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Abstract. We consider the problem of labeling dynamic (3D) maps: we
develop real-time algorithms that attach non-overlapping annotations to
objects on maps which the user can pan, zoom, and rotate continuously.
Existing algorithms either label static maps or only a small number of
the objects.
We consider the problem to label streets and to label points. We label
streets either internally or externally. For internal labels, we compute
potential label positions for each street, compare them, and decide for
one. For external street labels, we apply a force-directed approach; labels
behave like electrons. The first algorithm for labeling points allows labels
to slide along their reference points; it makes use of visibilities between
labels. The other approach precomputes for each point an interval of
zoom levels at which the label can be placed; labelings are queried at
run time.

Keywords: Automated map labeling, dynamic maps, interactive maps, sliding
labels, street labeling, point labeling, POI labeling, billboards.

1 Introduction

We deal with the problem of labeling dynamic maps. In general, a label is an
annotation of an object. So, we assign labels to map objects like cities or streets.
We are especially interested in labeling objects of dynamic maps. Dynamics maps
are maps with which the user can interact; that is, the user can pan, zoom, or
rotate the map, for example, by clicking or dragging the mouse. We particularly
consider dynamic maps that provide continuous zooming. Some dynamic maps
additionally allow for a 3D view.

In order to react to user interactions (and the associated changes of the map)
immediately at run time, we need to developed real-time algorithms for updating
labelings.

We completely neglect any type of preselection of the objects to label; our
aim is rather to label many of the effectively given objects. Neither we want
to compute dynamically changing labelings in the sense of labelings that are
attuned to each single user at each point in time (as the user’s interests might
change as well). This is, we use static weights to determine the importance of a
label. Our algorithms must be understood as a final step in the process of map
generation.
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(a) initial scale; sparse labeling (b) more labels after zooming in

Fig. 1. Two maps [1]. The map on the left has a sparse labeling, although there are
many cities that could be labeled (confer map on the right). Obviously, there is enough
space to label (at least some of) them.

A comprehensive literature review (for a very small one, see Section 2) shows
that there has been an abundance of work on static label placement, for example,
for printed maps. Publications dealing with labeling dynamic maps are, however,
rare; those additionally dealing with a 3D view are even rarer. This is surprising
as commercial products such as navigation systems already use such algorithms.
The algorithms in these commercial products are not satisfactory, though, since
there are often large areas that contain interesting objects but no labels; see
Figure 1. This is due to the fact that most systems are very conservative: they
block large areas around a labeled point in order to avoid that labels overlap
when the user interacts with the map.

To sum up, we want to solve the problem of labelings with few labels (such
as generated by many common navigation system) while preventing occlusions
of labels as well. That is, we develop algorithms and data structures for placing
many, but occlusion-free, labels on dynamic maps in real-time. We also plan to
test the real-time capabilities of these algorithms and data structures. Moreover,
we should try to find out whether users accept these approaches and if they
benefit from them; especially, we should try to learn if placing as many occlusion-
free labels as possible helps or rather confuses the users.

In the following, we describe four work packages dealing with map labeling,
namely embedded street labeling (see Section 3), active street labeling (see Sec-
tion 4), city labeling (see Section 5), and POI labeling (see Section 6). For each
of these packages, we characterize the problem, have a look at its contribution,
outline an algorithm, and, finally, discuss the current state.
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2 Related Work

There are many papers dealing with the problem of labeling static maps. There
are, however, only few papers for labeling dynamic maps. Thus, most of our
approaches are extensions of static labeling algorithms.

Strijk [9] investigates the problem of labeling streets on static 2D maps. The
author aims for a labeling such that labels look like they are painted on the
streets, each street has at most one label, and there are no label–label overlaps.
In this work, he first studies typically labeled (European) street maps. Based
on these findings, he formulates some rules. He translates these rules into math-
ematic expressions and combines them in a cost function in order to evaluate
different labelings of the same map. He selects the labeling with the best score.

Maass and Döllner [7] mainly consider the same problem as Strijk [9] but for
a dynamic 3D environment. This means, that scene elements (such as buildings)
additionally can occlude labels. Indeed, the authors allow such overlaps but,
nevertheless, they require that overlaps of scene elements and labels are reduced
to a minimum. To solve the problem, the authors place labels directly into the
3D scene with a placement that is roughly similar to the one of Strijk. For each
street, the authors determine several discrete label positions. They evaluate each
position with the help of a cost function. Finally, the authors give different values
for the variables of the function, depending on the desired output (for example,
for centering labels within their objects).

