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ABSTRACT
We consider a city where induction-based vehicle count sen-
sors are installed at some, but not all street junctions. Each
sensor regularly outputs a count and a saturation value. We
first use a discrete time Gauss-Markov model based on his-
torical data to predict the evolution of these saturation val-
ues, and then a Gaussian Process derived from the street
graph to extend these predictions to all junctions. We con-
struct this model based on real data collected in Dublin city.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, mul-
tivariate statistics, stochastic processes, time series analysis;
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; J.7 [Computer in Other Systems]: Real time

Keywords
tra�c prediction, Gaussian Process, Gauss-Markov, autore-
gressive, smart cities, time series, spatio-temporal

1. INTRODUCTION
In the Greater Dublin Area, 750 (4%) junctions are cov-

ered by one or several SCATS (Sydney Co-ordinated Adap-
tive Tra�c System) vehicle count sensors. Our goal is to
provide estimates of the saturation at each junction, for the
current and future times, whereas our previous work [1] only
did so for each junction at the current time.

High tra�c saturation (cars/km) co-occurs with low traf-
fic flux (cars/hour) and is an indicator for congestions [3].

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

observed measurement, at current time
predicted measurement for a future time step

current time

future time steps

Gauss-
Markov
Section 2

Gaussian
Process
Section 3

predicted value for an unobserved junction

Figure 1: Future measurements are estimated by
a Gauss-Markov process (Section 2). Estimates for
junctions without sensors, are provided by a Gaus-
sian Process (Section 3).

Our work can be used for online signaling and trip planning.
The urban street network is a graph (V, E), where the

vertices V are the junctions and the edges E the street seg-
ments. Let u be the set of unobserved junctions, with no
SCATS sensor, and �u = V \u the junctions with sensors.
The saturation of a junction vi at a time t is a continuous
random variable yi,t. Furthermore, yu,t ⌘ {yi,t}i:v

i

2u.
We combine two components to obtain an estimate of the

saturation of all junctions at future time steps, yV,t+�

t

, con-
ditioned on the current observations, y

�u,t (�t 2 N0).
The first one, P (y

�u,t+�

t

|y
�u,t), models historical mea-

surements. It can estimate future measurements ŷ
�u,t+�

t

,
based on the current observations ŷ

�u,t:

ŷ
�u,t+�

t

= E(y
�u,t+�

t

|ŷ
�u,t) . (1)

The second is a Gaussian Process (GP) based on the street
network and defining a multivariate Gaussian distribution
P (yV,t) over the saturations at all junctions. Conditioning
this distribution on y

�u provides P (yu,t+�

t

|y
�u,t+�

t

) and
allows to estimate saturations at junctions without sensors:

P (yu,t+�

t

|y
�u,t) ⇡ P (yu,t+�

t

|ŷ
�u,t+�

t

) . (2)

Figure 1 illustrates the resulting prediction procedure.
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2. GAUSS-MARKOV
A linear dynamical system models the evolution of a set

of state variables y 2 Rp, where we omit the subscript �u:

yt+1

= Atyt + wt (3)

wt ⇠ N (w̄t, ⌃w
t

) . (4)

x
1

⇠ N (ȳ
0

, ⌃
0

), a multivariate Gaussian distribution of
mean ȳ

0

and covariance matrix ⌃
0

. The Kalman filter can
compute P (yt+�

t

|yt) = N (ŷt+�

t

, ⌃̂t+�

t

) recursively.
Sensor measurements were collected from 2013-01-01 to

2013-05-141 by 512 (470 non trivial ones) vehicle count sen-
sors located in central Dublin. We average all measurements
received on non-overlapping 4 minutes intervals, because of
missing values, and model the resulting averages from 5am
to 12am. The parameters At, w̄t, ⌃w

t

change for every time
step but are identical for every day. So are ȳ

0

and ⌃
0

.
Following the methodology of [6], each matrix At is learned

using (averaged) measurements for t0

2 {t � �t, . . . , t + �t},
weighted by a Gaussian kernel: exp(�(t� t0)2/�t). We arbi-
trarily use �t = 3. For each matrix At, each row ri,t is esti-
mated using an elastic net [7] and ten-fold cross-validation.
⌃

0

and each ⌃w
t

are diagonal covariance matrices estimated
by maximum likelihood. Alternatively, penalized estimation
algorithms such as the graphical lasso [2] could be used.

3. GAUSSIAN PROCESS
P (yu,t+�

t

|y
�u,t+�

t

) is derived from a GP regression frame-
work modeling tra�c saturation values of all junctions at a
given time, similar to [5]. Multiple sensors at a junction are
averaged. For each vertex vi, we introduce a latent variable
fi, the true tra�c saturation at vi:

yi = fi + ✏i (5)

✏i ⇠ N (0, �2) . (6)

We assume that the random vector of all latent variables
follows a GP: any finite set f = {fi}i=1,...,M has a multivari-
ate Gaussian distribution. Therefore, the vector of observed
tra�c saturations (y

�u) and unobserved tra�c saturations
(du) follows a Gaussian distribution


y

�u

du

�
⇠ N

✓
0,


K

�u,�u + �2I K
�u,u

Ku,�u Ku,u

�◆
, (7)

where I is an identity matrix, K the so-called kernel and
Ku,�u, K

�u,�u, Ku,u, and K
�u,u the corresponding entries

of K. Conditioning on y produces P (yu,t+�

t

|y
�u,t+�

t

).
We use the common regularized Laplacian kernel function

K =
⇥
�(L + I/↵2)

⇤
�1

, (8)

where ↵ and � are hyperparameters. L denotes the combi-
natorial Laplacian, L = D � G. G denotes the adjacency
matrix of the graph G and D a diagonal matrix with entries
di,i =

P
j Gi,j . Variables adjacent in G are highly correlated.

4. DISCUSSION
We have described a combination of two models able to

respectively predict future tra�c saturations at junctions
with sensors and to extend these predictions to junctions
without sensors, in a city. To the best of our knowledge, no
similar model has been proposed before.

1http://dublinked.ie/datastore/datasets/dataset-305.php

A similar approach was proposed to provide dynamic cost
predictions for a trip planner in the same workshop [4]. In-
stead of a linear dynamical system (LDS), a spatio-temporal
Markov random field (STMRF) is used. It models discretized
saturation values only, and inference is approximated by be-
lief propagation whereas it is computationally tractable and
performed exactly in LDS. Our model also has a finer tem-
poral resolution. Therefore, it can be used for signaling or
online adaptation of the route in addition to o✏ine trip plan-
ning. Comparing these two models in terms of precision and
speed would be interesting.

The Gauss Markov model assumes the dynamics are lin-
ear, first-order Markov and perturbed by Gaussian noise.
More refined models could be considered and might lead to
better estimations.In particular, we could assume the mea-
surements are noisy observations of a hidden process.

Other information could also be leveraged. For example,
the street network could be used to derive a prior on the co-
e�cient of the transition matrix, influencing the model only.
Irregular, pointwise tra�c estimation (for example based on
mobile phones or GPS) could be integrated into the Gaus-
sian Process to produce finer saturation estimates. Finally,
di↵erent dynamics could be estimated and used in the pres-
ence or the absence of rain, modifying both the model and
the estimation process.
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