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ABSTRACT
The indexing technique in distributed object storage system
is the crucial part of a large scale application, where the
index data structure may be published in many nodes. Here
arises a problem on preserving the privacy of the ownership
information while supporting queries on item locations with
limited index space. Probabilistic data structure, such as
the bloom filter which records the location of each item in
distributed nodes, is one of the promising solutions. The
data structure uses a hashed vector to index items on the
nodes. In this paper we propose a Lightweight Bloom filter
Array (LBA) indexing model which is compact in size and
preserves ownership privacy. To tackle with the problem
of examining wrong nodes in the lookup process, we find an
optimal storage ratio of the bloom filters and reduce its false
positive rate based on the observation of the user’s access
behavior in Internet applications. We use experiments to
verify our proposed solution. In our experiment, the dataset
consists of one billion items distributed in one hundred data
nodes. The experiments show that our model can reduce the
false checking times and save the index space significantly.

1. INTRODUCTION
With the rapid growth of the Internet, many online applica-
tions have been based on distributed storage systems which
are composed of many single storage nodes. When a request
for a certain item arrives at the system, the first step is to
find which node contains the item. The indexing service,
which is capable of recording ownership relation between n-
odes and items, is a key component in distributed systems.
The node that holds the service is called the index node. It
can be either a storage node that have the index function
the same time as the storage role or an exclusive node that
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is only responsible for the indexing service. Because of the
large total number of items, each storage node in the sys-
tem is usually in charge of many items. However, in many
distributed systems, the indexing data structure has to be
deployed in many (even all) nodes in order to support fast
lookup and high scalability. Therefore the index has to be
very compact in size in order to be stored in the index nodes’
memory. Moreover, in many distributed systems, an item
can be a video slice, file fragment or even a piece of record.
It needs several times of item lookup in the table to finish a
meaningful service. Therefore, we need a high performance
indexing technique with limited space consumption in dis-
tributed systems.

Private information grows with the increase of data volume
and service type. Index data structure has to support the
queries for resident nodes of an item while keeping the entire
ownership information away from unknown requests. Since
distributed systems may have more than one index nodes, it
is sometimes unavoidable for the information transportation
and indexing publishing, and hence unpredicted intercep-
tion. In those cases, the security of the information stored
in the index may be threatened. Compact, fast and secure
index will become a key component in distributed applica-
tions.

Bloom filter[2] is a space-e�cient probabilistic data struc-
ture for item representation and lookup in a set. When in-
dexing space is limited, i.e. in the memory, the data struc-
ture o↵ers fast item lookup with a low false positive rate.
Many distributed systems that emphasize time e�ciency are
using bloom filters as their indexing technique when a small
false positive rate is tolerable[8]. The data structure uses
hash functions to map items onto several positions on a bit
vector. It only stores the hashed bits and allows for hash col-
lisions. The actual data is not stored on the vector. Without
the knowledge of hash functions, the ownership information
cannot be obtained from the vector. In this way, the priva-
cy is preserved. Actually, many online systems[1, 4, 3] are
using bloom filters for secure index. In our paper we try to
optimize their usage with reference to user behavior.

The observation of user behavior indicates that in many ap-
plications, a small number of items attract a major part
of user access. The phenomenon inspires us to be selective
in index construction when space is limited. In this paper
we provide a lightweight mechanism for bloom filter usage.
The lookup procedures are given to guarantee e↵ective item
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locating.

The rest of the paper is organized as follows. Section 2
describes the related work of our research. In Section 3,
we give the lightweight bloom filter construction and item
lookup procedures. Experimental results are shown in Sec-
tion 4. Finally, we present the conclusion and future work
in Section 5.

2. BLOOM FILTER AND PURE BLOOM FIL-
TER ARRAY (PBA) INDEX

2.1 Bloom Filter
Bloom filter[2] works as an index which records all elements
of a set. We may assume that the set S = {x

1

, x
2

, ..., xn},
which consists of n elements. A Bloom Filter vector (BFV),
which consists of m bits, is used to represent elements of set
S. All bits of the vector are set to zero initially. For each
element, the algorithm uses k hash functions {hi}i=1...k to
map the element onto k positions of the vector and sets the
bit on the position to 1. The k functions, ranging from 1 to
m, are independent from each other and can map elements
of the set S to a random place on the vector. During the
insertion period, the algorithm maps all elements of the set
to load the BFV with all the information of the elements.

