Assessing Software Design Skills and Their
Relation With Reasoning Skills

Dave R. Stikkolorum', Claire E. Stevenson?, and Michel R.V. Chaudron?®

1Leiden Institute of Advanced Computer Science, 2Department of Psychology
Leiden University, The Netherlands
3Joint Department of Computer Science and Engineering, Chalmers University of
Technology and Gothenburg University, Sweden
'd.r.stikkolorum@liacs.leidenuniv. nl, 2cstevenson@fsw.leidenuniv. nl,
3chaudron@chalmers.se

Abstract. Lecturers see students struggle learning software design. In
order to create educational interventions it is needed to know which
reasoning skills are related to students’ software design performance. We
introduce an online test for measuring students’ software design skills and
relate those with abstract reasoning. T'wo student groups of two different
European universities participated in an experiment in which we were
able to relate students’ visual and verbal reasoning skills to students’
software design skills and measured learning improvement. In the future
proper interventions can be chosen while using the test as a diagnostic
tool.

Keywords: reasoning, software design, assessing, education, UML

1 Introduction

Lecturers from all over the world see students struggle with the subject of soft-
ware design. Not only syntactic errors are made when using modeling languages
like UML, but also semantic or organization (design) errors. Kramer argues that
the key lies in students’ abstract reasoning|[7]. The objective of our research is to
discover which reasoning skills are related to the design skills of software engi-
neering students. We focus on two types of abstract reasoning: visual and verbal
reasoning. In our study the main question is: ‘Which type of knowledge and/or
reasoning skills are related to students’ software design skills?” This leads to
the following underlying questions: R@); - Can verbal or visual reasoning ability
predict ones software design skills? RQ)s - Do language skills influence software
design skills? R@)s - Does prior domain knowledge (UML) influence software de-
sign skills and learning? Answering these questions can help lecturers to create
educational interventions. In order to measure students’ software design skills we
developed a test. As far as we know there is no standard measurement instru-
ment of software design skills. In this paper we analyze two groups of students at
two different universities. They participated in a series of tests addressing soft-
ware design, modeling, reasoning and language skills. In section 2 we describe

2 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

related work. In section 3 we describe our method. The results are presented in
section 4 and discussed in section 5. We conclude and propose future work in
section 6.

2 Related work

Several researchers have discussed the importance of subjects that should be
included in the curricula of university software engineering programs [5] [6].
Especially inclusion of mathematics is subject of discussion. Lethbridge found
that software professionals remembered little mathematics from their study pro-
grams[8]. Some use this research to state that curricula emphasise mathematics
too much while others, like Henderson use this as an argument to claim not to
trust professionals’ opinions[4], because there is too little research on the effect
of mathematics on software engineering skills. In our study we aim to identify
what general reasoning skills (not only mathematical) are related to performance
on software design. Bennedsen and Caspersen studied abstraction as indicator
for students’ learning performance on software engineering [1]. They were not
able to find evidence for this relationship. Roberts [12] found positive correla-
tion between abstraction ability and course grades, but observed a small number
of students (N=15). We targeted a larger group of students, included language
knowledge and used our test as main indicator of students’ design ability.

3 Method

In this section we explain the research method employed to develop our instru-
ment for measuring software design skills. We wanted the measure to show an
increased score after students had followed a course on software design. There-
fore, we asked students to perform the test at the start (pretest) of a course and
at the end (posttest) of a course. We found subjects for our test through two dif-
ferent courses on software design taught at two different universities in Northern
Europe. We presented our design skills test as additional learning material.

In this section we describe our hypotheses. We address the participants and
discuss the different types of test instruments that we used.

3.1 Hypotheses

In all hypotheses we focus on the effect of the independent variables on the
level of design skills (dependent variable), shown in table 1. The level of design
skills is measured at two points in time: with a pretest and with a posttest.
The hypotheses we want to examine are: H; - UML domain knowledge will
not influence students’ design skills. Hs - Visual reasoning is related to design
skills test performance. Hs - Verbal reasoning is related to design skills test
performance. Hy - Knowledge of the English Language (language of our design
skills test) is related to design skills test performance.

