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ABSTRACT
Existing information systems for urban public transporta-
tion are empowering travelers to optimize their trips with
respect to travel duration. Experience with such systems
shows that this is a viable approach. However, we argue
that solely relying on trip duration as the primary indicator
for satisfaction can be limiting. Especially, in urban settings
providing additional information such as the expected num-
ber of passengers can be highly beneficial since it enables
travelers to further optimize their comfort. As technical ba-
sis for determining the number of passengers, we have built
an inexpensive hard- and software system to estimate the
current number of passengers in a vehicle. Furthermore,
we have deployed the system in several buses in the city of
Madrid. In this paper, we describe the overall design ratio-
nale, the resulting system architecture as well as the under-
lying algorithms. Furthermore, we provide an initial report
on the system’s performance. The initial results indicate
that the system can indeed provide a reasonable estimate
without requiring any manual intervention.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
WLAN Monitoring, Presence Detection, Intelligent Trans-
port Systems, Smart Cities

1. INTRODUCTION
Today, most information systems for urban public trans-

portation are empowering travelers to optimize their trips
with respect to travel duration. To do this, they integrate
static information about routes and schedules with dynamic
information about unexpected delays. On top of this they
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provide planing engines that compute shortest paths in or-
der to minimize the trip duration for the travelers.

Clearly, past experiences with such systems shows that
this is a viable approach that is useful for many travelers.
However, we argue that solely relying on trip duration as the
primary indicator for traveler satisfaction can be limiting as
it hides many other facets that impact the travelers comfort.
Examples may include environmental information such as
the accessibility of di↵erent vehicles for travelers with special
needs or dynamic information such as the likelihood of being
able to get a seat in a particular vehicle.

Especially, in urban settings where the same destination
can be reached over multiple routes or where the same route
is traversed by di↵erent vehicles frequently, providing addi-
tional information can be highly beneficial. For example,
considering the former case, a traveler might simply be able
to slightly adjust his route whereas in the latter case, a trav-
eler might simply have to start a trip earlier or later in order
to improve his or her level of comfort.

Besides from trip duration, a main influential factor for
the overall level of satisfaction with a particular public trans-
port option is the overall crowdedness of the vehicles. How-
ever, in the absence of a mandatory reservation system or a
fine-grained trip-based payment system, capturing the num-
ber of passengers is a challenging and costly task that is
typically done by means of manual counting. Yet, in order
to provide real-time information on a city-scale such manual
approaches are clearly ill-suited.

In this paper, we describe an alternative approach to de-
termine the number of passengers in a vehicle. Based on this
approach, we have built an inexpensive hard- and software
system to estimate the current number of travelers in a ve-
hicle. Furthermore, we have deployed the system in several
buses in the city of Madrid. In addition to the estimation of
number of travelers, our system also estimates the location
of buses between the bus stops. Based on this deployment,
we provide an initial report on the system performance. The
results indicate that the system can indeed provide a reason-
able estimate for the number of passengers inside the vehicle
as well a reasonable estimate of the location of buses between
two stops.

The remainder is structured as follows. In the next sec-
tion, we briefly discuss the underlying design rationale. There-
after, in Section 3, we outline the overall approach. In Sec-
tion 4, we describe details of our implementation and in Sec-
tion 5, we report initial results of our deployment in the city
of Madrid. In Section 6, we discuss related work and finally,
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in Section 7 we conclude the paper with a short summary
and an outlook on future work.

2. DESIGN RATIONALE
As described previously, our goal is to provide a system to

determine the number of passengers in a particular vehicle
of a public transportation system in order to provide the
resulting crowd density information to the travelers. As a
result of this overarching goal, we can derive the following
five sub goals:

• Su�cient accuracy: To provide meaningful informa-
tion, the system should be able to determine the num-
ber of passengers accurately. Thereby, it is important
to note that given the typical capacity of vehicles the
system does not have to be perfect. Instead, smaller
deviations can be tolerated as long as the overall ten-
dency of the crowd density reflects the real situation.

• Full automation: To be reliable and feasible to deploy,
the system should not rely on manual intervention by
passengers. Furthermore, it should not put additional
stress on the support personnel such as the driver or
the guards. Instead, the system should be able to de-
termine the number of passengers automatically.

