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ABSTRACT
Recent advances on tracking technologies enable the collec-
tion of spatio-temporal data in the form of trajectories. The
analysis of such data can convey knowledge in prominent ap-
plications, and mining groups of moving objects turns out
to be a valuable mean to model their movement. Existing
approaches pay particular attention in groups where objects
are close and move together or follow similar trajectories by
assuming that movement cannot change over time. Instead,
we observe that groups can be of interest also when ob-
jects are spatially distant and have di!erent but inter-related
movements: objects can start from di!erent places and join
together to move towards a common location. To take into
account inter-related movements, we have to analyze the ob-
jects jointly, follow their respective movements and consider
changes of movements over time. Motivated by this, we in-
troduce the notion of communities and propose a computa-
tional solution to discover them. The method is structured
in three steps. The Þrst step performs a feature extraction
technique to elicit the inter-related movements between the
objects. The second one leverages a tree-structure in order
to group objects with similar inter-related movements. In
the third step, these groupings are used to mine communities
as groups of objects which exhibit inter-related movements
over time. We evaluate our approach on real data-sets and
compare it with existing algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications ]: Data mining

Keywords
Trajectories, Mining, Groups of Moving Objects.

1. INTRODUCTION
The tremendous advances in positioning technologies, such

as telemetry, GPS equipment and smart mobile phones, have
enabled tracking of any type of moving objects and collect-
ing spatio-temporal data into growing repositories. Some
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example applications follow: i) In location-based social net-
works, people travel in the real world and leave their location
history in the form of a trajectory . These trajectories do not
only connect locations in the physical world but also bridge
the gap between people and locations [12]. ii ) GPS devices
allow the recording of vehicle locations [11]. Such informa-
tion often includes data for human mobility. iii ) Zoologists
are investigating the impact of the levels of urbanization on
the migration, distribution and habitat use of animals [9].

In the aforementioned applications, one can be interested
in the discovery of groups of objects which move together
or in a similar manner. For instance, in car pooling it could
be useful to determine people with the same route to share
the car. Such problems are not novel in the literature [5]
and most of the e!orts result in mining groups of moving
objects, such asßocks [1], convoys [4] and swarms [8].

The spatio-temporal properties of these groups is the main
distinguishing aspect. In particular, a ßock contains at least
m objects moving in the same direction within an circular
region with a user-deÞned radius. Variants of the ßock in-
clude also a notion of time-interval (with minimum duration
deÞned by the user) according to which in each time-stamp
of the interval a disc containing m objects can be identiÞed.
The rigid characteristic of Þxed circular shape could miss
some groups of arbitrary form.

The introduction of the notion of density avoids this draw-
back and allows to discover groups, named as convoys, which
have no limitations on the shape and size. A convoy is de-
Þned as a cluster of objects and it is identiÞed by means
of a density-based clustering technique which checks for the
condition of density-connectedness on the objects and for all
the time-stamps of a time-interval [4].

A more general group type is represented by the swarm
concept, which, in contrast to ßocks and convoys, it is not
required to hold for all time-stamps of a time-interval, but it
can occur more sporadically. In the classical notion of swarm
this temporal constraint corresponds to a minimum number
of time-stamps which are not necessarily consecutive.

Motivation . The algorithms to detect ßocks, convoys and
swarms are designed to capture similarities among (sub)tra-
jectories but leave unexplored two interrelated aspects which
instead appear to be new sources of information to exploit:
i) movements may depent on each other and may hide inter-
actions among the objects, ii) movements can reßect changes
of the motion of the objects and implicitly denote their dy-
namic behaviour. Interactions reßect the possible relation-
ships in which the objects can be involved in space and time,
they can provide a more complete description of the groups
by explaining even the cause of their formation. Interac-
tions can evolve because the objects can move near each
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Figure 1: Moving objects grouped using: (a) ßocks, convoys and swarms and (b) communities.

other and then move away. Indeed, moving objects intrinsi-
cally are dynamic, their motion is not necessarily linear and
it can be inßuenced by the properties or needs of each ob-
ject and by the interactions with other objects as well. For
instance, in social studies, we can observe individuals which
begin to move from di!erent locations, they could come near
until to join together in proximity of a point of interest, they
could remain there for a time and then go away from each
other. So, those individuals can be members of a group even
without having followed similar trajectories.

In that kind of problems, a group can turn out to be in-
teresting not only when its members are spatially close and
move similarly, but also when they are far apart and have dif-
ferent but inter-related movements, or also when they have
di!erent movements but are involved in the same type of in-
teractions. Existing approaches are not prepared to handle
this concept, mainly due to the following reasons:

¥ Most of the existing techniques rely on a static group
concept where objects have to always meet the same
spatio-temporal properties: for instance, the members
of a group are required to be close each other in each
time-stamp.

¥ The trajectory corresponds to a geometric abstraction
of the movement and is deÞned as a series of punc-
tual time-stamped observations that cannot indicate
neither how the object moves over time nor whether
there exists any form of relationship with other trajec-
tories.