Assessing Software Design Skills and Their Relation With Reasoning Skills 3

Hypothesis Construct Description Type of variable
1 UML Knowledge UML syntax knowledge Independent

2 Visual Reasoning Raven figure series Independent

3 Verbal Reasoning Verbal analogies Independent

4 Knowledge of English C-Test for languages Independent

all Design Skills Pretest Software Design Skills Dependent

all Design Skills Posttest Software Design Skills Dependent

Table 1. Measured Constructs

3.2 Participants and Data Collection

The students that participated in the test were 2nd year BSc. students from
two universities in Europe. A group from Chalmers University in Gothenburg -
Sweden and a group from Utrecht University in Utrecht - The Netherlands. Both
groups had no or very little experience with software design. The initial number
of students(N) was 243, however not all students participated on all tests during
their course. For some parts of the analysis we had to use a smaller number of
students.

All data was collected with on-line multiple choice tests®. This was convenient
for assessing a larger group of participants. We used an open-source questionnaire
tool called LimeSurvey?.

SOFTWARE DESIGN COURSE

UML Knowledge | REASONING TEST
TEST -Visual
Personalia -Verbal
questions [Language TEST |
PRE TEST POST TEST
(design skills) (design skills)

»

time

Fig. 1. Test construction in time dimension

3.3 Designed Procedure

In figure 1 the organization of the test is shown in the dimension of time. The
whole experiment consists of 6 test parts: design skills pre- and posttest, UML

! A demo is available at: http://umltest.liacs.nl
2 http://www.limesurvey.org

4 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

Knowledge, Reasoning, Language and one part that is about personal informa-
tion. The experimental procedure was as follows: 1) In the first week students
were administered the software design pretest, the UML prior knowledge test
and answered general questions about age, background and experience. 2) In
the next weeks they followed the software design course at their university and
were asked to complete the verbal and visual reasoning tests. Also their level of
English was tested in these weeks. 3) At the end of the course the students made
the software design skills posttest.

Pre and Post software design skills tests The pre- and posttest both con-
sisted of 20 similar multiple choice items targeting software design principles
such as mentioned in [11] and [9] with a time limit of 40 minutes. In some ques-
tions the student is asked to compare different designs for the same system. An
example question is shown in figure 2. In other questions only one design was

Modem Modem
+Dial ()
+Hangup()
+Send()
+Receive()

DataChannel Connection
+Send() +Dial ()
+Receive() +HangUp()

C D

[Modem |
Modem
+Connect()
\ +ExchangeDatal()
DataSender DataReceiver Connector Exiter
+Send() +Receive() +Dial () +HangUp()

Which one is a better design, considering assignment of responsibility?

Please choose only one of the following:

O Design A, because the system is too small to split up in different classes with different responsibilities.
O Design B, because operations that are part of the same task are combined to a responsibility.
O Design C, because every operation is a responsibility.

O Design D, because it is necessary to reduce the amount of operations in a class, not the responsibility.

Fig. 2. example question design skills test

presented and students had to answer questions about this design. The designs
were presented to the students in the Unified Modeling Language (UML?). The
UML is the most popular modeling lanuage at the moment of writing. We choose
a very small subset of the UML for the reason that we only see the UML as a ve-
hicle for designing software systems. Lecturers and Phd students discussed about
the possible answers. Only those questions were elected, where they agreed on

3 http://www.uml.org

Assessing Software Design Skills and Their Relation With Reasoning Skills 5

the answer. The cognitive difficulty levels we used are up to level two of Bloom’s
taxonomy of educational objectives [15].

UML prior Knowledge A set of 22 items about UML syntax knowledge was
administered after the pretest to be able to study the relationship between prior
UML knowledge and design skills afterwards. There was a 20 minutes time limit.

Language and Reasoning tests We identified three possible types of knowl-
edge and/or skills that could be related to software design skills: language knowl-
edge, verbal reasoning and visual reasoning. In order to study the relationship
between the performance on the design skills test we asked the subjects to make
a test that measures these skills. For the language knowledge we used the au-
tomated C-test for languages from Leuven University*. For verbal reasoning we
used a verbal analogies test®, for visual reasoning we used a test based on Raven’s
progressive matrices [10]. The time limit was 60 minutes.

Personalia A couple of questions were asked after the first test about prior
design experience, education and other pre-knowledge.

4 Results

In this section we describe the results of the individual test instruments. The
analysis[14] of this data will be discussed in section 5. We show psychometric
properties, descriptive statistics, investigate correlations and compare the uni-
versities’ performances. The student groups from the universities are anonymized
and shown as ‘A’ and ‘B’ or we consider the groups as a total.