• Low cost: To be scalable to a city level, the hardware
cost of the system should be minimal. As a result,
the system should only consist of low-cost o↵-the-shelf
components and it should optimally leverage the ex-
isting infrastructure.

• Low latency: To provide fresh information to the trav-
elers, the system should be able to report changing
numbers of passengers quickly such that it can not
only be used for advance planing based on historical
data but also to support ad hoc decisions by travelers
based on the current state.

• Low privacy impact: To be acceptable for the passen-
gers of the public transport system, the system should
be non-intrusive from a privacy perspective. Further-
more, it should only gather information that is needed
to provide the service and ideally, it should be hard to
retrofit the information for non-related use cases.

3. APPROACH
Based on the five goals, we describe our overall approach

in the following. To do this, we first describe the basic idea
and the resulting system architecture. Thereafter, we de-
scribe the details of the algorithms used for crowd density
estimation and vehicle tracking. In the next section, we
describe the implementation details for our deployment in
several buses in the city of Madrid.

3.1 Overview and Architecture
Our approach for estimating the number of passengers in

a vehicle can be considered a specialized variant of the smart
phone tracking approach described in [6]. The basic idea is
that WLAN-enabled mobile devices are periodically sending
so-called probe requests as part of their IEEE802.11 proto-
col operation to detect the access points that are present
in their surroundings. In order to completely cover the fre-
quency spectrum during their scans, the devices typically

Figure 1: System Architecture

repeat their probe request on all available channels. Thus,
given adequate network monitoring hardware, it is possible
to overhear these request by simply tuning into one of them.
Moreover by continuously monitoring the presence and ab-
sence of the probe requests, it is possible to accurately count
the mobile devices that are in the vicinity of the network
monitoring hardware.

Once the number of passengers has been estimated, it
needs to be made accessible to the travelers. To do this, it
is first transmitted to a central server where it is then com-
bined with the associated segment of the current route of
the vehicle. To compute this association, we rely on the po-
sitioning information provided by the vehicle itself by means
of a built-in GPS receiver. We then combine with the static
route information managed by the public transport operator
with the GPS position to determine the current route seg-
ment that the bus is traversing. As a last step, we then store
the vehicles route segment with the associated crowd-level
and a timestamp. Finally, the resulting data is made acces-
sible to travelers which can then retrieve the crowd density
estimations for the public transportation system for di↵erent
times of day through their mobile devices.

The overall system architecture is depicted in Figure 1.
It consists of three main components, namely the system
inside the vehicle which is responsible for determining the
crowd density and capturing the current GPS position, the
public transport information system which is responsible for
providing geo-spatial information about the routes that the
vehicles are operating on as well as a crowd density infor-
mation system which integrates the information and makes
it accessible to travelers. While there are many possible
options to split up the responsibility of determining crowd
density from WLAN signals, we decided to keep all compu-
tations regarding probe requests local to the system inside
the vehicle. This means that apart from GPS position, the
system solely transfers the current crowd density. The rea-
son for this is twofold. First, this reduces the overall band-
width requirements when compared to transferring all probe
requests to the server. Second, it also protects the privacy
of the passengers since the transfered data is hard (and in
most cases impossible) to attribute to individual passengers.

In the following, we describe the two main issues, namely
the crowd density estimation in the vehicle as well as the
vehicle tracking at the server-side in more detail.
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Figure 2: Detected Devices over 14 Day Period

3.2 Crowd Density Estimation
As indicated previously, our approach to crowd density

estimation is based on the idea that WLAN-enabled devices
are periodically sending probe requests in order to detect
the access points that are nearby. In order to completely
cover the frequency spectrum during probing, the devices
typically repeat their probe request on all available channels.
Using a WLAN device that is put into monitoring mode, it is
possible to receive the probe requests of nearby devices by
simply monitoring a particular channel. By keeping track
of the MAC addresses of the devices sending out the probe
requests, it is then possible to determine the time duration
that a certain device is close to the monitoring device.

When applied to public transportation, an important dif-
ference between prior work and our scenario is that in our
case, the monitoring WLAN device is a) mobile – since it
mounted inside a vehicle – and b) often moving through a
densely populated area. As a consequence, we can expect
that the monitoring device will not only receive signals from
mobile devices that are located in the vehicle but it will also
receive signals from devices that are simply nearby the ve-
hicle. This problem is amplified by the fact that in typical
public transportation networks, stops at important locations
(e.g. in the city center) are targeted by multiple lines. Thus,
when a vehicle is stopping in order to allow passengers to
enter and exit the vehicle, passengers waiting for another
vehicle from another line will be detected as well.

