
Clustering-based Multidimensional Sequence Data 
Anonymization

Morvarid Sehatkar 
University of Ottawa 
Ottawa, ON, Canada 

msehatkar@uottawa.ca 
 
 

Stan Matwin 
1Dalhousie University 
Halifax, NS, Canada 

2Institute for Computer Science of the 
Polish Academy of Science 

Warsaw, Poland  
stan@cs.dal.ca 

 

ABSTRACT 
Sequence data mining has many interesting applications in a large 
number of domains including finance, medicine, and business. 
However, Sequence data often contains sensitive information 
about individuals and improper release and usage of this data may 
lead to privacy violation. In this paper, we study the privacy 
issues in publishing multidimensional sequence data. We propose 
an anonymization algorithm, using hierarchical clustering and 
sequence alignment techniques, which is capable of preventing 
both identity disclosure and sensitive information inference. The 
empirical results show that our approach can effectively preserve 
data utility as much as possible, while preserving privacy.   

Categories and Subject Descriptors 
H.2.7 [Database Management]: Database Administration-- 
Security, integrity, and protection 

General Terms 
Algorithms, Performance, Experimentation, Security  

Keywords 
Data anonymization, privacy, multidimensional sequence data, 
longitudinal data, clustering, k-anonymity 

1. INTRODUCTION 
Recent advances in information technology have enabled public 
organizations and corporations to collect and store huge amounts 
of individuals’ data in data repositories. Such data are powerful 
sources of information about  an  individual’s  life such as interests, 
activities, and finances.  Corporations can employ data mining 
techniques to extract useful knowledge from individuals’  data and 
exploit this knowledge to improve their strategic decision making, 
enhance business performance, and improve services. As a result, 
the demand for collecting and sharing data has been rapidly 
increased. Among various types of individuals’   data, event 
sequence data mining has many interesting applications in a large 
number of domains. Sequence data mining enables us to discover 
behaviour patterns of individuals through temporal activities. 
Such knowledge is precious for planning, detecting behavioral 
changes, and commercial purposes. For instance, longitudinal 
medical   records   of   patients   can   be   used   to   analyze   patients’  
reactions to a new drug or to support a diagnosis. However, 
despite all benefits of analyzing event sequence data, this data 
often contain sensitive information and may violate privacy of 

