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ABSTRACT
Nowadays, high volumes of valuable data can be easily gen-
erated or collected from various data sources at high velocity.
As these data are often related or linked, they form a web
of linked data. Examples include semantic web and social
web. The social web captures social relationships that link
people (i.e., social entities) through the World Wide Web.
Due to the popularity of social networking sites, more people
have joined and more online social interactions have taken
place. With a huge number of social entities (e.g., users or
friends in social networks), it becomes important to analyze
high volumes of linked data and discover those diverse social
entities. In this paper, we present (i) a tree-based mining al-
gorithm called DF-growth, along with (ii) its related data
structure called DF-tree, which allow users to e↵ectively
and e�ciently mine diverse friends from social networks. Re-
sults of our experimental evaluation showed both the time-
and space-e�ciency of our scalable DF-growth algorithm,
which makes good use of the DF-tree structure.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations—linked represen-
tations; H.2.8 [Database Management]: Database Ap-
plications—data mining ; J.2 [Computer Applications]:
Social and Behavioral Sciences

General Terms
Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords
Data mining, friendship patterns, diverse friends, linked
data, social networks, extending database technology, data-
base theory
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1. INTRODUCTION & RELATED WORK
Nowadays, with the advances in technology, high volumes
of valuable data—such as blogs, forums, wikis, and users’
reviews—can be easily generated or collected from various
data sources. These data are often related or linked, and
thus form a web of linked data [3]. Over the few years, re-
searchers have modelled, queried, and reasoned these linked
web data. For instance, Pernelle and Säıs [15] focused on
classification rule learning for linked data. Ferrara et al. [9]
proposed a feature-based approach to classify linked data.

A social web is an instance of a web of linked data. Such
a social web can be viewed as a collection of social relation-
ships that link social entities (e.g., users). In recent years,
researchers have exploited the social perspective or social
phenomena [4, 8] in this web of linked data (e.g., for the
relevant problem of detecting communities over social and
information networks [6, 7, 20]). Intuitively, social networks
[14] are made of social entities who are linked by some spe-
cific types of relationships (e.g., friendship, common interest,
kinship). Facebook, Google+, LinkedIn, Twitter and Weibo
[17, 22] are some examples of social networks. Within these
networks, a user fi usually can create a personal profile,
add other users as friends, endorse their skills/expertise, ex-
change messages among friends. These social networks may
consist of thousands or millions of users; each user fi can
have di↵erent number of friends. Among them, some are
more important (or influential, prominent, and/or active in
a wide range of domains) than others [2, 12, 13, 19, 23].
Recognizing these diverse friends can provide valuable in-
formation for various real-life applications when analyzing
and mining high volumes of valuable social network data.

Over the past few years, several data mining techniques
[11, 16, 21] have been developed to help users extract im-
plicit, previously unknown, and potentially useful informa-
tion about the important friends. Recent works on social
network mining include the discovery of strong friends [5]
and significant friends [18] based on the degree of one-to-
one interactions (e.g., based on the number of postings to a
friend’s wall).

However, in some situations, it is also important to dis-
cover users who (i) are influential in the social networks,
(ii) have high level of expertise in some domains, and/or
(iii) have diverse interest in multiple domains. In other
words, users may want to find important friends based on
their influence, prominence, and/or diversity. For instance,
some users may be narrowly interested in one specific do-
main (e.g., computers). Other users may be interested in
a wide range of domains (e.g., computers, music, sports),
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but their expertise level may vary from one domain to an-
other (e.g., a user fi may be a computer expert but only a
beginner in music).

In this paper, we propose a tree-based mining algorithm to
find from social networks for those diverse friends, who are
highly influential across multiple social network domains.
To this end, one of our key contributions is an e�cient
tree-based algorithm called DF-growth for mining diverse
friends from social networks. DF-growth takes into account
multiple properties (e.g., influence, prominence, and/or di-
versity) of friends in the networks. Another key contribution
is a prefix-tree based structure called DF-tree for capturing
the social network data in a memory-e�cient manner. Once
the DF-tree is constructed, DF-growth computes the diver-
sity of users based on both their influence and prominence
to mine diverse groups of friends.

The remainder of this paper is organized as follows. The
next section introduces the notion of diverse friends. Sec-
tion 3 presents our DF-growth algorithm, which mines di-
verse friends from our DF-tree. Experimental results are re-
ported in Section 4. Conclusions and future work are given
in Section 5.