In lookup procedure which we want to check whether an
element y belongs to the set S, the algorithm uses the same
hash functions to map y onto k locations and check whether
all hi(y) equal to 1. If the answer is no, we conclude that y
doesn’t belong to S, otherwise, we say y belongs to S. The
time complexity of bloom filter lookup is constant.

It needs to be mentioned that there is a probability that
elements don’t belong to S be judged as inside S by BF. That
is to say, BF has a false positive rate. Research[6] shows that
the false positive rate can be represented as follows:

fFP = (1 � e�

kn

m )k (1)

Study[6] also shows that fFP reaches minimal value when

k =
m
n

ln2 (2)

Then the false positive is minimized

fFP = 0.6185
m

n (3)

Since the bloom filter does not store the actual data, owner-
ship information cannot be revealed without the knowledge
of hash functions. The algorithm can be used as secure index
in online applications[1, 4, 3]. Due to its simple structure
and smooth integration characteristic, the mathematical for-
mat allows considerable potential improvement for system
designers to develop new variations for their identical appli-
cation requirements. In this paper, we focus on fast object
lookup in distributed systems.

2.2 Pure Bloom Filter Array for Distributed
Data Storage Index

Many distributed systems use Pure Bloom filter Array (P-
BA)[10] to support item index and lookup. The approach
consists of a two-stage process: indexing building and item
locating.

Index Building. For each node of the system, the index
node builds a bloom filter for representing all of its items.
These Bloom filters are loaded with all the items in the entire
system and can act as an indexing system.

Item Locating. The object locating process is described be-
low: when a query for a certain item arrives on the index
node, the node first uses the bloom filters to find the approx-
imate membership relations: it calculates with the bloom
filter of each node and collects the results. The negative
result of a certain bloom filter means that the queried item
doesn’t exist on the related node. The positive result means
that the queried item exists on the node with a probabil-
ity of 1 � fFP . Then the system queries the actual node
whose bloom filter check result is positive to check whether
the queried item exists in the node. In that way, the false
positive occurrence is finally eliminated. Since the bloom fil-
ters have a constant time complexity, the method can reduce
lookup time remarkably.

3. LIGHTWEIGHT BLOOM FILTER ARRAY
FOR DISTRIBUTED STORAGE INDEX

3.1 Lightweight Bloom Filter Design
User behavior observation indicates that access for items
varies between di↵erent objects. In many applications, the
access frequency can be observed accurately. If ordered by
access frequency, the top ranked items attract a large por-
tion of user visits while the low ranked items absorb a very
little part. That phenomenon shows us a way to increase
bloom filter space use e�ciency. Each node in the system
builds a bloom filter for indexing the items of the node. It
selects the highly ranked items and inserts them into the
bloom filter. The bloom filters on the nodes forms an array,
which is capable of recording item ownership information on
nodes and plays the role of a distributed index. Though the
total index space is limited, the data structure has a lower
load and therefore a lower false positive rate. Queries for
highly ranked (popular) items will have a more accurate re-
sponse. Queries for low-ranked items will not receive a posi-
tive response from the bloom filter index. In those cases the
system uses traditional lookup method to find the queried
item directly in the storage nodes. Since most queries are for
popular items, the overall false positive rate of the index can
be reduced. The detailed bloom filter improvement method
is described below. In that way, the index can perform with
lower space consumption and preserve ownership privacy.