individuals if published. In event sequence data, every event may 
have a number of attributes that act as quasi-identifiers (QIs). Due 
to temporal correlation among the events of each sequence, in 
addition to the values of QIs within an event, any combination of 
QIs values across events along with the temporal information 
about these values might lead to privacy breach. For example, 
consider Table 1 containing information of multiple visits of 
patients in a hospital over the last five years. Every visit 
corresponds to a multidimensional event and the ordered list of 
these events represents one sequence. Each event has 5 attributes, 
including admission year (AdmYr), ZIP code, number of days 
since the first visit in each year (DSFC), and the length of stay in 
the hospital (LOS), which all act as QIs, as well as one sensitive 
attribute diagnosis. An adversary with some background 
knowledge about visits of a target individual is able to launch two 
types of privacy attacks: identity disclosure and attribute 
disclosure. For instance, if the adversary knows that Bob had a 
visit in 2009 and he has been living in ZIP code 56230 from 2010, 
she   can   uniquely   identify   Bob’s   record,   #6,   and   consequently  
conclude that Bob has HIV. In case of attribute disclosure, if the 
adversary knows that Bob had a visit in 2007 and later in 2011 he 
was hospitalized for 3 days, then she can conclude that Bob has 
HIV since both matching records to her knowledge, #8 and #9, 
have HIV in one of their visits.  
A common practice for releasing individuals’ data without 
violating privacy is data anonymization. Data anonymization 
techniques aim to modify data such that no sensitive information 
about individuals can be disclosed from published data while data 
distortion is minimized to ensure usefulness of data in practice. In 
order to effectively anonymize multidimensional sequence data, to 
prevent both identity disclosure and attribute disclosure attacks, 
temporal correlation among the events of each record should be 
considered in anonymization process, and it should be guaranteed 
that no combination of values of QIs within an event and across 
events of any record leads to privacy breach. In the past years, 
several anonymization algorithms were proposed to protect 
privacy when publishing different types of data [2]. However, 
none of these methods are applicable to anonymize a 
multidimensional sequence dataset, like the data in Figure 1 (a). 
Recently, a few methods have been designed to anonymize 
longitudinal health data which is a case of event sequence data 
[1][6][7]. However, authors in [1] and [7] only focused on privacy 
protection against identity disclosure. Moreover, in the 
longitudinal data, studied in [7], each record contains a sequence 
of (ICD, Age) pairs as well as a DNA sequence where ICD 
represents the code of the diagnosis made for a patient and Age is 
the  patient’s  age  at   the  time  of  diagnosis.  Considering  such  data,  
background knowledge of an adversary in this method is modeled 
as any combination of (ICD, Age) pairs. Obviously, this method  
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Table 1 Patient data of a hospital 
PID VID AdmYr ZIP DSFC LOS Disease 
1 1 2009 56117 0 3 Hepatitis 
2 1 2007 56103 0 2 Infection 
3 1 2008 56942 0 1 Fever 
3 2 2010 56942 0 30 Infection 
4 1 2008 56107 0 2 Fever 
4 2 2010 56107 0 35 Flu 
5 1 2009 56117 0 3 Fever 
6 1 2009 56103 0 3 Flu 
6 2 2009 56103 10 1 Fever 
6 3 2010 56230 0 2 HIV 
7 1 2008 56072 0 2 Flu 
8 1 2007 56361 0 30 Hepatitis 
8 2 2011 56107 0 3 HIV 
9 1 2007 56230 0 35 Flu 
9 2 2011 56107 0 3 HIV 
10 1 2009 56072 0 2 Flu 
10 2 2009 56103 13 35 Fever 
10 3 2010 56043 0 30 Infection 

 
Table 2 Anonymized patient data satisfying (2, 0.5)-privacy  
PID VID AdmYr ZIP DSFC LOS Disease 
1 1 2009 56117 0 3 Hepatitis 
2 1 [2007:2008] 56*** 0 2 Infection 
3 1 [2007:2008] 56*** 0 [0:12) Fever 
3 2 [2009:2012] 56*** 0 [0:12) Infection 
4 1 [2007:2008] 56*** 0 [0:12) Fever 
4 2 [2009:2012] 56107 0 [0:12) Flu 
5 1 2009 56117 0 3 Fever 
6 1 2009 56*** 0 [0:1) Flu 
6 2 2009 56103 [1:2) [0:12) Fever 
6 3 2010 56*** 0 [0:12) HIV 
7 1 [2007:2008] 56*** 0 2 Flu 
8 1 [2007:2008] 56*** 0 [0:12) Hepatitis 
8 2 [2009:2012] 56107 0 [0:12) HIV 
9 1 [2007:2008] 56*** 0 [0:12) Flu 
9 2 [2009:2012] 56*** 0 [0:12) HIV 
10 1 2009 56*** 0 [0:1) Flu 
10 2 2009 56103 [1:2) [0:12) Fever 
10 3 2010 56*** 0 [0:12) Infection 

 

 
     

 
Figure 1 Generalization hierarchy for (a) AdmYr  (b) DSFC and LOS 
in terms of number of weeks (c) ZIP 

is limited to two QIs and fails to consider the multidimensionality 
of events in our problem. In [1] it is assumed that adversaries 
would not have any information about co-occurrence of values of 
quasi-identifiers in one event as well as the order of events of a 
target individual. As a result this work fails to model all potential 
background knowledge of adversaries. The proposed method in 
[6] prevents both identity disclosure and attributes disclosure; 
however knowledge of adversaries is assumed to be limited to at 
most p values of quasi-identifiers. Although this assumption 
decreases information loss, determining the appropriate value of p 
is not trivial. As a result the adequate level of privacy protection 
may not be achieved. In this paper, we define a new privacy 
model called (k,c)-privacy to anonymize multidimensional 
sequence data to prevent identity disclosure and attribute 
disclosure. This privacy model ensures that every combination of 
values of QIs within an event and across events of any sequence is 
shared by at least k sequences, and the probability of inferring any 
sensitive value is at most c. We achieve (k, c)-privacy by 
presenting an anonymization algorithm based on hierarchical 
agglomerative clustering [4] and sequence alignment [5] 
techniques. We assume that the purpose of data publication is 
unknown and so our algorithm anonymizes data by minimizing 
overall data distortion. Table 2 shows an anonymized version of 
the data in Figure 1(a) satisfying (2, 0.5)-privacy using 
generalization hierarchies in Figure 1.   
 