4.1 Psychometric Properties

We used classical test theory to determine reliability of our instruments. Cron-
bach’s « coefficient of internal consistency was .44 for the pretest, .58 for both the
posttest and UML knowledge test. The « is somewhat low because of measuring
different knowledge constructs. The item difficulty (i.e., proportion correct) was
lower for the pretest (M=.59, SD=.17, range=.21-.82) than the posttest (M=.68,
SD=.17, range=.25-.89). For the UML knowledge test the students solved on av-
erage 41% of the items correctly (M=.41, SD=.25, range=.09-.90).

4.2 Descriptive Statistics

Table 2 shows the number (N) of students that participated per test, Minimum
(Min) and Maximum (Max), Mean (M), standard deviation (SD), the Skewness
(Skew) and Kurtosis (Kurt). We excluded students’ responses if they responded
to only less than 50 percent of the questions on a test.

4 http://www.arts.kuleuven.be/ctest /english
® http://www.fibonicci.com/verbal-reasoning/analogies-test

6 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

Construct N Min Max M SD Skew Kurt

Design Skills Pre 243 3 19 11.732.75 -31 -.03
UML Knowledge 217 19 9.11 3.12 -.09 -.21
Visual Reasoning 177 18 13.27 2.80 -1.41 4.24
Verbal Reasoning 173 15 9.05 3.06 -.55 -.12
English language 155 38 25.318.08 -1.31 1.86
Design Skills Post 171 19 13.413.00 -.44 -.15

GO O oM

Table 2. Descriptive Statistics Test Instruments

4.3 Correlations between instruments and linear regression

Figure 3 shows the Pearson correlations that were found between the individual
tests. A correlation coefficient of .10 is considered as a weak relationship, .30
as moderate, and 0.5 as a strong relationship [2]. Figure 3 show a significant
(p < .01) moderate relationship (r = .377) between visual reasoning and the
design skills posttest. This also counts for verbal reasoning and the posttest
(r = .380, p < .01). The visual and verbal reasoning tests do not have this
relationship with the design skills pretest. The English language test does not
seem to correlate with other tests. There is a moderate to strong relationship
between the verbal and visual reasoning tests. Also the design skills pre- and
posttest have a moderate strong (r = .434, p < .01) correlation. We found a
moderate correlation between posttest and the exam of university A (r = .317)
and a strong correlation between posttest and the exam of university B (r =
.536) both at significant level of .01.

Correlations between test instruments

UML Visual Verbal English Design Skills Exam A Exam B
Knowledge | Reasoning Reasoning Language Post
Design Skills Pre Pearson Correlation 276" 1230 1180’ A1 434" 14 327"
Sig. (2-tailed) ,00 ,00 .02 21 ,00 12 ,00)
N 217 162 158 141 159 133 80)
UML Knowlegde Pearson Correlation ,09 ,01 ,02 ,09 ,03 137371
Sig. (2-tailed) 129 .89 ,80 31 75 ,00)
N 145 142] 130] 140 122] 68
Visual Reasoning Pearson Correlation 490" 12 3777 12 31171
Sig. (2-tailed) ,00 13 ,00 126 .01
N 173 155 134] 87| 61
Verbal Reasoning Pearson Correlation 1303 1380 18 133771
Sig. (2-tailed) ,00) ,00 10 01
N 155 131 86 60
|Engiish language Pearson Correlation ,186'] ,03 ,06|
Sig. (2-tailed) ,05 .82 67|
N 116 80 50|
Design Skills Post Pearson Correlation 3177 536"
Sig. (2-tailed) ,01 ,00]
N 74 70

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Fig. 3. Correlations between the individual test instruments

Assessing Software Design Skills and Their Relation With Reasoning Skills 7

A series of linear regression models were used to investigate which factors
(pretest, verbal reasoning, visual reasoning, UML knowledge or English language
proficiency) best predicted the student’s posttest performance. The best fitting
parsimonious model explained 34% of variance (F(3, 121)=122.36, p<.001) and
is represented by posttest = (.. ® pretest + [3,;5 ® visual reasoning + Byerp
e verbal reasoning. With 3,,..=.40, tpre = 5.27, Ppre < .001 ; Byis=.14, tyis =
1.63, Puis = .11 and Buery=-25, tyers = 2.99, Pyers < .01

4.4 Comparison between universities

We compared the performance of all instruments between the universities. We
found significant differences between the scores on the UML Knowledge test and
the C test. University A performed better on the C test (M 4=27.06, SD 4=8.2,
Mp=24.11, SDp="7.9, t(153)=2.27, p=.03). University B performed better on
the UML test (M 4=8.3, SD 4=3.03, Mp=9.8, SDp=3.04, t(215)=3.57, p=0.00).