Index Building. The system sets a load factor �, which is the
ratio of the loaded item to the total item number. Each node
in the system orders the items by their access time. Then it
inserts the items one by one from rank 1 until it reaches the
load threshold. The bloom filters are gathered to form an
array, which represents the ownership relation between items
and nodes, and stored on the index nodes. For a system of
totally N items, the bloom filter arrays index �N items.
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Item Locating. When a query for a certain item arrives,
the index node first calculates with the bloom filter of each
node and collects the results. One possible situation after
the calculation is that there is at least one positive result,
it means that the queried item exists on the node with a
probability of 1�fFP . Then the system first queries the ac-
tual node whose bloom filter check result is positive to verify
whether the queried item exists in the node. If it does exist
on one of the positive nodes, the lookup procedure stops;
otherwise it continues to check on the remaining negative
nodes until it finds the queried item. The other possible
situation after bloom filter calculation is that there is no
positive match. Under that circumstance, the system looks
up the item in each unsearched node directly. The lookup
procedure is shown in Fig.1.

In the two steps of the lookup procedure, the bloom filter
calculation takes place in index nodes’ memory. The time
consumption is rather low considering the O(C) time com-
plexity of bloom filters. The vast majority of time cost comes
from the node lookup process, in which the index node com-
municates with the storage node and the storage node check
in its disk for queried items. So the time consumption is ap-
proximately linear to the average checking times of a query.
In the many check in nodes, only one of the checking pro-
cedure can find the needed item. The rest nodes checking
end without a match and waste a lot of time and system re-
source. Those redundant (false) checking times are the key
factor that lowers system performance. The occurrence that
the system looks up a query in a wrong node and finds no
result is called the false checking in nodes.

3.2 Selection of Popular Items
In the design of LBA, the algorithm stores the top � ⇥100%
popular items in the bloom filter index. In actual processing,
each node keeps a list of all its popular items and builds the
lightweight bloom filter of its own. Then it transmits the
index to the index nodes, where all bloom filters are stored
in.

The selection of the popular items follows the same proce-
dure of that with cache. The goal is to find the top �⇥100%
items in each node e�ciently with high accuracy. The cache
selection and update algorithms are adequate for that task.
Actually in [10], the authors use LRU cache scheme for se-
lecting popular items.

It needs to mention that the item selection process takes
place in each storage node, just like the cache does. It does
not occupy the resource of the index node, which is respon-
sible of storing the bloom filters already built on the storage
nodes. Also, the index node does not have the entire knowl-
edge of the ranking of items on the storage nodes.

3.3 Dynamic Items and Renewal Process
In online systems, the access pattern of items and visit fre-
quency varies over time. A “hot” item may become unpop-
ular after a certain period of time. The updating of popular
list on each storage node follows the same way as caches
do. After reaching a certain threshold, the node rebuilds
the bloom filter index in the same way as [10] does. Then
it transmits the new filter to the indexing node. In update

mechanism, we use the mechanisms given in [10] and [9].
The e↵ect of that method is given in [9].

4. EXPERIMENTAL EVALUATIONS
In this section we use experiments to show the index per-
formance. The items and nodes are synthetic data. In all
experiments we set node number s=100, the total number of
items N = 109. The items are scattered randomly among s
nodes, so each node has approximately n = 107 items. The
probability that an object be allocated in one node is iden-
tical among all servers. The total query number Q = 105.

4.1 Queries
Observations show that several “hot” items attract a major-
ity of user access, as stated in Zipf’s law[7, 5]. In the ex-
periment we assume that access for the entire corpus follows
Zipf’s distribution with total number N = 109. The queries
reflect the real popularity of the corpus, so the queries follow
the same distribution as the corpus. Actually, queries are
generated automatically as a sampling set of Zipf’s law with
parameter N = 109.

The real query count of top 10000 hot items are plotted in
Fig.2.
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Figure 2: Query count for top 10000.

The figure is in a log-log scale. We can see that the first
half part of the figure is a nearly straight line with slope=-
1. That indicates the queries follow the Zipf’s law. The
second half consists of some irregular points because of the
low value of the actual count.