2. PROBLEM DEFINITION 
In this section we present the framework which forms the basis of 
our anonymization methodology. Specifically, we describe the 
privacy model and the utility measure. 

2.1 Privacy Model 
Suppose a data holder wants to share its multidimensional 
sequence data for public use. Let 𝐴 = {𝐴ଵ, 𝐴ଶ, … , 𝐴௡} be a set of 
attributes and ∆  = {∆ଵ, ∆ଶ, … , ∆௡}  be the corresponding attribute 
domains. Each 𝐴௭  is either a categorical or a numerical attribute. 
Also assume there is one sensitive attribute    𝜓 with the domain 
values  ∆ట= {𝑠ଵ, … , 𝑠௟}. A multidimensional sequence dataset D is 
a collection of records of the form (SID, S), where SID is a unique 
id for every individual and S is an ordered list of multidimensional 
events, denoted by  𝑆 = 〈𝑒ଵ, 𝑒ଶ, … , 𝑒௠〉. Each event e has the form 
(𝐸𝐼𝐷, 𝑎ଵ, 𝑎ଶ, … , 𝑎௡, 𝑠) where EID is  the  event’s  id, 𝑎௭ is a domain 
value of 𝐴௭  , 𝑎௭ ∈ ∆௭,  and s is a value of the sensitive attribute  𝜓, 
𝑠 ∈ ∆ట. Events of every sequence S are ordered with respect to 
temporal information of one of the attributes  𝐴௭ ∈ {𝐴ଵ, 𝐴ଶ,… , 𝐴௡}.  
We refer to the value of the zth QI attribute of the jth event of the 
sequence  𝑆௜ by 𝑒௜௝(𝑧) and the value of the sensitive attribute 𝜓 in 
the jth event of the sequence  𝑆௜  is denoted by  𝑒௜௝(𝜓). A subset of 
attributes {𝐴ଵ, 𝐴ଶ, … , 𝐴௡} is assumed to be publicly available, so 
they act as quasi-identifiers,  𝑄𝐼𝑠 ⊆ {𝐴ଵ, 𝐴ଶ, … , 𝐴௡}. The values of 
the sensitive attribute are naturally private. We assume an 
adversary who knows that the record of a target individual exists 
in a released multidimensional sequence dataset. She also has 
some background knowledge about the sequential events of a 
target individual, i.e. the values of some QIs as well as the order 
of  these  values  in  some  of  the  events  of  an  individual’s  sequence. 
Armed with this knowledge, the adversary seeks to find some 
matching records to her background knowledge in the released 
data. If the number of such records is not “sufficiently”   large or 
the percentage of sequences among these records containing a 
common sensitive value 𝜎 is high, the adversary may infer some 
sensitive information about the individual. Since adversaries’  
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knowledge is assumed to be in the form of any combination of 
QIs’ values, the worst-case scenario would be an adversary 
knowing the values of all QIs’ in all events of a target individual. 
Therefore, to protect privacy of individuals the privacy model 
should ensure that every sequence in the released data is linked to 
a sufficiently large number of other sequences and the percentage 
of sequences with the same sensitive value in every group of 
indistinguishable sequences is not too high. However, the latter 
case may not need to be satisfied for every value of the sensitive 
attribute. More precisely, if some values of the sensitive attribute 
have less degree of sensitivity and do not need to be kept private, 
then we do not need to be worried about these values being too 
frequent in a group. For example, in the context of publishing 
medical data, it might be allowed to disclose the value “flu” for 
the sensitive attribute disease. To effectively handle these cases, 
we define a set  Ω ⊆ ψ, called highly-sensitive set, which contains 
those values of the sensitive attribute ψ which have a high degree 
of sensitivity. In the presence of this set, our privacy model must 
ensure that the frequency of sequences which have at least one of 
the values in Ω in some of their events is not too high in any group 
of indistinguishable sequences. This brings us to the following 
definition. 