2. DIVERSE FRIENDS IN SOCIAL NET-
WORKS

This section presents the concept of diverse friends in social
networks. Let us consider a social network on three di↵er-
ent domains (domains D

1

, D
2

, D
3

) and seven individuals—
Antonios, Barbara, Georgios, Dimitrios, Evgenios, Zoe, and
Hebe—with prominence values in each domain, as shown
in Table 1. Each domain represents a sub-category (e.g.,
sports, arts, education) of interest. The prominence value
of an individual reveals his level of expertise (e.g., impor-
tance, weight, value, reputation, belief, position, status, or
significance) in a domain. In other words, the prominence
value indicates how important, valued, significant, or well-
positioned the individual is in each domain. The promi-
nence value can be measured by using a common scale,
which could be (i) specified by users or (ii) automatically
calculated based on some user-centric parameters (e.g., con-
nectivity, centrality, expertise in the domain, years of mem-
bership in the domain, degree of involvement in activities
in the domain, numbers of involved activities in the do-
main). In this paper, the prominence value is normalized
into the range (0, 1]. As the same individual may have
di↵erent levels of expertise in di↵erent domains, his corre-
sponding prominence value may vary from one domain to
another. For instance, prominence value PromD

1

(Antonios)
of Antonios in domain D

1

is 0.45, which is di↵erent from
PromD

2

(Antonios) = 0.60. Moreover, PromD
1

(Antonios) is
higher than PromD

1

(Georgios) = 0.20, implying that Anto-
nios is more influential than Georgios in domain D

1

.
Similar to the existing settings of a social network [5,

11, 18], let F = {f
1

, f
2

, . . . , fm} be a set of social enti-
ties/friends in a social network. An interest-group list L ✓ F
is a list of individuals who are connected as friends due
to some common interests. Let G = {f

1

, f
2

, . . . , fk} ✓ F
be a group of friends (i.e., friend group) with k friends.
Then, Size(G) = k, which represents the number of indi-
viduals in G. A friend network F

SN

= {L
1

, L
2

, . . . , Ln} is
the set of all n interest-group lists in the entire social net-
work. These lists belong to some domains, and each domain

Table 1: Prominence of friends
Friend Prominence Prom(fi)
(fi) Domain D

1

Domain D
2

Domain D
3

Antonios 0.45 0.60 0.50
Barbara 0.90 0.70 0.30
Georgios 0.20 0.60 0.70
Dimitrios 0.30 0.50 0.40
Evgenios 0.50 0.40 0.45

Zoe 0.42 0.24 0.70
Hebe 0.57 0.10 0.20

Table 2: Lists of interest groups in F
SN

Domain Interest-group list Lj

L
1

= {Antonios, Barbara}

D
1

L
2

= {Antonios, Barbara, Dimitrios}
L

3

= {Georgios, Dimitrios}
L

4

= {Barbara, Georgios, Dimitrios}
D

2

L
5

= {Barbara, Georgios, Evgenios}
L

6

= {Barbara, Hebe}
L

7

= {Georgios, Evgenios}
L

8

= {Antonios, Georgios}
D

3

L
9

= {Antonios, Georgios, Evgenios}
L

10

= {Antonios, Zoe}

contains at least one list. The set of lists in a particular do-
main D is called a domain database (denoted as FD). Here,
we assume that there exists an interest-group list in every
domain. The projected list F G

D of G in FD is the set of
lists in FD that contains group G. The frequency FreqD(G)
of G in FD indicates the number of lists Lj ’s in F G

D , and
the frequencies of G in multiple domains are represented as
FreqD

1,2,...,d

(G) = hFreqD
1

(G),FreqD
2

(G), . . . ,FreqD
d

(G)i.

Example 2.1. Consider F
SN

shown in Table 2, which
consists of n=10 interest-group lists L

1

, ..., L
10

for m=7 so-
cial individuals/friends in Table 1. Each row in the table
represents the list of an interest group. These 10 interest
groups are distributed into d=3 domains D

1

, D
2

and D
3

.
For instance, FD

1

= {L
1

, L
2

, L
3

}. For group G = {Geor-
gios, Evgenios}, its Size(G)=2. As its projected lists on
the 3 domains are F G

D
1

=;, F G
D

2

={L
6

, L
7

} and F G
D

3

={L
8

},
its frequencies FreqD

1,2,3

(G) = h0, 2, 1i.