5 Discussion

The correlation coefficients show that both verbal and visual reasoning explain
almost 40 percent of the performance on the students’ design skills posttests.
This is in contrast with the correlation of these skills with design skills pretest.
This indicates abstract reasoning contributes to improvement of software design
skills(Hz 3). We did not use a control group. One could argue improvement of
skills is due retesting and not due learning. The correlation between the posttest
and the exam scores provides evidence the we measure learning improvement.
We used tests that are considered not trainable. They measure students’ abstract
intelligence. This means we have to investigate the specific subtasks related to
abstract intelligence or how problems are presented during lectures for those
that do not have this ‘natural talent’ for abstract reasoning. The fact that both
the UML knowledge and language test had no correlation with the design skills
pretest and posttest(H; 4) indicates that we indeed succeeded in questioning
design concepts and not about UML problems. Also the fact that university
B performed better on the UML knowledge test while both universities not
performed significantly different on the design skills pretest provides further
support. The students achieved higher scores on the design skills posttest than
on the design skills pretest. This indicates that they learned during the course.

6 Conclusions and Future Work

In this paper we presented our findings of an on-line test for measuring software
design skills and abstract reasoning skills of students. We showed the relationship
between abstract reasoning and the ability of solving software design problems.
Although abstract intelligence cannot be trained, we see challenges in exploring
educational interventions for specific reasoning tasks and/or alternative teaching

Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

methods. We believe game based learning could be used in further research. We
already gained positive feedback on a pilot of our motivational game ‘The Art
of Software Design’®[3][13]. We plan to extend the game with the findings of
this experiment. In the future, indicated by our regression model, lecturers can
use our test to diagnose students and choose appropriate interventions when
educating software design students.

Acknowledgments

We would like to thank the students and lecturers from Gothenburg University
and Utrecht University for their participation in this study.

References

1.

11.

12.

13.

14.

15.

Jens Bennedssen and Michael E. Caspersen. Abstraction ability as an indicator of
success for learning computing science? In Proceedings of the Fourth international
Workshop on Computing Education Research, ICER, ’08, pages 15-26, New York,
NY, USA, 2008. ACM.

J. Cohen. Statistical power analysis for the behavioral sciences. Erlbaum, 1988.
Oswald de Bruin. The art of software design, creating an educational game teaching
software design, 2012.

Peter B. Henderson. Mathematical reasoning in software engineering education.
Commun. ACM, 46(9):45-50, September 2003.

Peter B. Henderson. Math counts: Mathematical reasoning in computing educa-
tion. ACM Inroads, 1(3):22-23, September 2011.

Peter B. Henderson. Mathematical reasoning in computing education ii. ACM
Inroads, 2(1):23-24, February 2011.

Jeff Kramer. Is abstraction the key to computing? Communications of the ACM,
50(4):36-42, April 2007.

T.C. Lethbridge. What knowledge is important to a software professional? Com-
puter, 33(5):44-50, 2000.

RC Martin. Design principles and design patterns. Object Mentor, (c):1-34, 2000.

. John Raven. The raven’s progressive matrices: change and stability over culture

and time. Cognitive psychology, 41(1):1-48, 2000.

Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1st edition, 1996.

Patricia Roberts. Abstract thinking: a predictor of modelling ability? 2009.

Dave R. Stikkolorum, Michel R.V. Chaudron, and Oswald de Bruin. The art of
software design, a video game for learning software design principles. In Gamifi-
cation Contest MODELS’12 Innsbruck, 2012.

Dave R. Stikkolorum, Claire E. Stevenson, and Michel R.V. Chaudron. Technical
report 2013-02. http://www.liacs.nl/~drstikko/technical_report_2013-02.
pdf, 2013.

Lorin W Anderson, David R Krathwohl, Peter W Airasian, Kathleen A Cruik-
shank, Richard E Mayer, Paul R Pintrich, James Raths, and Merlin C Wittrock.
A Tazxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Tax-
onomy of Educational Objectives, Abridged Edition. Allyn & Bacon, 2000.

5 http://aosd.host22.com