DEFINITION 1 ((k, c)-privacy). Given anonymity threshold kt2, 
and confidence threshold c�(0,1], a multidimensional sequence 
dataset D satisfies (k, c)-privacy if i) each sequence in D is 
indistinguishable from at least k-1 other sequences with respect to 
any combination of QIs and ii) the probability of inferring any 
high sensitive value in any group of indistinguishable sequences is 
at most c.  

2.2 Information Loss 
We employ generalization and suppression on the values of QIs to 
modify data and form clusters. This anonymization process incurs 
information loss because some original values of QIs in every 
sequence are either replaced with less specific values or are totally 
removed. In order to preserve data utility for data mining tasks, 
we should ensure that anonymization cost is minimized. We 
consider the scenario where the data analysis task is unknown at 
the time of data publication. So, our goal is to anonymize a 
multidimensional sequence data to satisfy (k,c)-privacy while 
preserving data utility as much as possible. Let D* be an 
anonymization of the multidimensional sequence data D. D* 
corresponds to a set of clusters C={C1, C2,..., Cp} which is a 
clustering of sequences in D. All sequences in a given cluster Cj 
are anonymized together. We define the amount of information 
loss incurred by anonymizing D to D* as 

                        𝐼𝐿(𝐷, 𝐷∗) = ଵ
|஽|
  ∑ 𝐼𝐿(𝐶௝)

௣
௝ୀଵ                                 (1) 

where IL(Cj) is the information loss of the cluster Cj, which is 
defined as the  sum of information loss of anonymizing every 
sequence S in Cj: 

               𝐼𝐿(𝐶) = ∑ 𝐼𝐿(𝑆௜, 𝑆௜∗)
|஼|
௜ୀଵ                                  (2) 

where |C| is the number of sequences in the cluster C, and 
𝐼𝐿(𝑆, 𝑆∗) is the information loss of anonymizing the sequence S to 
the sequence S*.  
Each sequence is anonymized by generalizing or suppressing 
some of the QIs’ values in some of its events. So, we define 
information loss of a sequence based on the information loss of its 
events. Let H be generalization hierarchy of the attribute A. We 
use the Loss Metric (LM) measure [3] to capture the amount of 
information loss incurred by generalizing the value a of the 
attribute A to one of its ancestors    𝑎ො, with respect to H:  

𝐼𝐿(𝑎, 𝑎ො) =
|ℒ(𝑎ො)| − |ℒ(𝑎)|

|Δ஺|
                                                            (3) 

where |ℒ(𝑥)| is the number of leaves in the subtree rooted at x. 
The information loss of each event e is then defined as  

𝐼𝐿(𝑒, 𝑒∗) = ෍ 𝐼𝐿(𝑒(𝑛), 𝑒∗(𝑛))                                                      (4)
|ொூ|

௡ୀଵ

 

where 𝑒∗is the ancestor of the event e, e(n) is the value of nth QI of 
the event e and 𝑒∗(𝑛)  is its corresponding value in the event 𝑒∗. 
Hence, the information loss incurred by anonymizing each 
sequence is as follows: 

𝐼𝐿(𝑆, 𝑆∗) = ෍ 𝐼𝐿(𝑒௠, 𝑒௠∗ )                                                      
|ௌ|

௠ୀଵ

  (5) 