Definition 2.1. The prominence value PromD(G)
of a friend group G in a single domain D is defined as the
average of all prominence values for all the friends in G:

PromD(G) =

PSize(G)

i=1

PromD(fi)

Size(G)
. (1)

Then, prominence values PromD
1,2,...,d

(G) of a friend group
G in multiple domains are represented as PromD

1,2,...,d

(G)
= hPromD

1

(G), PromD
2

(G), . . . , PromD
d

(G)i.

Example 2.2. Revisit F
SN

in Table 2. The prominence
value of friend group G = {Georgios, Evgenios} in D

1

=
Prom

D

1

(Georgios)+Prom

D

1

(Evgenios)

Size(G)

= 0.20+0.50
2

= 0.35. We
apply similar computation on the other two domains D

2

and D
3

to get PromD
1,2,3

(G) = h0.35, 0.60+0.40
2

, 0.70+0.45
2

i =
h0.35, 0.5, 0.575i.
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Definition 2.2. The influence Inf D(G) of a group G
of social entities/friends in a domain D in FD is defined as
the product of the prominence value of G in the domain D
and its frequency in the domain database FD, i.e.,

Inf D(G) = PromD(G) ⇥ FreqD(G). (2)

The influence Inf D
1,2,...,d

(G) of G in multiple domains is

then represented as Inf D
1,2,...,d

(G) = hInf D
1

(G), Inf D
2

(G),

. . . , Inf D
d

(G)i.

Example 2.3. Continue with Example 2.2. Recall that
PromD

1,2,3

(G) = h0.35, 0.5, 0.575i. Recall from Example 2.1
that FreqD

1,2,3

(G) = h0, 2, 1i. Then, the overall influence

of G in all 3 domains can be calculated as Inf D
1,2,3

(G) =

h0.35 ⇥ 0, 0.5 ⇥ 2, 0.575 ⇥ 1i = h0, 1, 0.575i.

Definition 2.3. The diversity Div(G) of a group G of
social entities/friends among all d domains in F

SN

is defined
as the average of all the influence values of G in all domains
in the social network:

Div(G) =

Pd
j=1

Inf D
j

(G)

d
. (3)

Example 2.4. Continue with Example 2.3. Recall that
Inf D

1,2,3

(G) = h0, 1, 0.575i. Then, the diversity of G in

these d=3 domains in F
SN

is Div(G)= 0+1+0.575
3

=0.525.

Here, a group G of friends in a social network F
SN

is con-
sidered diverse if its diversity value Div(G) � user-specified
minimum threshold minDiv, which can be expressed as an
absolute (non-negative real) number or a relative percentage
(with respect to the size of F

SN

). Given F
SN

and minDiv,
the research problem of mining diverse friends from so-

cial networks is to find every group G of friends having
Div(G) � minDiv.

Example 2.5. Let group G = {Georgios, Evgenios}. Re-
call from Example 2.4 that diversity Div(G) = 0.525. Given
(i) F

SN

in Table 2 and (ii) the user-specified minDiv=0.5,
G is diverse because Div(G)=0.525 � 0.5=minDiv.

However, group G0 = {Evgenios}, such that G0

✓ G is

not diverse because Div(G0) = (0.5⇥0)+(0.4⇥2)+(0.45⇥1)

3

=
0+0.8+0.45

3

= 0.417 < minDiv.

Note that, when mining frequent patterns, the frequency/
support measure [1, 10] satisfies the downward closure prop-
erty (i.e., all supersets of an infrequent patterns are infre-
quent). This helps reduce the search/solution space by prun-
ing infrequent patterns, which in turn speeds up the mining
process.

However, mining diverse friends is di↵erent from mining
frequent patterns. As observed from Example 2.5 that group
G0 = {Evgenios} is not diverse but its super-group G =
{Georgios, Evgenios} is diverse. In other words, diversity
does not satisfy the downward closure property (i.e., if a
group is not diverse, then not all of its super-groups are
guaranteed to be diverse).

3. MINING DIVERSE FRIENDS
Given that diversity does not satisfy the downward closure
property, we cannot prune those groups that are not di-
verse. Hence, the mining of diverse friends can be challeng-
ing. To handle this challenge, for each domain D, we identify

the (global) maximum prominence value GMPromD

among all friends. Then, for each friend fi, we calculate
an upper bound of the influence value Inf U

D(fi) by multi-
plying GMPromD (instead of the actual PromD(fi)) with
the corresponding frequency FreqD(fi). The upper bound
of diversity value DivU (fi) can then be computed by using
Inf U

D(fi).