Related Work and Contributions . In this paper, we
introduce the concept of community based on the concepts
of interaction among the objects and change in the move-
ments of the objects. The interaction between two objects
oi and oj is deÞned on the basis of the movement that an ob-
ject oi performs with respect to another object oj , while the
change concerns the variations of spatio-temporal character-
istics that can be observed in the movement of each object.
Therefore, changes of an objectÕs motion may inßuence or
determine its interaction with other objects.

A community consists of a set of objects in common to
a set of groups arranged in sequence. In its turn, a group
contains n ! 1 pairs formed with objects taken from a set of
n elements: a pair is formed with one object in common to
all pairs ( reference object) and the other object taken from

the remaining n ! 1 (participants ). The pairs of a group
exhibit very similar spatio-temporal features. Di!erently
from ßock, convoy and swarm, the timing of a community is
based on time-intervals created from the time-stamps of the
positions. We clarify the di!erence between a community
and other group types in the following example.

Another notion of community , proposed in [10], models
the similarities of moving objects in four information sources,
namely semantic properties of the locations, temporal dura-
tion of the trajectory, spatial proximity and movement ve-
locity. This notion anyway requires that the objects move
similarly in all time-stamps whereas the result cannot in-
clude communities with discontinuities over time.

Example 1 . In Figure 1(a), six objects are tracked and
have the positions in six time-stamps included in the time-
intervals [ t0, t 1 ], [t1 , t 2 ], [t2 , t 3 ], [t3 , t 4 ], [t4 , t 5 ], [t5 , t 6 ]. Let
k=3 the minimum number of objects required for the Þ-
nal groups. Clusters { C3, C6, C7, C8, C9} share the objects
{ o1, o2, o3} which form a ßock in [ t1, t 2 ], [t2 , t 3 ], [t3 , t 4 ], [t4 , t 5 ],
[t5 , t 6 ]. The group { o1, o2, o3, o4} corresponds to a convoy
if we consider the notion of density-connectedness on the
clusters { C4, C6, C7, C8, C9} . Finally, with the objects
in common to the clusters { C2, C5, C10 } we have the swarm
{ o4, o5, o6} . In Figure 1(b), we have two communities, namely
{ o1, o2, o3} and { o4, o5, o6} respectively. The Þrst one is
composed of the objects in common to the sequence of the
groups { C1, C3, C4, C5, C6} , where the group C1 is collo-
cated into the time-interval [ t0 , t 2 ], C3 is collocated into the
time-interval [ t1 , t 3 ], C4 is collocated into [t2, t 4 ], C5 is asso-
ciated with [ t4, t 6 ]. The group C1 is composed of the pairs
(o2, o1) (where o2 is the reference,o1 is the participant) and
(o2, o3) (where o2 in the reference, o3 is the participant).
The other groups can be interpreted in the same manner.
The motions of the pairs ( o2, o1 )and (o2, o3) tells us that
they start far apart and tend to move near while observ-
ing a variation of the mutual distance (in [ t0, t 3 ]), then,
they move together without any variation of the distance
(in [ t2, t 5 ]), Þnally they move apart (in [ t4, t 6 ]). The commu-
nity { o4, o5, o6} is obtained from the non-consecutive groups
{ C2, C7} : the Þrst group is collocated into [ t0, t 2 ], the second
group in [t4, t 6 ]. In this community, the pairs ( o5, o4) and
(o5, o6) proceed by keeping the same distance in [t0, t 2 ] while
they exhibit a reduction of the mutual distance in [ t4, t 6 ]. !

The previous example shows the di"culty of existing al-
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gorithms to discover communities. Indeed, the algorithm
for Þnding ßocks is inadequate since it works with clusters
in the strict form of a Þxed disc. The method for detecting
convoys cannot be used since it operates on the density-
connectedness corresponding to the simultaneous applica-
tion of conditions on the size and closeness for each cluster,
which are criteria hard to be satisÞed when considering dis-
tant objects. The di"culty of the algorithm for the discov-
ery of swarms [8] lies in the accommodation of the temporal
component and, speciÞcally, in the fact that the members
of the swarms are required to stick together for a number of
possibly non-consecutive time-stamps. But this could mean
having insigniÞcant swarms characterized by completely dis-
jointed time-stamps and fragmented movements. In sum-
mary, the contributions of this paper include:

¥ A new deÞnition of group of moving objects which ex-
tends the classical notion of cluster based on the spatial
closeness and density-connectedness.

¥ The exploitation of two new sources of information cor-
responding to the interactions among the objects and
changes of their motions.

¥ The deÞnition of spatio-temporal features able to model
the interactions and changes of the movements of pairs
of moving objects.

¥ The synthesis of a grouping technique which does not
rely on a distance/dissimilarity measure.

¥ A performance evaluation and experimental compari-
son with existing techniques.