Furthermore, Maass and Döllner [6] describe a point labeling algorithm for
dynamic 3D environments using labels that always stay oriented to the user.
Their algorithm places labels at varying heights in order to prevent overlapping
labels. To this end, in each frame, it rasterizes the map, places a label, blocks
all overlapped cells of the raster for other labels, and continues placing further
labels. To maintain the correct label–object association, the authors use lines to
connect a label with its reference point.

Van Kreveld et al. [5] change the common idea of point labeling problems.
Instead of using a fixed point at which a reference point and a label must touch
(for example, the bottom left corner), they use labels that are allowed to slide
with their lower edges along their reference points. The authors describe two
algorithms; one permitting and one prohibiting sliding. With the help of exper-
iments, they show that the sliding approach labels up to 15% more points than
the approach with fixed touching points.

Been et al. [2] provides a paper for labeling points on pannable and (con-
tinuously) zoomable maps. They insist that a label must not change its size or
position over all scales. Besides, labels must not overlap. For this, they introduce
the notion of active ranges. An active range is an interval of scales at which a
label is visible. Their aim is to maximize the sum over the lengths of all active
ranges. They compute the active-range data structure in a preprocessing step.
At run time, they only query the current labeling. This allows their approach
to run in in real-time. Additionally, Been et al. [3] refine this work from a more
theoretical point of view. The authors show that the problem of maximizing the
sum over the length of all active ranges is NP-hard, that is, there is probably
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no algorithm that solves the problem optimally in suitable running time. Fur-
thermore, they give labeling algorithms handling different label forms. The one
dealing with the form of congruent squares has an approximation ratio of 4, that
is, the total sum over the lengths of the active ranges is at least OPT/4, where
OPT is the value of an optimal solution.

Finally, Gemsa et al. [4] complement the work of Been et al. [2,3] by taking
rotation operations into account. Now, an active range is an interval of angles.
Again, the aim is to maximize the sum over all intervals whereas labels must
not overlap. The authors show that this problem is still NP-hard. By means of
an approximation algorithm, nearly-optimal solutions can be computed quickly,
though.

3 Embedded Street Labeling

An embedded label looks and behaves as if it were painted on the street; see Fig-
ure 2. Placing embedded labels is a 2D problem. (We can use the 2D algorithms
for a 3D view without any changes.) We require that each label is easy to read:
it should have a suitable reading direction and a bounded curvature. Moreover,
it must not change its size on the screen at run time due to a zooming operation.
This work package is interesting as, to the best of our knowledge, there is only
one paper dealing with dynamically placing embedded labels to streets. Our ap-
proach is different to the existing approach of Maass and Döllner [7] as, on run
time, they allow labels to move within the street; so, labels do not behave as if
they were painted on the streets. This movement can be distracting.

Fig. 2. Embedded labels look like they are painted on the street. Distortions can make
labels crabbed.

In order to save running time, we only label the currently visible part of the
map, the view (or probably a slightly larger part). Any interaction with the map
results in changes of the view. As a consequence, we have to check for updates
to the labeling incessantly. For example, a label could leave the view due to a
panning operation (see Figure 3(a)). If no further label for the corresponding
street is currently displayed, we have to place a new one. If the user zooms in
(see Figure 3(b)), streets grow on the screen (while labels maintain their sizes).
This creates space to place further labels. On the other hand, a street shrinks if
the user zooms out. Then, we have to test if the street is still large enough to host
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Fig. 3. Reactions to interactions.

Fig. 4. The street (gray) is subdivided into three candidate strips (hatched). For each
candidate strip, we have chosen three specific candidates: at the beginning, the center,
and the end of each strip. A candidate becomes a label if it is selected as label position.

the already-placed label. If not, we have to test if there is another visible part
of the street at which we can place the label instead. Finally, rotating the map
results in reversed labels (see Figure 3(c)). We have to correct their orientations.

Our algorithm works roughly as follows. In the first phase of the algorithm,
we compute an initial labeling. In the second phase, we react to interactions.
Both phases subdivide streets first into candidate strips and afterwards into
candidates. A candidate is a part of a street that represents a position for a
label. A candidate strip is a part of a street that groups together candidates with
equal properties. In this case, a candidate strip is the grouping of candidates that
overlap the same crossings; see Figure 4 for these notions.

For each street in the view, we determine several candidate strips. Then, we
choose for every street at most one candidate strip that does not overlap any
other selected strip. Lastly, we subdivide each strip into candidates, evaluate
each candidate by its quality (for example, by the number of bends), and place
the label at a candidate with the best quality value.