4.2 Node Construction
In actually processing of bloom filter construction in storage
node, we first order all items in the node by its popularity
rank and pick the first �n items. Then we insert those items
into its bloom filter. For easy deployment in the memory of
the node, the bloom filter needs to be compact in size. In
the experiment we set the length of the bloom filter vector
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Figure 1: Item lookup procedure.

m=33554432 (use 3.36 bits for one item). The hash number
of the bloom filters reaches the nearest integer of its optimal
value in (2).

4.3 Experiments with Different �
In the experiment we want to analyze the impact of �. First,
we want to know whether our proposal can actually improve
the bloom filter index performance. Second, we are going to
find out what the optimal load factor is in the lightweight
bloom filter.

The range of � is {0.1, 0.2, ..., 1}. Here �=1 means that the
bloom filters are fully loaded, which is equivalent to pure
bloom filter array. For each �, we build the bloom filter
index in each node and lookup all Q queries until we find a
match. In the experiment, we count the total false checking
times when we finish serving all the queries.

In order to find if our proposed method have a positive e↵ec-
t, we use the PBA approach and the direct lookup approach
(in which nodes are checked one by one to find a queried
item without using index) for a comparison. In the follow-
ing experiment we repeat the indexing and querying proce-
dure separately with the same system environment: index
objects, queries, nodes, etc. Then we count the false check-
ing times of each method. The false checking times in each
experiment is plotted in Fig.3.

In the figure we can see that both LBA and PBA have an im-
pressive improvement over direct lookup method (DL) con-
sidering false checking rate. That will reduce the overall
system workload. Comparing PBA and LBA, we find that
the LBA performs better than the PBA and reaches its op-
timization when �=0.4. The two methods come near when
� approaches 1. When �=1, the LBA is fully loaded and is
equivalent to PBA. The false checking rate of LBA reach-
es only 30 percent of that in PBA at optimal �. That will
have a direct impact on system performance. Under that
system parameter, when top forty percent popular objects
are loaded, the false checking rate is 5.87, which means that
on average the system will check 5.87% of all nodes before
finding a query.
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Figure 3: Overall false checking in node.

4.4 Space Consumption
Compared with the PBA, LBA can be more accurate when
the index memory cost is very low. Equivalently, when
reaching the same accuracy, the LBA can use less space
than PBA. Take the example in the experiment, with one
billion items distributed in one hundred nodes, a query will
be checked on 5.87% of all nodes before finding its right lo-
cation. The space needed for the indexing structure is only
about 400MB using LBA (3.35 bits for one item), which
is a↵ordable in many distributed nodes. If we use PBA
method instead, in order to achieve the same accuracy, we
need about 700MB memory space. The space needed has
reduced by 43%.

4.5 Distribution of False Checking Times
In the experiment, we record the false checking times of each
query. Fig.4 shows the experimental false checking distribu-
tion when �=0.4. We see that most queries will find their
match after ten false checking times. Some queries will have
to go through all nodes to find a match.
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Figure 4: False checking (�=0.4).

Fig.5 shows the experimental false checking times distribu-
tion with di↵erent �. We can see that for every �, the false
positive rate concentrates on two areas: the low false check-
ing area (Bernoulli distribution) and s-1. When � increases,
the mean of Bernoulli distribution increases while the false
checking times s-1 decreases (when �=1 the false checking
on s-1 is 0).
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Figure 5: False checking distribution.

5. CONCLUSION
In the paper we have presented a privacy preserving mod-
el for ownership indexing in distributed storage systems -
the lightweight bloom filter array based on the observation
that user access for items varies from case to case in many
Internet applications. We have pointed out a problem in the

secure index - support fast ownership query with limited
index space. We have changed the traditional bloom filter
construction method by ranking the items and putting on-
ly a part of top visited items into the bloom filter array.
Then the experimental evaluation has been conducted to
show that the mechanism can reduce false checking times
by 70 percent. We have demonstrated that our algorithm
can improve the system performance while preserving the
privacy of ownership relation in distributed systems when
the index nodes’ memory is limited.

The future work includes adopting the new algorithm to
more complex indexing systems and adding new functions
to the algorithm, i.e. item deletion. The improvement of
lookup procedure will also continue in the development of
the algorithm.
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