Lemma 3.1. Let G be a group of friends in F
SN

such that
a friend fi 2 G. If DivU (fi) < minDiv, then Div(G) must
also be less than minDiv.

Example 3.1. Let us revisit F
SN

in Table 2. Global max-
imum prominence values are GMPromD

1

=0.90, GMPromD
2

= 0.70, and GMPromD
3

=0.70. Recall from Example 2.5
that FreqD

1,2,3

({Evgenios}) = h0, 2, 1i. Then, we can com-

pute DivU ({Evgenios}) = (0.90⇥0)+(0.70⇥2)+(0.70⇥1)

3

= 0.7 �

minDiv. So, we do not prune {Evgenios} to avoid miss-
ing its super-group {Georgios, Evgenios}, which is diverse.

Similarly, DivU ({Zoe}) = (0.90⇥0)+(0.70⇥0)+(0.70⇥1)

3

=0.23 <
minDiv. Due to Lemma 3.1, we prune Zoe as none of its
super-groups can be diverse.

3.1 Construction of a DF-tree Structure
Our proposed DF-growth algorithm takes (i) a friend net-
work F

SN

and (ii) a user-specified minDiv threshold as two
input parameters to construct a DF-tree as follows. It first
scans F

SN

to calculate FreqD
j

(fi) for each friend fi in each
domain Dj . For each fi, DF-growth then uses GMPromD

to compute the upper bound of the diversity value DivU (fi),
which is used to prune groups of friends who are not poten-
tially diverse. Every potentially diverse friend fi, along with
its FreqD

1,...,d

(fi), is stored in the header table.
Then, DF-growth scans F

SN

the second time to capture
the important information about potentially diverse friends
in a user-defined order in the DF-tree. Each tree node con-
sists of (i) a friend name and (ii) its frequency counters for
all d domains in the respective path. The basic construction
process of a DF-tree is similar to that of the FP-tree [10].
A key di↵erence is that, rather than using only a single fre-
quency counter capturing either the maximum or average
frequency for all domains (which may lead to loss of informa-
tion), we use d frequency counters capturing the frequency
for all d domains. See Example 3.2.

Example 3.2. To construct a DF-tree for F
SN

shown in
Table 2 when minDiv=0.5, DF-growth scans F

SN

to com-
pute (i) GMPromD

1,2,3

= h0.9, 0.7, 0.7i for all d=3 domains,
(ii) frequencies of each of the 7 friends in d=3 domains (e.g.,
FreqD

1,2,3

({Antonios}) = h2, 0, 3i), (iii) upper bound of di-

versity values of all 7 friends (e.g., DivU ({Antonios}) =
(0.9⇥2)+(0.7⇥0)+(0.7⇥3)

3

= 1.3 using Inf U
D

1,2,3

({Antonios})).
Based on Lemma 3.1, we safely remove Zoe and Hebe hav-
ing DivU ({Zoe})=0.23 and DivU ({Hebe})=0.23 both below
minDiv as their super-groups cannot be diverse. So, the
header table includes only the remaining 5 friends—sorted
in some order (e.g., lexicographical order of friend names)—
with their FreqD

1,2,3

({fi}). To facilitate a fast tree traver-
sal, like the FP-tree, the DF-tree also maintains horizontal
node traversal pointers from the header table to nodes of
the same fi.

Our DF-growth algorithm then scans each Lj 2 F
SN

, re-
moves any friend fi 2 Lj having DivU (fi) <minDiv, sorts
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Figure 1: Construction of a DF-tree.

the remaining friends according to the order in the header
table, and inserts the sorted list into the DF-tree. Each
tree node captures (i) fi representing the group G consist-
ing of all friends from the root to fi and (ii) its frequencies
in each domain FreqD

1,2,3

(G). For example, the rightmost

node Evgenios:0,1,0 of the DF-tree in Figure 1(b) captures
G={Georgios, Evgenios} and FreqD

1,2,3

(G)=h0, 1, 0i. Tree

paths of common prefix (i.e., same friends) are shared, and
their corresponding frequencies are added. See Figures 1(a),
1(b), and 1(c) for DF-trees after reading all interest-group
lists in domain D

1

, both D
1

and D
2

, as well as the entire
F
SN

, respectively.

With this tree construction process, the size of the DF-
tree for F

SN

with a given minDiv is observed to be bounded
above by

P
L

j

2F
SN

|Lj |.