To demonstrate this problem and to develop a solution
for it, we have installed a WLAN monitor in one bus op-
erating in the city of Madrid, Spain during a period of 14
days. During the time, the bus was operated for 224 (out of
336) hours and while it was operating, we logged the probe
requests received by the monitor. To avoid duplicate detec-
tions of the same requests sent out multiple times, we limited
the amount of logged probe requests to 1 request per MAC
address per second.

In total, the monitor logged 384874 probe requests from
85212 unique MAC addresses. However, as indicated in
Figure 2, from these unique MAC addresses approximately
40000 where only seen once and an additional 15000 ad-
dresses were only seen twice. These numbers clearly demon-
strate the fact that a significant fraction of mobile devices
were most likely not traveling in the bus. Instead, it is more
likely that they were located at a crowded bus stop or some-
where close to the street where the bus was driving.

Figure 3: Probe Request Interval Distribution

To filter out these MAC addresses, while still being able
to report changes quickly, we decided to integrate a sliding
window mechanism that would remove addresses that were
not detected over a longer period of time. In order to con-
figure the windowing period, we further analyzed the logs to
determine the typical rate at which we would detect probe
requests from devices.

Figure 3 shows the results extracted from the logs. As in-
dicated, the vast majority of probe requests - approximately
185000 - are transmitted within one minute. From these re-
quests, roughly 12500 are transfered within 15 seconds or
less, meaning that they are most likely repeated requests
that were not filtered out by our 1s rate limitation. The
remaining 60000 requests, however, are sent at least 15 sec-
onds later which indicates that they might be new requests.
Looking at the overall slope indicated by the histogram in
Figure 3, it seems apparent that the vast majority of con-
secutive probe requests are heard typically within 1 and at
most within 3 minutes. Interestingly, the histogram also
shows that there is a significant number of consecutive probe
requests that are repeated within an time frame above 10
minutes. However, we attribute these to stationary devices
that are picked up multiple times during the 14 day period
when the bus traverses routes multiple times.

Given these results, we configure our sliding window mech-
anism for the crowd density estimation to 3 minutes. In or-
der to avoid the counting of devices that are not within the
bus, we suppress devices that have not been detected for at
least 1 minute and we continue to count them until their sig-
nals are no longer contained in the window - meaning that
the WLAN monitor has not received a probe request for at
least 3 minutes.

3.3 Vehicle Tracking
Once the crowd density has been estimated, it needs to

be assigned to a particular route and segment (i.e. the pair
of previous stop and next stop of the vehicle). However,
in European cities, estimating the route that a vehicle is
taking by simply connecting the di↵erent stops will result
in a very coarse grained estimate of the route. Instead, it is
necessary to model the route by means of a more detailed
representation such as a polygonal path that defines multiple
waypoints between the stops.

To determine the current location of the vehicle using the
possibly imprecise GPS, we rely on basic geometric opera-
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Figure 4: Vehicle Tracking Approach

tions on top of an accurately modeled polygonal paths rep-
resenting the routes. Thereby, the basic idea is to compute
the shortest paths to all line segments as depicted in Figure
4. Technically, this is done in three steps. First, we com-
pute the closes point to each line segment of the path. Note
that this is either the perpendicular line between the line
segment and the GPS position (left) or in cases where the
perpendicular line does not intersect within the segment, it
is one of the two points defining the line segment (right).
Then, we compute the distance between the GPS position
and the closest point for all line segments and finally, we
use the segment with the shortest distance as the current
position on the route which identifies the previous and the
next bus stop.

To minimize the computational overhead of the result-
ing computations in a spherical coordinate system, we sim-
ply interpret the GPS coordinates as Cartesian coordinates.
While this may result in imprecisions when applied to larger
distances, we did not find this problematic at a city level. To
test this, we tracked three buses over the course of 2 weeks
and verified the validity of the resulting bus stop sequences
by comparing them with the route information. In all cases,
the bus stop sequences were matching the sequences of the
route, however, due to the limited update rate of 2 posi-
tion updates per minute, some bus stops were sometimes
skipped.