Roadmap . The remainder of this work is organized as fol-
lows. The next section presents some fundamental concepts
related to our approach. Section 3 studies our proposal in
detail. Performance evaluation results are o!ered in Section
4 whereas Section 5 concludes our work and discuss brießy
future research directions.

2. FUNDAMENTAL CONCEPTS
In this section we present some fundamental concepts re-

lated to our proposal. Some frequently used symbols are
given in Table 1. Let O= { o1, o2, . . . , on } be the set of all
moving objects and T = { ! 1, ! 2 , . . . ,! m } be the set of all
time-stamps. The trajectory of an object o is a Þnite se-
quence of time-stamped locations denoted ast(o) : "(p1, ! 1),
(p2, ! 2), . . ., (pm , ! m )#during the time-interval [ ! 1 , ! m ], where

Table 1: List of symbols.
Symbol Explanation

O all moving objects
T all time-stamps

t (o) ( t (ou )) trajectory of the object o (ou )
F set of descriptive features
F l l -th features describing a pair of trajectories

F l
o u ,o v

value of the l -th features for trajectories of ou , ov

[! 1 , ! m ] time-interval containing time-stamps of T
G pair group

or reference object of a pair group
os participant object of a pair group
Gf feature group

" min l ( " max l ) min (max) value of feature F l
" l Þxed value of the categoric feature F l
C a community

Figure 2: Feature generation from trajectories.

pi $ R2 is the geo-spatial position sampled at ! i $ T . A tra-
jectory may have time-stamps not necessarily equally dis-
tanced, they can be di!erent from those of another tra-
jectory as well as di!erent trajectories may have di!erent
lengths (number of geo-spatial positions).

In this work, we do not analyze the original trajectories
but we adopt a transformation technique which projects the
trajectory data into a descriptive space which includes a
Þnite set of features F = { F1, . . . , Fl , . . . , Ff } which are the
real subject of our analysis. The features can take value in
categoric or numeric domains. In particular, for each pair
(ou , ov ), the transformation technique returns a set of valued
features for the (sub)trajectories observed in two consecutive
time-intervals, which we denote as [! i , ! j ] % [! j +1 , ! k ] and
name asfeature time-intervals .

A simple illustration is reported in Figure 2. Consider
the trajectories of three objects o1, o2, o3. Let F 1

ou ,o v ,F 2
ou ,o v

be two features which describe the reciprocal movement be-
tween the objects ou , ov and their average mutual distance
respectively. The domain of the feature F 1

ou ,o v has categoric
values {ÒconstÓ,ÒfarÓ,ÒcloseÓ} where ÒconstÓ corresponds to
two objects that travel together by keeping constant their
distance, ÒawayÓ corresponds to two objects that are moving
away, and ÒcloseÓ corresponds to two objects that are mov-
ing closer. The domain of the feature F 2

ou ,o v has numeric
values in the set of natural numbers N. The values of F 1

and F 2 are computed on the feature time-intervals [ ! 1, ! 2 ] %
[! 2, ! 3 ], [! 3 , ! 4 ] % [! 4, ! 5 ], [! 5 , ! 6 ] % [! 6, ! 7 ]. So, for instance,
the value of the feature F 1

o1 ,o 2 in the feature time-intervals
[! 1, ! 2 ] %[! 2, ! 3 ] is ÒconstÓ, while the value the featureF 2

o1 ,o 2

is 20. Figure 2 reports the remaining values of the features.

Definition 1 (Pair Group). Given a subset ofO with
m objects, a pair group G consists of the (m ! 1) pairs of ob-
jects (or ,os ), where r $ { 1, . . . , m} , s = 1 , . . . , m, r &= s. The
object or appears in all pairs and it is named as reference
object, while the objectsos are named participant objects.

Definition 2 (Feature Group). Given a pair group
G, the set of featuresF = { F1, . . . , Fl , . . . , Ff } , a feature group
Gf consists of the pairs of G which, in the feature time-
intervals [! i , ! i + k ] ' T , [! i + k +1 , ! i +2 k ] ' T , . . ., [! p , ! p+ k ]
' T , [! p+ k +1 , ! p+2 k ] ' T , satisfy the following conditions
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¥ ( (or , os ) $ G: "min l ) F l
oj r ,o j s

< " max l , i! Fl has
numeric values,

where "min l $ R, "max l $ R are minimum and maxi-
mum values respectively for the featureFl .

¥ ( (or , os ) $ G: F l
or ,o s = "l , i! Fl has categoric values,

where "l is a Þxed value in the domain ofFl .

The values of "min l , "max l , "l are speciÞc for each feature
group. The feature time-intervals have identical width and
are arranged in chronological order.

