  x’s  friend] 

node neighbors nodes pattern 
matching 

200 shortest path reads Person x, y => shortest path between path path subgraph reachability 

2000 inbox message reads Person x => message collection[inbox]    
=> messages 

node neighbors nodes select 

2000 message collection reads Person x => message collections incl. num 
messages per collection 

node neighbors nodes summariza-
tion 

2000 people themselves   
(profile page) 

Person x => all first level properties => some 
second level properties 

node neighbors subgraph adjacency 

200 * 10 people themselves Person a,   b,  …,   j  => all first level properties 
=> some second level properties 

subgraph neighbors subgraph adjacency 

200 * 10 people's friends Person  a,  b,  …,  j  => friends subgraph neighbors nodes adjacency 

2000 people's friends Person x => friends node neighbors nodes adjacency 

2000 single activities for people Person x => activities[a] node neighbors nodes select 
2000 people's own activities Person x => activities node neighbors nodes adjacency 

200 * 10 people's activities Person  a,  b,  …,  j  =>  activities subgraph neighbors nodes adjacency 

200 * 10 activity lists for people Person  x  =>  activities[a,  b,  …,  j] node neighbors nodes select 

200 people's friends' 
activities, limit: 100 

Person x => friends => activities =>   
sort by created descending [1..100] 

path neighbors nodes adjacency 
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