4. IMPLEMENTATION
In the following, we briefly describe a number of imple-

mentation issues that we had to tackle in order to deploy
the system. To put these issues into a meaningful context,
we first describe the existing infrastructure before discussing
the details of our implementation.

4.1 Infrastructure
The Madrid bus system encompasses roughly 2000 ve-

hicles that operate more than 200 routes. All buses are
equipped with WLAN access points that provide free Inter-
net access to the travelers. For this, the access points are
equipped with a 3G network card. In addition, all buses
are equipped with a GPS system. A central system polls
the GPS information from the buses regularly at 30 second
intervals. The gathered GPS information is then used to
estimate arrival times and to dispatch new buses if delays
are detected.

Figure 5: Bus System Hard- and Software

4.2 Bus System
To implement the crowd density estimation inside the

buses, we rely on an additional low cost o↵-the-shelf access
point (TP-Link 3020) as WLAN monitor which we equip
with a USB memory stick to increase its internal memory for
logging purposes. In order to connect the access point to the
Internet, we connect it to the existing bus systems (i.e. the
existing access point that provides 3G Internet connectivity
to passengers). To be able to monitor the WLAN network,
we replace the firmware of the device with a custom built of
OpenWRT that is tailored to our needs.

Besides from packet capturing support via TCPDUMP,
we install a number of system services depicted in Figure
5. To acquire an IP address from the existing access point
in the bus, we run a DHCP client. In order to enable re-
mote administration despite the firewall of the 3G network
provider, we connect to one of our servers through AutoSSH
and establish a tunnel to the device’s SSH server. Finally,
since this device does not exhibit a real-time clock, we rely
on NTP in order to set its clock upon restart.

On top of this, we install JamVM with GNU Classpath in
order to execute Java code. This enables us to use the NARF
Component System [2] to handle the actual crowd-density
measurements. To do this, we rely on existing components
from the NARF component toolkit to handle the data trans-
mission and windowing which we extend with a component
that taps into TCPDUMP and interprets its output. Since
our access point does not exhibit a real-time clock, we con-
figure the device to boot up with its date set to 2012. When
the NTP client on the device has successfully determined
the current time at least once, this date will be adjusted to
the current date (i.e. a date in 2013). In the crowd-density
estimation code, we check the current time and suppress all
further actions until the time is set to 2013. This e↵ectively
avoids stale readings and allows us to bu↵er crowd density
estimations on the device together with a correct time stamp
in case that the 3G connection is temporarily unavailable.

4.3 Public Transport Information System
To associate the crowd density information with a partic-

ular segment of a bus line, we extend the existing transport
information system with 3 web services that expose some of
its information. The first web service makes a list of routes
available. The second service enables the retrieval of detailed
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{

”Id ”: 4281 ,
”LineId ”: 1 7 ,
”Loc ”:

{

”Lat ”: �0.001534102118749 ,
”Lon”: �7.489303515333618

} ,
”Route ”:33342

}

Figure 6: Bus Information Output Example

route information including bus stops and the polygonal line
that connects them. Finally, the third service exposes the
real-time information about the current bus location as well
as the route that it is operating on.

All web services expose the information as JSON strings
which are compact and easy to parse in most programming
languages. An example for the bus information output pro-
vided by the real-time service is depicted in Figure 6. Be-
sides from the bus id (Id) and current bus location (Loc), the
output also contains the id of the bus line (LineId), which
reflects the id used by the citizens and a pointer to the cur-
rent route (Route) which enables the retrieval of the stops
and waypoints using the route information web service.

4.4 Crowd Density Information System
The last component of our implementation is the crowd

density information system. Implemented as a set of Java
Servlets, the system ties together the bus and route infor-
mation provided by the Public Tansport Information System
and the crowd density estimation provided by the Bus Sys-
tem. To do this, it provides a web service that enables the
WLAN monitor in the bus to upload its latest crowd den-
sity measurements. Furthermore, it continuously polls the
Public Transport Information System in order to acquire the
latest bus information.