Intuitively, a feature group is characterized by two compo-
nents, one of nature geo-spatial, the other one of nature tem-
poral. DeÞnition 2 says that, in the time-intervals [ ! i , ! i + k ]
% [! i + k +1 , ! i +2 k ], . . ., [! p , ! p+ k ] % [! p+ k +1 , ! p+2 k ], the pairs
of objects of G have the same value for each categorical fea-
ture and the same range for each numeric feature. For in-
stance in Figure 2, we have a feature group formed by the
pairs (o3, o2), ( o3, o1) in the time-intervals [ ! 1, ! 2 ] % [! 2, ! 3 ]
and [! 5, ! 6 ] % [! 6, ! 7 ]. Indeed, considered "1=ÒawayÓ ("l for
F 1), "min 2 =25, "max 2 =50 (respectively, "min l and "max l for
F 2), the values of the feature F 1 are the same (ÒawayÓ)
and the values of the feature F 2 have the same numeric
range. These conditions hold in the feature time-intervals
[! 1,! 2 ]%[! 2,! 3 ] and [! 5,! 6 ] % [! 6,! 7 ], but they do not hold in
the time-intervals [ ! 3,! 4 ] % [! 4,! 5 ] because the value of the
feature F 1 is ÒcloseÓ which is di!erent from ÒawayÓ.

Definition 3 (Community). A set of feature groups
{Gf 1 , Gf 2 , . . ., Gf n } deÞnes a communityC i!:

¥ the feature groups Gf 1 , Gf 2 , . . ., Gf n consists of the
same pair group G= G1= G2 = . . .= Gn composed by
(m-1) pairs of objects with the same reference object
and the same set ofm-1 participants.

¥ the feature time-intervals of two di!erent feature groups
are disjointed ([! i , ! i + k ] % [! i + k +1 , ! i +2 k ]

!
[! p , ! p+ k ]

%[! p+ k +1 , ! p+2 k ])= * and chronologically ordered (i +
2k < p ).

The sequence of the feature time-intervals associated with
the feature groups is called time-line.

For instance, in Figure 2, we have a community formed
by the pairs ( o3, o2) and (o3, o1) in the time-line [ ! 1, ! 3 ],
[! 3 , ! 5 ], [! 5 , ! 7 ], where o3 is the reference object, o2 and o1

are participant objects. In particular, in the feature time-
intervals [ ! 1, ! 2 ] % [! 2, ! 3 ] and [! 5, ! 6 ] % [! 6, ! 7 ], the feature
F 1 has value ÒawayÓ, while the featureF 2 has values in the
range [25,50) ("1=ÒawayÓ,"min 2 =25, "max 2 =50). In the fea-
ture time-interval [ ! 3 , ! 4 ] %[! 4, ! 5 ], the feature F 1 has value
ÒcloseÓ, while the featureF 2 has values in the range [15,25)
("1=ÒcloseÓ,"min 2 =15, "max 2 =25).

To capture possible discontinuities, we should handle the
case in which i + 2 k < p ! 1, namely when the feature
time-intervals are separated over time. At this aim, we in-
troduce an input parameter # which deÞnes the maximum
temporal gap that can be admitted between two feature
time-intervals.

Now, we can give a formal statement of the problem of
discovering communities from trajectories:

Given a set of moving objects O and the corresponding tra-
jectories, a set of time-stamps T , the features F and the
width of the associated time-intervals !, Discover the com-
munities as formalized in DeÞnition 3: for each community
C, the temporal gap in the time-line does not exceed ! and
the number of involved objects is greater than or equal to
the minimum input threshold minO .

3. PROPOSED METHOD
The proposed solution comprises three steps: i) trans-

formation of the original trajectories in descriptive spatio-
temporal features, ii) arrangement of the feature vectors
produced in the previous step in a tree-like structure in order
to generate feature groups andiii) discovery of communities
from feature groups.

3.1 Transformation of Trajectory Data
Tracking devices often record the positions of moving ob-

jects with irregularity and discontinuity, mainly due to phys-
ical and instrumental factors which can a!ect the data qual-
ity. To remove possible inconsistencies we have to handle
this kind of error sources. Moreover, the analysis of interac-
tions among objects, we intend to conduct, suggests that we
should apply a pre-processing step able to return positions
(of the objects) equally distanced over time, so that the tra-
jectories can be handled with regular timing. We adopt a
data transformation technique which Þrst performs a tempo-
ral segmentation operation and then projects the segmented
trajectories into the descriptive space. Preliminarily, an out-
lier removal operation is applied on the trajectories.

The temporal segmentation performs a discretization step
on the set T and generates time-intervals [! i , ! i + k ], [! i + k +1 ,
! i +2 k ], . . ., [! p , ! p+ k ], [! p+ k +1 , ! p+2 k ] with width equal to #.
This allows to have a sort of re-sampling of the trajectories at
regular time-stamps. In particular, for each object a single
geo-spatial location is associated with the set of positions
observed in each time-interval (segment). This location is
determined by an aggregation operation applied to the orig-
inal positions in a time-interval. As aggregation operator we
prefer to use the geometric mean due to its simplicity and
because other pre-processing operations (such as, smoothing
and interpolation) could introduce data loss and potential
creation of artifact in the trajectory data.