3.2 Mining of All Diverse Friend Groups
After constructing the DF-tree, our DF-growth algorithm
recursively mines/discovers diverse friend groups by building
projected and conditional trees in a fashion similar to that
of FP-growth [10].

Recall that Div(G) computed based on PromD(G) does
not satisfy the downward closure property. To facilitate
pruning, we use GMPromD(fi) to compute DivU (fi), which
then satisfies the downward closure property. However, if
DivU (G) was computed as an upper bound to super-group G
of fi, then it may overestimate diversity of G and may lead
to false positives. To reduce the number of false positives,
DF-growth uses the local maximum prominence value
LMPromD(G) = maxf

i

2F G

D

{PromD(G)} for the projected

and conditional trees for G. See Lemma 3.2 and Exam-
ple 3.3.

Lemma 3.2. The diversity value of a friend group G com-
puted based on LMPromD(G) is a tighter upper bound than
DivU (G) computed based on GMPromD.

Example 3.3. Let us continue Example 3.2. To mine
potentially diverse friend groups from the DF-tree in Fig-
ure 1(b) using minDiv = 0.5, DF-growth first builds the

Figure 2: Tree-based mining of diverse friend
groups.

{Evgenios}-projected tree—as shown in Figure 2(a)—by ex-
tracting the paths hAntonios, Georgios, Evgeniosi:0,0,1, hBar-
bara, Georgios, Evgeniosi:0,1,0 and hGeorgios, Evgeniosi:0,1,0
from the DF-tree in Figure 1(b). For FEvgenios

D
1,2,3

= {An-

tonios, Barbara, Georgios, Evgenios}, our DF-growth al-
gorithm uses LMPromD

1,2,3

(FEvgenios

D
1,2,3

) = h0.9, 0.7, 0.7i to

compute the tightened DivU (G) such that the tightened

DivU ({Antonios, Evgenios}) = (0.9⇥0)+(0.7⇥0)+(0.7⇥1)

3

=0.23
< minsup.

As DivU ({Antonios, Evgenios}) and DivU ({Barbara, Ev-
genios}) are both below minsup, DF-growth prunes Anto-
nios and Barbara from the {Evgenios}-projected tree to get
the {Evgenios}-conditional tree as shown in Figure 2(b).
Due to pruning, our DF-growth algorithm recomputes (i) the
local maximum prominence value LMPromD

1,2,3

(FEvgenios

D
1,2,3

)

=h0.5, 0.6, 0.7i and (ii) the tightened DivU ({Georgios, Ev-

genios}) = (0.5⇥0)+(0.6⇥2)+(0.7⇥1)

3

= 0.63 for the updated

FEvgenios

D
1,2,3

= {Georgios, Evgenios}. This completes the min-

ing for {Evgenios}.
Next, DF-growth builds {Dimitrios}-, {Georgios}- and

{Barbara}-projected trees as well as their conditional trees,
from which potentially diverse friend groups can be mined.
Finally, our DF-growth algorithm computes the true diver-
sity value Div(G) for each of these mined groups to check if
it is truly diverse (i.e., to remove all false positives).
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Table 3: Dataset characteristics
Dataset n=#transactions m=#domain items Max trans. length Avg trans. length Density

mushroom 8,124 119 23 23.0 Dense
T10I4D100K 100,000 870 29 10.1 Sparse
kosarak 990,002 41,270 2498 8.1 Sparse

Figure 3: Experimental results.

3.3 Removal of Non-diverse Friend Groups
Our DF-growth algorithm makes good use of the global and
local maximum prominence values of friend groups as upper
bounds to diversity values of friend groups. Consequently,
the algorithm discovers all truly diverse friend groups (i.e.,
no false negatives). However, it also discover some “poten-
tially diverse” friend groups that are not truly diverse (i.e.,
some false positives). Hence, as its final step, our algorithm
computes the true diversity values Div(G) for each of these
mined groups to check if it is truly diverse (i.e., to remove
all false positives).

Example 3.4. Let us continue Example 3.3. After min-
ing potentially diverse friend groups from {Evgenios}-, {Di-
mitrios}-, {Georgios}- and {Barbara}-projected trees as well
as their conditional trees, our DF-growth algorithm com-
putes the true diversity value Div(G) for each of the mined
groups to check if it is truly diverse (i.e., to remove all false
positives).