When the Servlets are initialized or when a route change
is detected, the system downloads the new route information
for the bus and begins (or continues) the vehicle tracking.
Whenever a new GPS coordinate for a bus is retrieved, the
coordinate is matched against the polygonal path describing
the route to determine the current route segment. The route
segment is then associated with a timestamp and bu↵ered
in memory for future use. When a Bus System performs
an upload of some crowd density information through the
web service o↵ered by the Crowd Density Information Sys-
tem, the system uses the timestamp that has been assigned
on the Bus System when the estimation was created to de-
termine the bu↵ered route segment that corresponds to the
reading. The resulting crowd density report for a particular
route segment is then stored in a database for later retrieval
through travelers.

At the present time, our implementation of the Crowd
Density Information System simply provides a map-based
visualization of the route information that has been captured
over di↵erent time intervals. An example for this is shown
in Figure 7. The black lines indicate bus routes through
the city of Madrid for which crowd density information has
been captured. The thickness of the lines indicate the crowd

Figure 7: Crowd Density Visualization Example

level for a particular segment of the bus route. As our next
step we plan to integrate this information into a mobile bus
navigation application for Android devices as part of the
prototype development in the GAMBAS European FP7 re-
search project.

5. EVALUATION
In the following, we evaluate our approach to crowd den-

sity detection with respect to the design goals identified in
Section 2. To do this, we first discuss the system character-
istics with respect to automation, cost and privacy impact.
Thereafter, we provide an initial report on the latency as
well as the level of accuracy achieved by our system.

5.1 Discussion
As described in Section 2, we attempt on supporting full

automation, low cost while ensuring a low privacy impact.
Given the approach and its implementation described in Sec-
tion 3 and Section 4, these design goals are addressed as
follows:

• Full automation: The presented approach for crowd
density estimation is based on overhearing the probe
requests that are sent by IEEE802.11 enabled mobile
devices. These requests are automatically transmitted
by the devices as part of their normal protocol opera-
tion. As a result, the approach will work without the
installation of any additional software and thus, there
is no need for passengers to be actively involved in the
collection process at any point. Similarly, due to the
integration with the existing services operated by the
public transport provider, there is also no need for any
manual intervention from drivers or other personnel.
Instead, once it is installed, the complete system is
fully automated.

• Low cost: In order to deploy our crowd density infor-
mation system, we try to optimally leverage the exist-
ing infrastructure - i.e. the 3G connectivity and the
GPS receiver - that is already available in the vehicles.
However, in order to perform the actual monitoring we
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extend the infrastructure with one additional access
point. At the time of writing, the cost for the device
and the USB memory stick which we are using ranges
well below 50 Euros. At the server side, we intro-
duce additional services built on top of J2EE technol-
ogy. Given the platform agnostic nature of Java, they
should be easy to integrate into an existing web-based
infrastructure. As a result, we are convinced that the
overall deployment cost of the system is reasonably low
- especially, when compared to other alternatives such
as camera systems, for example.

• Low privacy impact: Due to the fact that our system
applies passive monitoring of IEEE802.11 enabled de-
vices, it is possible to uniquely identify travelers across
all vehicles of the complete public transport system.
As a result, the chosen approach can be considered
quite invasive from a privacy perspective. To mini-
mize the possible negative impact on the privacy of
the travelers, our implementation of the approach is
distributed. Instead of collecting all raw messages at
a central system, each WLAN monitor is set up to be
able to compute a crowd density estimation locally.
Once an estimate has been computed by the monitor,
it only transmits its id, a global timestamp and the
number of passengers in the bus - which is then pro-
cessed and stored centrally. As a result, we argue that
the privacy impact on the user is minimal. Although it
may be possible to track individuals in cases where the
vehicle utilization is very low (i.e. close to 1 passen-
ger), in cases were the utilization is higher, identifying
individual travelers is most likely very hard – if not
impossible.

5.2 Experiments
To determine the degree of fulfillment with respect to the

design goals of achieving a low latency and a high accuracy,
we have deployed the WLAN monitors in 3 buses that are
operating in the city of Madrid, Spain. At the time of writ-
ing, these buses have been collecting data for 3 weeks using
the approach and implementation described in Section 3 and
4. In the following, we briefly describe our experiences with
respect to latency and accuracy.

5.2.1 Latency
Based on the size of our windowing mechanism which uses

a 3 minute window in order to determine the density of the
crowd, our crowd density estimation approach introduces
at least a three minute time di↵erence. However, due to
changes in network connectivity of the monitored vehicle,
this latency can become temporarily higher in cases where
the computed crowd density cannot be transmitted imme-
diately. In order to visualize the probability of such cases,
Figure 8 depicts the inter-reporting arrival time di↵erences
of the 75985 reports collected by our buses.