The descriptive space includes spatio-temporal features
deÞned to model the interactions and changes of the move-
ments of pairs of objects. The use of new descriptors to rep-
resent the original trajectories is not novel. In the literature
we can Þnd several types of features (also called movement
parameters) which have been deÞned basically for eliciting
information which the trajectories are not able to do directly
[3]. Typically, features are produced by simple feature ex-
traction algorithms applied to original trajectories and their
purpose is to model physical and spatial characteristics of
the movements, such as speed, acceleration, duration, direc-
tion, etc. In this work, the features are extracted from the
aggregate values computed in two consecutive time-intervals
(segments). More precisely, the value of a feature is com-
puted for each pair of objects and it is determined from
the two aggregate values computed in the respective time-
intervals for each object of the pair. We investigate six fea-
tures deÞned as follows (please refer to Figure 3):

Categoric Reciprocal Movement (CRM) is the feature which
represents the movement of an object with respect to the
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Figure 3: Trajectory transformation.

movement of another one. It takes Þve possible categoric
values in function of the two aggregate locations. The set of
possible values was deÞned manually and comprises{ÒoneawayÓ,
Òboth awayÓ,ÒconstÓ,ÒonecloseÓ,ÒbothcloseÓ} . More specif-
ically, ÓconstÓcorresponds to two objects that travel together
by keeping their distance constant. We have ÒoneawayÓ
when one of the two objects is moving away from the other
one while the latter does not change. The value ÒonecloseÓ
occurs when one of the two objects is moving close while the
trajectory of the other one remain unchanged. The value
Òboth awayÓ corresponds to two objects that are moving
away from each other. On the other hand, when the tra-
jectories tend to move close we have ÒbothcloseÓ.

Numeric Reciprocal Movement (NRM) is the feature which,
like CRM, represents the movement of an object relatively to
another one but with numeric values. The value of NRM is
derived from the distances computed, in each time-interval,
between the two aggregate locations of the pair of objects. It
is equal to the di!erence between these two distances. Thus,
when two objects are moving close to each other, NRM has
a negative value, while, otherwise the value is positive.

Displacement (DIS) denotes the displacement done by the
pair of objects over the two time-intervals. The value of DIS
is derived from the middle locations between the two aggre-
gate locations (in the two time-intervals) and it is equal to
the distance between the two middle locations.

Cardinal Direction (CD). The features listed above pro-
vide a spatial description of the movement without specify-
ing any geographic connotation. We introduce the feature
CD in order to elicit the information about the spatial direc-
tion and capture that information as the classical cardinal
direction of the movement of the pair of objects. The value
of CD is derived from the middle locations between the two
aggregate locations (in the two time-intervals) and it takes
the direction which goes from the middle location of the
Þrst time-interval towards the middle locations of the sec-
ond time-interval.

Position (POS). The purpose of this feature is to pro-
vide information on the localization of the movement. In-
deed, the features listed above cannot distinguish whether
two identical movements are localized in the neighbourhood
or in completely distant locations. The value of POS is de-
rived from the middle locations between the two aggregate
locations (in the two time-intervals) and it corresponds to

the middle point of the two middle locations.

Finally, for each pair of objects ou and ov , the transforma-
tion technique returns a vector of valued features " CRM,
NRM, DIS, CD, POS # computed on the two consecutive
time-intervals [ ! i , ! i + k ], [! i + k +1 , ! i +2 k ]. It is worthwhile that
the extraction of features for each pair of objects on con-
secutive time-intervals has a two-fold result: i) modelling
the interaction of the smallest admissible group of objects
(namely, two objects), and ii) capturing relevant changes
of their movements which turn out to be evident only on
time-intervals rather than instantaneous time-stamps.

3.2 The Feature Tree
Once the feature vectors have been generated, they pop-

ulate a B-tree [2] which is used to discover Þrst the feature
groups and then the communities. The tree structure does
not change when the vectors are inserted and it is deÞned on
the basis of the set of features introduced in Section 3.1. The
arrangement of tree levels is such to represent the features
in the order { CRM, NRM, CD,DIS, POS-x, POS-y } (Figure
4(a)). The feature ordering is decided by domain experts on
the basis of their criteria about the discriminative power of
the features. Thus, the features CRM and NRM are ranked
Þrst because they depict, better than the others, the inter-
action in a pair of objects. Then, we place features CD and
DIS because they are able to denote characteristics on the
changes of the movement, and, Þnally the features POS-x
and POS-y which provide a spatial indication not directly
related to the interactions and changes in moving objects.