4. EXPERIMENTAL EVALUATION
To evaluate the e↵ectiveness of our proposed DF-growth al-
gorithm and its associated DF-tree structure, we compared
them with a closely related weighted frequent pattern min-
ing algorithm called Weight [24] (but it does not use di↵erent
weights for individual items). As Weight was designed for
frequent pattern mining (instead of social network mining),
we apply those datasets commonly used in frequent pattern
mining for a fair comparison: (i) IBM synthetic datasets
(e.g., T10I4D100K) and (ii) real datasets (e.g., mushroom,
kosarak) from the Frequent Itemset Mining Dataset Repos-
itory (http://fimi.ua.ac.be/data). See Table 3 for more
detail. Items in transactions in these datasets are mapped
into friends in interest-group lists. To reflect the concept of
domains, we subdivided the datasets into several batches.
Moreover, a random number in the range (0, 1] is generated
as a prominence value for each friend in every domain.

All programs were written in C++ and run on the Win-
dows XP operating system with a 2.13 GHz CPU and 1 GB

main memory. The runtime specified indicates the total ex-
ecution time (i.e., CPU and I/Os). The reported results are
based on the average of multiple runs for each case. We
obtained consistent results for all of these datasets.

4.1 Runtime
First, we compared the runtime of DF-growth (which in-
cludes the construction of the DF-tree, the mining of po-
tentially diverse friend groups from the DF-tree, and the
removal of false positives) with that of Weight. Figure 3(a)
shows the results for a dense dataset (mushroom), which
were consistent with those for sparse datasets (e.g., T10I4-
D100K). Due to page limitation, we omit the results for
sparse datasets. But, runtimes of both algorithms increased
when mining larger datasets (social networks), more batches
(domains), and/or with lower minDiv thresholds. Between
the two algorithms, our tree-based DF-growth algorithm
outperformed the Apriori-based Weight algorithm. Note
that, although FP-growth [10] is also a tree-based algorithm,
it was not design to capture weights. To avoid distraction,
we omit experimental results on FP-growth and only show
those on Weight (which captures weights).

4.2 Memory Consumption
Second, we evaluated the memory consumption. Figure 3(b)
shows the amount of memory required by our DF-tree for
capturing the content of social networks with the lowest min-
Div threshold (i.e., without removing any friends who were
not diverse). Although this simulated the worst-case sce-
nario for our DF-tree, DF-tree was observed (i) to consume
a reasonable amount of memory and (ii) to require less mem-
ory than Weight (because our DF-tree is compact due to the
prefix sharing).

4.3 Scalability
Third, we tested the scalability of our DF-growth algorithm
by varying the number of transactions (interest-group lists).
We used the kosarak dataset as it is a huge sparse dataset
with a large number of distinct items (individual users).
We divided this dataset into five portions, and each por-
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tion is subdivided into multiple batches (domains). We set
minDiv=5% of each portion. Figure 3(c) shows that, when
the size of the dataset increased, the runtime also increased
proportionally implying that DF-growth is scalable.

4.4 Summary on Evaluation Results
Experimental results on (i) runtime, (ii) memory consump-
tion (which reveals tree compactness) and (iii) scalability
showed that our DF-growth algorithm is time- and space-
e�cient as well as scalable. As ongoing work, we plan to
evaluate the quality (e.g., precision) of DF-growth in finding
diverse friend groups. Moreover, for a fair comparison with
Weight, we have used those datasets that are commonly used
in frequent pattern mining. As ongoing work, we plan to
evaluate DF-growth using real-life social network datasets.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we (i) introduced a new notion of diverse
friends for social networks, (ii) proposed a compact tree
structure called DF-tree to capture important information
from social networks, and (iii) designed a tree-based min-
ing algorithm called DF-growth to find diverse (groups of)
friends from social networks. Diversity of friends is mea-
sured based on their prominence, frequency and influence
in di↵erent domains on the networks. Although diversity
does not satisfy the downward closure property, we man-
aged to address this issue by using the global and local
maximum prominence values of users as upper bounds. Ex-
perimental results showed that (i) our DF-tree is compact
and space-e↵ective and (ii) our DF-growth algorithm is fast
and scalable for both sparse and dense datasets. As ongoing
work, we conduct more extensive experimental evaluation
with various datasets (e.g., real-life social network datasets)
and to measure other aspects (e.g., precision) of our DF-
growth algorithm in finding diverse friends. We also plan
to (i) design a more sophisticated way to measure influence
and (ii) incorporate other computational metrics (e.g., pop-
ularity, significance, strength) with prominence into our dis-
covery of useful information from social networks.
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