3. ANONYMIZATION ALGORITHM 
We propose a bottom-up anonymization algorithm based on 
hierarchical agglomerative clustering. The general idea is to 
anonymize data by starting with the trivial clustering that consists 
of singleton clusters and then keep merging the two closest 
clusters, until all clusters satisfy privacy constraints based on 
(k,c)-privacy model. A key factor in any clustering algorithm is 
the distance measure. In order to minimize the overall data 
distortion due to anonymization, we define the distance between 
two given clusters as the change in information loss when we 
merge the clusters:  

𝑑𝑖𝑠𝑡(𝑋, 𝑌) = 𝐼𝐿(𝑋 ∪ 𝑌) − 𝐼𝐿(𝑋) − 𝐼𝐿(𝑌)                                        (6)  
where 𝐼𝐿(𝑋 ∪ 𝑌) is the information loss of the merged cluster, 
and  𝐼𝐿(𝑋) and 𝐼𝐿(𝑌) are information loss of clusters X and Y 
before merge, respectively. 
We assume that every cluster has a representative sequence which 
is the result of anonymizing all contained sequences. The distance 
between two clusters is calculated based on the information loss 
of anonymizing their representatives, and the clusters with the 
smallest distance are chosen to be merged. In general, two 
representative sequences have different number of events. So, the 
anonymization of these sequences can be seen as the problem of 
finding a matching between the events of these sequences, using 
generalization and suppression, such that the anonymization cost 
is minimized. The following definition expresses the information 
loss of a merged cluster based on the information loss of 
anonymizing representatives of two clusters which are being 
merged to their best matching.   

DEFINITION 2. Let Xሸ and Yሸ be representative sequences of 
clusters X and Y and Mଡ଼ଢ଼ be their best matching. Then the 
information loss of the merged cluster 𝑋 ∪ 𝑌 is define as  

IL(X ∪ Y) = |X| ∙ IL൫X,ሸ Mଡ଼,ଢ଼൯ + |Y| ∙ IL൫Yሸ,Mଡ଼,ଢ଼൯                          (7)   