Nodes of a speciÞc level refer to one feature and access to
nodes (children) of the lower level which, in their turn, refer
to another feature. More precisely, a node has as many child
nodes as the number of the possible values of the feature as-
sociated with its level, therefore, the number of nodes of a
speciÞc level is equal to the number of the possible values
of the feature associated with the parent level. In the case
of categorical features, the child nodes are denoted with dis-
tinct values "l deÞned in Section 3.1. For example, at the
level associated with feature CD, the nodes have eight child
nodes, one for each value of the set{ÒnorthÓ, Ònorth-eastÓ,
ÒeastÓ, Òsouth-eastÓ, ÒsouthÓ, ÒwestÓ, Òsouth-westÓ, Ònorth-
westÓ} . In the case of numeric features, the child nodes
are denoted with distinct ranges [ "min l , "max l ) produced by
a discretization technique. In this work, we adopt equi-
frequency discretization since it guarantees the balancing of
the tree due to the uniform distribution of vectors to ranges.

This tree structure allows us to collocate in the same
node the vectors whose values of the feature are identical
("l ) or are included in the same range (["min l , "max l )). The
root node contains vectors which have only one feature with
identical value (categoric), while the leaf nodes contain vec-
tors which have all categoric features with identical values
and all numeric features with values included in the same
ranges. Therefore, the vectors collocated in the same leaf
node will be those that have traversed the same path in the
tree and that we consider similar since share the same cate-
goric values and same numeric ranges. For instance, in the
leftmost leaf node in Figure 4(b), the pairs ( o2,o1), ( o2,o3)
share the same categoric values, namelyÒone awayÓfor CRM
and ÒnorthÓ for CD, and the same numeric ranges, namely
[1,3) for NRM, [20,40) for DIS, [100,600) for POS-x, and
[50,150) for POS-y.

The insertion process starts at the root and descends the
tree. For each level, it chooses the node whose value of the

305



(a) (b)

Figure 4: Feature tree example. The red dotted line illustrates a path.

associated feature is identical to (categorical) or includes
(numeric) the value of the same feature of the current vector.
From the chosen node we access to its child nodes where we
replicate the insertion considering the appropriate feature
until to reach the leaf nodes.

3.3 Feature Groups and Communities
We exploit the structure of the feature tree to determine

the geo-spatial and temporal components of feature groups
which are, in their turn, necessary for the communities.
From each leaf node we can extract at least one feature
group. The pair group G of a feature group can be searched
among the pairs of the inserted vectors, while the geo-spatial
component is determined directly from the tree path which
characterizes each leaf node. The temporal component is
computed by the method given in the sequel.

The method analyses the content of the leaf nodes sepa-
rately and, for each of these, it searches the feature time-
intervals which are in common. In particular, the method
identiÞes all possible pair groups (DeÞnition 1) present in
each leaf node and, for each pair group, it processes all
sequences of feature time-intervals in order to Þnd the se-
quences in common. The analysis is thus focused on each
pair group and is conducted in two phases: Þrst, generation
of candidate sequences, then, selection of the more interest-
ing candidates with respect to preference criteria.

In the Þrst phase, we adopt the e"cient algorithm pro-
posed in [6] in order to Þnd sequences (candidates) in com-
mon between a reference sequence of feature time-intervals
and the set of all sequences of the current pair group. The
algorithm solves the problem by searching the intersections
between the feature time-intervals of the reference sequence
and the feature time-intervals of the remaining sequences. In
particular, for each time-interval of the reference sequence,
the algorithm uses two binary search operations, one into
the sorted list of the time-stamps which terminate the time-
intervals and the other into the sorted list of the time-stamps
which open the time-intervals. Each search excludes the
time-intervals that cannot intersect the query interval. A
detailed description can be found in [6]. Eventually, the in-
tersecting time-intervals are sorted and combined to form
the candidate sequences.

In the second phase, two selection operations are per-

formed, one subsequent to the other one. The Þrst one Þlters
out the candidates which have time-intervals shorter than
the width #, while the second one selects the candidates
which meet the preference criteria. We have two preference
criteria, one alternative to the other one. The Þrst criteria
(maxInterval, MI ) favor feature groups with time-intervals
as long as possible, whereas the second criteria (maxObjects,
MO ) favor time-intervals associated with large set of pairs.
The preference criterion is strictly connected to the choice
of the reference sequence seen in the Þrst phase. When we
choosemaxInterval the reference sequence is chosen as the
longest sequence in the set of all sequences of the pair group,
while when we choosemaxObjects the reference sequence is
chosen as the shortest sequence which has the maximum
number of pairs, since feature groups with higher number of
pairs are more probable in shorter sequences.

The result of the two phases consists in only one sequence
which contains the feature time-intervals shared in the cur-
rent pair group. It provides a temporal characterization
which completes the description of the feature group.

According to DeÞnition 2 and the structure of the feature
tree, a reference object is associated with only one feature
group in each leaf node. Thus, a reference object is associ-
ated with a set of feature groups {Gf 1 , Gf 2 , . . ., Gf n } com-
puted from all leaf nodes. These feature groups anyway have
di!erent sets of participant objects. The method for discov-
ering communities follows this same idea and builds groups
of moving objects relatively to reference objects. It works
with the feature groups of the same reference object and op-
erates on the selected sequences of the feature time-intervals
by generating a sequence of ordered feature time-intervals
(time-line) with the same set of participant objects.