Since we configured our monitors to report crowd levels
every 30 seconds (which reflects the GPS update interval of
the existing transport information system), we would expect
that if the vehicles 3G connection is reliable, the resulting
arrival time di↵erence would lie around 30 seconds as well.
Out of the 75985 reports, 72028 reports (94.7 %) are re-
ported with an arrival time of less then a minute and 75175
(98,9 %) are reported within 1.5 minutes or less. As a con-
sequence, in the vast majority of all cases our crowd density

Figure 8: Crowd Density Reporting Latency

reports are available at the Crowd Density Information Sys-
tem within less than 5 minutes. Consequently, we think that
the system is broadly applicable from a latency perspective.

5.2.2 Accuracy
In order to determine the accuracy of the system, we per-

formed an initial analysis by means of manual counting the
persons in one of our three buses over a 30 minutes trip
from the start to the end of the bus’ route. After the trip,
we compared the reported crowd density measured by our
system with the manually gathered information. During the
experiment the bus contained between 22 and 52 passengers.
Given the total capacity of 65 passengers, the bus was some-
times rather crowded. During the test, the system was able
to continuously detect around 20% of the passengers on av-
erage.

To put this number in perspective, it is important to note
that according to comScore, there are approximately 22.6
million smart phones in Spain1 and the total Spanish popu-
lation is estimated around 46.7 million persons2. Thus, we
would expect that the number of persons captured by our
approach would typically level o↵ at around 49%. In ad-
dition, several smart phone users may have turned o↵ their
phone’s WLAN interface in order to save power. Thus, given
the rather stable 20% over trip, we believe that the approach
can be used to gather reasonable crowd density estimates -
however, it is clear that a more extensive study is necessary
to confirm these initial results.

6. RELATED WORK
For a traveler two important pieces of information include

when the desired vehicle is going to arrive at his/her stop and
how crowded it will be. These two pieces of information pose
challenges for two separate domains namely crowd density
estimation and the estimation of the actual arrival time of
the vehicle. For the later, this in turn requires information
about the current position of the vehicle over time. In the
following we give a brief overview of related work for these
two domains.

1Number of smart phones in Spain available at:
http://www.comscoredatamine.com/2013/01/what-are-
the-spanish-doing-on-their-smartphones/
2Current estimate of the Spanish population available at:
http://en.wikipedia.org/wiki/Spain
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6.1 Crowd Density Estimation
Estimating crowd density in indoor and outdoor locations

is an active area of research. A number of techniques has
been used to estimate the crowd density with high accu-
racy. These techniques can be mainly classified into image
processing and radio frequency based techniques. Some of
the work using image processing techniques includes [8],[5],
[12],[14] and [4]. [8] estimates crowd density in an outdoor
environment by extracting image features using a grey level
dependency matrix, minkowski fractal dimension and trans-
lation invariant orthonormal chebyshev moments. The ex-
tracted features are classified using self-organizing maps. [5]
uses pixel counting approach for segmenting the foreground
image from the background image and derives and proves
that the geometric correction for the ground plane can be di-
rectly applied to foreground pixels. [14] provides a survey on
crowd analysis techniques based computer vision and image
processing. These camera based techniques though reason-
ably accurate requires careful mounting of cameras in buses
such that maximum visual coverage is attained. Moreover,
once installed further modifications of their placements is
di�cult to achieve and thereby is a costly and a time con-
suming process.