where IL൫X,ሸ Mଡ଼,ଢ଼൯ and IL൫Yሸ,Mଡ଼,ଢ଼൯ are information loss of 
anonymizing representative sequences Xሸ and Yሸ to their best 
matching sequence Mଡ଼ଢ଼. 
Finding the best matching between two sequences is a sequence 
alignment problem. The basic principle underlying sequence 
alignment methods is to measure the effort it takes, in terms of 
specific operations, to make sequences equal. One of the most 
common approaches for sequence alignment is dynamic 
programming. Dynamic programming is an advanced algorithmic 
technique that solves optimization problems from the bottom up 
by finding optimal solutions to subproblems. Inspired by [7], we 
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employ dynamic programming to align representatives of clusters 
with the goal of minimizing anonymization cost. The operations 
which we use to align (anonymize) two sequences are 
generalization and suppression. If two values of the attribute 
q�QI are identical, their generalization is equal to the values 
themselves; otherwise both values are replaced with their lowest 
common ancestor (LCA) which is the lowest node in the 
generalization hierarchy HA that is an ancestor of both v and w. 
Given sequences Xሸ = {xଵ, xଶ, … , x୪}  and  Yሸ = {yଵ, yଶ, … , y୲} as the 
representatives of two clusters, the optimal alignment of these two 
sequences is the alignment which incurs minimum information 
loss considering all QIs. We have three cases for aligning Xሸ and Yሸ: 
1) aligning {xଵ, xଶ, … , x୪ିଵ} and {yଵ, yଶ, … , y୲ିଵ}, and generalizing 
x୪ and y୲, which means replacing every QI value in xl and its 
corresponding QI value in yt with their LCA, 2) aligning 
{xଵ, xଶ,… , x୪ିଵ} and {yଵ, yଶ, … , y୲}, and suppressing x୪, 3) 
aligning {xଵ, xଶ, … , x୪}  and  {yଵ, yଶ, … , y୲ିଵ}, and suppressing y୲.  
For every q�QI we create a score matrix to store the cost of all 
sub-problems for aligning two one-dimensional sequences 
resulted from projecting sequences Xሸ and Yሸ on q. Each of these 
solutions have an anonymization cost and our objective is to find 
the best alignment with minimum information loss. The cost of 
each solution is calculated as the sum of its cost for every q�QI. 
Besides the score matrices, we assume a move matrix M where 
each cell M[i, j] contains the operation which is chosen to align 
the sequence prefix xଵ, xଶ, … , x୧ and the sequence prefix 
yଵ, yଶ, … , y୨. To build the sequence MX,Y which is the result of 
best alignment of sequences Xሸ and Yሸ,   we   do   a   “traceback”   on  
matrix M from cell M[l+1,t+1] to cell M[0,0]. 
Our clustering algorithm clustering based multidimensional 
sequence data anonymizer (CBMSA) is based on agglomerative 
hierarchical clustering. We start with the trivial case of singleton 
clusters and iteratively merge two closest clusters which are 
determined by applying our multidimensional sequence alignment 
algorithm. Once, a cluster satisfies (k,c)-privacy, it will not be 
merged anymore. In order to reduce information loss, our 
preference is to merge two closest clusters which do not violate 
the confidence constraint of (k,c)-privacy model when being 
merged. When we merge two clusters X and Y with representative 
sequences Xሸ and Yሸ, all sequences in clusters X and Y are 
anonymized with respect to MX,Y. This means that those events 
which are suppressed in Xሸ and Yሸ based on the best alignment 
result are suppressed in all sequences in clusters X and Y, 
respectively. The remaining events of every sequence are then 
replaced with their corresponding events in MX,Y. However, since 
we only apply generalization on QI values, the values of sensitive 
attribute in these events remain unchanged. Since our goal is to 
build clusters which satisfy (k,c)-privacy, for every cluster we 
should check if it contains at least k sequences and if the 
frequency of sequences which have at least one event with a high 
sensitive value is not greater than c. When we merge two clusters 
X and Y, the size of the new cluster is simply the sum of the 
number of sequences in X and Y. For the diversity check, we 
should count the number of sequences which have at least one 
event with a high sensitive value. In order to efficiently count 
these sequences, for every cluster we use a data structure, denoted 
by HighSensList, to keep track of these sequences. When we 
merge two clusters X and Y, the number of sequences with high 
sensitive value in X or Y may decrease. This is due to the fact that 
some events may be suppressed in sequences of cluster X or Y. If 
the events which are suppressed in a sequence are the only ones 
which contain high sensitive value, then this sequence will not 

contain any high sensitive value after applying suppression. So it 
should be removed from HighSensList of the cluster where it is 
consist of. So, after applying anonymization on sequences of 
clusters X and Y, we first update HighSensList of these clusters 
and then merge two HighSensLists to build the HighSensList of 
the new merged cluster. We keep merging clusters till no more 
than one cluster left. If the remained cluster does not satisfy 
privacy constraints, we remove all sequences contained in this 
cluster from data.   