Two alternatives are adopted depending on the chosen
preference criterion (maxObjects or maxInterval ). They op-
erate in the same way (Algorithm 1) but they di!er in that
the Þrst one aims at generating time-lines with large num-
ber of participant objects, whereas the second one aims at
generating time-lines with the long feature time-intervals.
Both variants start by sorting (in chronological order) the
sequence of the time-intervals of the feature groups associ-
ated with the current reference object or . This may return
in an ordering where the time-intervals of the same feature
group are separated and time-intervals of di!erent feature
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Algorithm 1 COM /* community discovery */
Input: {Gf 1 , Gf 2 , . . . , Gf n }, # , or , minO
Output: Tlines
1: TL � �; Tlines � �; D � �;
2: S � sort by time ({Gf 1 , Gf 2 , . . . , Gf n });
3: Fprev � nextTimeInterval( S, ! 1 );
4: insert( TL , Fprev ); remove( S,Fprev );
5: while S �= �
6: Fnext � nextTimeInterval( S, getEndTimeStamp( Fprev ));
7: if gap( Fprev , Fnext ) � #
8: if testParticipants(getParticipants( Fprev ),

getParticipants( Fnext ))
8: update( TL , Fnext ); remove( S, Fnext )
9: Fprev � Fnext ;

10: else
11: insert( D, Fnext ); remove( S, Fnext );
12: else
13: S � S � D; TL � �;
14: D � �; Tlines � Tlines � {TL };
14: Fprev � nextTimeInterval( S,! 1 );
15: insert( TL , Fprev ); remove( S, Fprev );
16: prune by minO( Tlines );

groups are adjacent.
Algorithm 1 generates a time-line incrementally by test-

ing joining the next time-interval (getNextTimeInterval())
to the current time-line ( TL ). In particular, the time-interval
Fprev is considered for the join when i) it follows temporally
the last time-interval added to the time-line TL and there
is no time-interval with the same participants which pre-
cedes it, and ii) it is not temporally distant more than #.
The application of the test distinguishes two techniques: for
maxObjects the test is implemented as getParticipants( Fprev )
= getParticipants( Fnext ), while for maxInterval the test is
getParticipants( TL ) + getParticipants ( Fnext ) &= , , where
getParticipants( TL ) returns the participants which are in
common to the time-intervals added to TL . The output
(Tlines ) is a set of candidate time-lines which are further
processed: the time-lines with number of participants less
than minO are pruned, then, from those remaining, we se-
lect only the time-line which better satisÞes the preference
criterion (either highest number of participants or longest
sequence of time-intervals).

Example 2 . We extract feature groups and communi-
ties based on Figure 4(b) for #=1 hour. On the leftmost
leaf node, we have a feature groupGf 1 whose pair group is
composed by the pairs (o2, o1) and (o2, o3), the geo-spatial
component is equal to Òone awayÓ (CRM), ÒnorthÓ (CD),
[1,3) (NRM), [20,40) (DIS), [100,600) (POS-x), and [50,150)
(POS-y), while the temporal component corresponds to the
sequence of intersecting feature time-intervals " [10:00,12:00],
[15:00,16:00]#. On the rightmost leaf node, we see a feature
group Gf 2 whose group consists of the pairs (o2, o1), ( o2,
o3), and (o2, o4) the geo-spatial component is equal to Òone
awayÓ (CRM), ÒnorthÓ (CD), [1,3) (NRM), [20,40) (DIS),
[700,900) (POS-x), and [200,300) (POS-y), while the tem-
poral component corresponds to the sequence of intersecting
feature time-intervals " [12:00,14:00], [18:00,19:00]#. Let o2

be the reference object and#=4 hours. The time-intervals
are sorted as follows " [10:00, 12:00] (Gf 1 ), [12:00, 14:00]
(Gf 2 ), [15:00, 16:00] (Gf 1 ), [18:00, 19:00] (Gf 2 ) #. By choos-
ing the criterion maxObjects, we obtain the community com-
posed of the pairs (o2,o1),( o2,o3), and (o2,o4) which exhibit
on the time-line " [12:00, 14:00] [18:00, 19:00]# the move-
ment so described: Òone awayÓ (CRM), ÒnorthÓ (CD), [1, 3)
(NRM), [20, 40) (DIS), [700, 900) (POS-x), and [200, 300)
(POS-y). Instead, by choosing the criterion maxInterval ,

we obtain the community composed by the the pairs ( o2,o1)
and (o2,o3) which exhibit the movement Òone awayÓ (CRM),
ÒnorthÓ(CD), [1, 3) (NRM), [20, 40) (DIS), [100, 600) (POS-
x), [50, 150) (POS-y) in [10:00, 12:00], [15:00, 16:00], and the
movement Òone awayÓ (CRM), ÒnorthÓ (CD), [1,3) (NRM),
[20, 40) (DIS), [700, 900) (POS-x), [200, 300) (POS-y) in
[12:00, 14:00], [18:00, 19:00]. !