Recently crowd estimation using radio frequency based
techniques have gained attention from the research commu-
nity. Some of the recent work includes [11],[13], [6],[7]. [11]
uses the Bluetooth transceivers on mobile phones for esti-
mating the number of people. The approach taken by the
authors is based on the assumption that considerable num-
ber of people have the Bluetooth transceiver on their mobile
phones in discoverable mode. The approach relies on dif-
ferent information such as number of visible devices, links
between visible devices, the ratio of number of devices in
the current scan to the number of devices in the previous
scan, device visibility durations, etc. The authors report to
achieve accuracy of more than 75% in their testing scenario.
[6] uses a WiFi based solution for detecting and tracking
users. The system relies on detecting WiFi probes sent by
mobile phones and received by WiFi monitors installed at
di↵erent places. However, the WiFi probes sent by mobile
phones exposes the MAC address of the device which can
be used to violate user’s privacy. [7] provides an insight
on the vulnerability of user privacy because of exposition of
such explicit identifiers. [13] uses wireless sensor network
based solution for estimating crowd density. The approach
employs an iterative process which includes collection and
analysis of received RSSI values from the network, construc-
tion of training database using K-means algorithm and de-
sign of a spatial-temporal stability calibration mechanism to
minimise noise. Apart from image processing and radio fre-
quency based solutions there has been some work on using
audio samples for estimating crowd density. [3] suggests an
audio tone counting solution in which each device (mobile
phone) sends a unique tone and at the same time receive
tones from other devices. The sent and received tones cor-
responds to a bit pattern which is then combined to generate
new bit pattern. The process continues until the counting is
completed.

In our system presented in this paper, we have employed
a radio frequency based solution. Specifically our system
estimates the crowd level in the bus by keeping track of
WiFi probes sent by the mobile phones of users in the bus.
In this way our approach resembles with the one mentioned

in [6]. However, in contrast to that approach, our system
specializes in estimating the crowd density in moving buses
which requires filtering of incorrect information when the
bus pass through di↵erent parts of the city. This incorrect
information, in our case are the WiFi probes sent by the
mobile phones in the vicinity of the bus.

6.2 Vehicle Tracking
In the recent years vehicle tracking has been the focus of

research community. Some of the examples include [15],[1],
[9], [11] and [10]. [15] presents a participatory sensing sys-
tem in which users on the bus share their locations using
their mobile phones with a central system which then com-
municate this information to other users waiting for the bus.
The information is then used to predict the bus arrival time.
In order to capture the user location the system relies on
GSM cell tower information. For the ground truth the bus
routes are divided into di↵erent segments where each end
of segment is marked with three strongest GSM cell towers.
The system them matches the GSM cell tower information
to which the user is connected to and compare it with the
ground truth to predict the location of the bus which in
turn is used to predict the bus arrival time. The detection
of user’s presence on bus is done by detecting the audio beep
generated by the ticket checking machines installed at the
entrance door of the buses. [1] is a bus tracking and arrival
time prediction system. The system requires smart phones
to be installed on the buses. Smart phones convey the GPS
coordinates of the bus and send them to a back end server.
The back end server uses this information and calculates the
arrival time of the bus to a particular stop and convey this
information to the interested user(s). [9] is also a participa-
tory system which require its users to install an app on their
phone. The app serves two purposes, it detects whether the
user is in a bus and if yes then it start sending the user’s lo-
cation to a back end server which then computes the arrival
time for a particular stop. The detection of users presence
on the bus is done by the combination of accelerometer and
GPS sensors.

In our system presented in this paper the location of buses
is acquired through GPS modules already installed on buses.
A GPS module transmits the location of bus every 30 sec-
onds. Our system collects this information through web ser-
vices o↵ered by the bus transportation company and using
the technique described in Section 3.3 calculates the location
of the bus between two stops.

7. CONCLUSIONS
Today, most information systems for urban public trans-

portation are empowering travelers to optimize their trips
with respect to travel duration. However, solely relying on
trip duration as the primary indicator for satisfaction can
be limiting. In urban settings providing more information
such as the expected number of passengers can be beneficial
since it enables travelers to further optimize their comfort.
In this paper, we described a scalable and fully automated
approach for determining the number of passengers in a ve-
hicle. Furthermore, we discussed our experiences with a
deployment of the resulting system in the city of Madrid.
Our initial report on the system performance indicates that
it can indeed provide a reasonable performance at low cost
while preserving the travelers privacy.

At the present time, our implementation of the system
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provides a rather simple map-based visualization of the route
information that has been captured recently. As our next
step, we are integrating the crowd information into a mobile
bus navigation application for Android devices as part of
the developments in the GAMBAS European FP7 research
project. This application will integrate the crowd density
estimations directly into the output of a trip planing engine
which will enable travelers to take more informed decisions
when considering the route and time of a trip. In the long
run, we hope that applications like this can help to balance
the load on the overall public transport system which – be-
sides from improving the comfort of travelers – could reduce
the operational costs of the network.
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