4. EXPERIMENTS 
In this section, our goal is to evaluate the performance of our 
proposed anonymization algorithm in terms of information loss 
calculated based on Equation 1 as well as scalability by varying 
the anonymity threshold k and the confidence threshold c. We 
developed a data generator to generate synthetic multidimensional 
sequence data inspired from the Heritage Health Prize (HHP) 
claims data set1. In [2], anonymization of the HHP claims dataset 
is studied in order to prevent identity disclosure attacks. Authors 
identified 6 QIs for the claims dataset among which we selected 
two attributes days since first claim in each year (DSFC) and 
length of stay (LOS). We did not include attributes diagnosis and 
CPTCode2 since these attributes are sensitive attributes in the 
framework of our study. Also, we disregarded attributes place of 
service and specialty due to not accessing to their possible original 
values in the HHP data. Instead, for each claim we included two 
other QI attributes, i.e. ZIP code of patients due to the fact that 
this information is often updated at every visit and the year in 
which a claim took place (AdmYr). We generated multiple 
synthetic datasets by varying the number of sequences, average 
number of events per sequence (3,5, and 10), and number of QIs 
per event (2, 3, and 4). For every set of data characteristics, we 
generated 10 datasets, evaluated their performance in terms of 
information loss, and took the average of information loss of 10 
datasets in each set. We implemented our algorithms in Java and 
conducted experiments on a 1.80 GHz Intel core i5 PC with 8 GB 
RAM. To illustrate the benefits of our proposed multidimensional 
sequence alignment method, we also developed a baseline 
algorithm which does not use dynamic programming. If two 
sequences X and Y are of the same size, the baseline algorithm 
simply applies generalization to every event of two sequences. 
Otherwise, it first randomly suppresses n = abs(|X| - |Y|) events in 
the longer sequence and then generalizes every remaining events 
in two sequences. In the first set of experiments, we evaluate the 
information loss IL by varying the value of the anonymity 
threshold k while keeping the confidence threshold c fixed. Figure 
2 shows the IL for two datasets of size 1000 and 10000 with the 
average number of events 5 and three QIs with anonymity 
threshold 5d k d50 and a fixed confidence threshold c = 0.7. As k 
increases, IL increases for both algorithms. This illustrates the 
trade-off between privacy and data utility. In other words, as k 
increases, higher level of privacy protection is required to keep 
the probability of re-identifying a target individual or inferring 
sensitive information about a target individual fairly low. 
Therefore, more data distortion occurs. Also, comparing the 
information loss of our anonymization algorithm based on 
dynamic programming with the baseline algorithm depicts the 
benefits of our method. In the second set of experiments we 
change c from 0.5 to 0.9 for the fix value k = 5. This setting 
allows us to measure the performance of our anonymization 
                                                                 
1 http://www.heritagehealthprize.com/c/hhp/data 
2 Current Procedural Terminology Code 
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algorithm against attribute disclosure for a fixed k. The resulting 
information loss of two algorithms for two datasets is shown in 
Figure 3. In general, IL decreases as c increases due to a less 
restrictive privacy requirement. Similar trends were observed 
between CBMSA and Baseline for the other datasets. The results 
are omitted for brevity. In Figure 4, we show the time 
performance of our algorithm for two datasets with 5d k d50 and a 
fixed confidence threshold c=0.7. For a small dataset with total 
number of events about 4500, for every value of k, the total 
runtime of our algorithm is less than 30 sec. For a large dataset, 
with total number of events about 47000, the execution time of 
our algorithm for different values of k is between 2200 sec and 
2700 sec. The run time of baseline algorithm for both datasets is 
very fast. This indicates that our algorithm spends a large amount 
of its running time on multidimensional sequence alignment based 
on dynamic programming. Even though the run time of our 
algorithm for large datasets is fairly high, we believe it is still 
acceptable in practice due to the fact that most anonymization 
tasks are off-line procedures.  

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we proposed an anonymization algorithm for 
multidimensional sequence data using sequence alignment 
techniques and agglomerative hierarchical clustering. To the best 
of our knowledge, this is the first work for multidimensional 
sequence data anonymization which prevents both identity 
disclosure and attribute disclosure without making any 
assumption about the knowledge of the adversary. Our 
experimental results on synthetic data show the effectiveness of 
our proposed algorithm for anonymizing multidimensional 
sequence data. Our future work includes the following. In this 
work we assumed that the goal of data publication is unknown 
and we anonymized data by minimizing data distortion for general 
data analysis purposes. In our future work, we will consider the 
case of publishing data for a specific data mining task such as 
classification. This requires employing an appropriate 
anonymization cost measure to capture the utility of our algorithm 
for data mining tasks. Moreover, in this paper, we studied the 
simplest case of a single sensitive attribute in every event of a 
sequence. An extension of our work would be the case of multiple 
sensitive attributes. Also, we will run experiments on real datasets 
to further investigate the effectiveness of our proposed algorithm. 
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Figure 2. Information loss for (a) Data_1000_5_3 (b) 
Data_10000_5_3 with c = 0.7 
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Figure 3. Information loss for (a) Data_1000_5_3 (b) 
Data_10000_5_3 with k = 5 
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Figure 4. Execution time for (a) Data_1000_5_3 (b) 
Data_10000_5_3 with c = 0.7 
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