4. PERFORMANCE EVALUATION
Experiments were conducted in order to test the e"ciency

of COM and the inßuence of the parameters on the discov-
ered communities with both preference criteria ( COM-MO
and COM-MI ). Also, we performed comparative experi-
ments with two competitors. The Þrst one ( TC ), is used
as baseline and it aims at discovering the common sub-
trajectories with a density-based line-segment clustering al-
gorithm [7]. It takes as user-deÞned parameters the min-
imum number of line-segments and radius of the clusters.
The second one (SW ), discovers groups of objects moving
for certain snapshots that could be not consecutive [8]. The
algorithm SW works on pre-existing clusters and adopts a
candidate generation strategy. It takes as user-deÞned pa-
rameters the minimum number of the objects and minimum
duration the swarms (which correspond to minO and # of
COM ). We note that SW cannot be directly applied, since
it does not handle either trajectories of di!erent length or
missing values. To perform a fair comparison, we tested it
on the pre-processed trajectories returned by the temporal
segmentation (Section 3.1).

We evaluated the performance of the algorithms using two
real-world datasets: i ) Microsoft Geolife 1 comprising tra-
jectories of 182 users outdoor movements in a period of over
three years sampled every 1-5 seconds or every 5-10 meters.
This dataset contains almost 24 millions of observations in
a set of 18 millions time-stamps. ii ) Starkey 2 which has
been generated by the Starkey project and contains radio-
telemetry locations of the movements of 128 elks. The ob-
servation period is May 1993-August 1996 and comprises
168,000 distinct recordings in 166,000 time-stamps. Each
object has a portion of 0.09 observations per time-stamp.
In both datasets, trajectories have di!erent length and can
contain positions recorded at di!erent time-stamps.

Figures 5(a) and 5(b) illustrate the results of the e"ciency
when tuning minO . The results of SW-AVG include also
the running times averaged on #= { 1/2, 1, 1.5, 2} hours,
while those of TC are averaged on several settings of the
input parameters. We observe that the running times of
COM are signiÞcantly lower than those of SW and TC (y-
axis is logarithmic). In addition, the performance of COM
with respect to SW can be explained with the fact that
SW spends time in a preliminary density-based clustering
and exploration of the search space of the candidate swarms.
TC requires more time because the clustering decision re-
quires a distance measure on sub-trajectories whose execu-
tion is computationally intensive. COM exhibits the best
runtimes also when tuning # (Figures 5(c) and (d)) but
with a di!erent behaviour due to the di!erent density of the
trajectories, as said before: in Geolife we have essentially a
slight decreasing tendency, while it is increasing in Starkey.
The decrease exhibited by SW , when increasing #, is due
to the reduced number of clusters that are likely to be ex-
tracted from wider time-intervals.

1http://research.microsoft.com/apps/catalog/
2http://www.fs.fed.us/pnw/starkey/data/tables
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Figure 5: Runtime (in seconds) vs. minO and # (#=1 hour).
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Figure 6: Number of results vs. minO and # (#=1 hour).

The di!erent density and distribution of the two datasets
is the key to analyze the number of the groups (communities,
swarms and clusters) when varying # (Figure 6, minO =4).
The results of SW-AVG are averaged onminO = { 2,3,4,5,6} .
COM and SW have similar behaviour, namely slightly de-
creasing in Geolife and increasing in Starkey. This comfort
us about the response of our approach with respect to trajec-
tories which have very di!erent characteristics. A deeper in-
spection reveals the di!erent order of magnitude between the
communities and swarms: this is quite expected since SW
works on the spatial closeness of the objects, whileCOM
can generate groups of objects even when they are not close.
Instead, TC discovers an average number of clusters which
is less than one. This di"culty could be due to the inherent
complexity that an operation of grouping of line-segments
can raise with respect to grouping simple geo-spatial loca-
tions, as in the case of SW .

5. CONCLUSIONS
We investigated the problem of mining groups of moving

objects from trajectory data. Di!erent from the existing ap-
proaches relying on the spatial closeness, our work consid-
ers the interactions among the objects and changes of their
motions which opens to the possibility of following the com-
plete dynamics of a group. The proposed solution integrates
an e"cient grouping technique which avoids to re-scan all
data. Experiments remark the e"ciency with respect to
other algorithms. We plan to extend the work in several di-
rections including: i ) the integration of pre-processing tech-
niques (e.g., locality sensitive hashing) to guide the discovery
process on sets of moving objects of particular interest, ii )
the adaptation of the approach to a distributed architecture
(e.g., MapReduce framework) to analyze massive trajectory
data, and iii ) the construction of the feature tree without
considering any pre-deÞned order of the features.
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