We have partly implemented this algorithm. Thus far, we generate and select
candidate strips for the initial and for the dynamic phase. The current implemen-
tation runs in real-time on multi-core processors (we have not test single-core
processors yet).
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The subdivision of candidate strips into candidates and the implementation
of the cost function is missing, though. This is complicated, as there are many
(weighted) rules that could be included in the cost function. For example, we
could take into account the number of bends, the angles of these bends, the
centrality of a candidate on the street or the view, and so on. For all these prop-
erties, we have to find costs and weights such that the algorithm yields aesthetic
labelings. We should conduct a user study in order to verify the usefulness and
aesthetics of the outputs of our approach.

4 Active Street Labeling

In a navigation system, the user has the possibility to select a target. If so, the
system computes a route to the specified target and highlights the corresponding
streets. We call such a street (as long as the user has not passed through it
completely yet) an active street. In this work package, we want to label streets
in a 3D view. The idea is to use an embedded labeling (see Section 3) for inactive
streets and to label active streets via billboards (see Figure 5(a)). A billboard is
a label that is always oriented towards the user and usually placed with some
distance to the referenced object. Therefore, we use leaders (for example, straight
lines) to visualize the correct label–object association. We refer to the rectangle
that contains the label text as head. Currently, we require that the leader touches
the head in the middle of its the bottom edge. The reaction of billboards to
interactions as well as the 3D view are the challenging aspects of this work
package. We especially have to ensure correct depths of leaders and heads; see
Figure 5(b).

(a) active streets labeled with billboards;
leaders (centered at heads) maintain
label–object associations

A

B

(b) violated depths; although the refer-
ence point of A is nearer, B overlaps A’s
leader

Fig. 5. Using billboards.

As far as we know, there is no work discussing the problem of labeling streets
via billboards in a 3D view. There is, however, one single approach that labels
points via billboards [6]. With this approach, leaders can suddenly change their
lengths. Hence, incorrect depths of leaders and heads can emerge.



7

For labeling active streets, we use a force-directed approach, that is, reference
points attract their corresponding heads and heads repel each other. Briefly
worded, the algorithm varies the length of the leaders at run time in order to
maintain an occlusion-free labeling while the user moves through the map.

We have implemented this approach. Indeed, it works but it has some weak-
nesses; for example, labels shiver or, without any visual reason, a leader gets
abruptly longer. It remains to test if this is a conceptual or an implementation
issue. Moreover, there are many variations of the problem we can additionally
take into account; for instance, we could allow several contact points.

We expect that the mixed-type of labelings will support the user’s orientation
significantly; not least because billboards prevent the distortion of label texts.
We should test this assumption in a user study, though. In a pilot study with
static pictures, we already found out that the mixed-type could be accepted.

5 City Labeling

We can distinguish two ways to display cities. On the one hand, in large-scale
maps, cities are displayed as areas. On the other hand, in small-scale maps, cities
are represented by single points. Here, we consider the point labeling problem.
In order to place a large number of labels, we allow any label to slide on its
bottom edge at running time. This problem is interesting in the 2D case as well
as in the 3D case. To the best of our knowledge, there is no other work that
establishes an algorithm for the dynamic version of that problem. Van Kreveld
et al. [5] experimentally showed that, in static maps, up to 15% more labels can
be placed if sliding labels are permitted.

Our algorithm for the 2D case works roughly as follows. To save running
time, we again only label the view (or probably a slightly larger part). This is
why we have to test incessantly if there are further (so far unlabeled) reference
points visible and which city labels have left the view. To make room for placing
another occlusion-free label, we allow already-placed labels to slide. For that
purpose, we build a simple data structure. For each label `, we store all of the
labels that lie left to ` and all of the labels that lie right to `. Additionally, we
store the distance between these neighbor labels and `. With the help of this
data structure, we can quickly query if a new label overlaps an already-placed
one and which labels are affected if we let labels slide (in favor of the new label).
In this way, we can decide either to place or to dismiss the new label.

We have so far implemented the data structure, but have yet to implement
an algorithm for sliding labels. Currently, the (partial) implementation runs in
real-time on multicore processors although it does not react to interactions by
updating the data structure; instead it recomputes the data structure completely
in each frame. In order to save running time, we could determine, for each type
of interaction, a point in time at which we have to launch the update of the
data structure. To reduce the running time even further, we have implemented
a waiting function. This means that the algorithm does not check in each frame
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if an unlabeled point in the view can be labeled but the algorithm waits several
frames before it checks this again.

For the 3D case, we have some initial ideas which we have not entirely de-
veloped yet. They are mainly an adaption of the 2D approach.

Both the 2D and the 3D algorithm are probably fully real-time capable. We
should be caseful about the user acceptance, though. Surely, this approach is a
nice add-on for the map mode, that is, when the user navigates the map on his or
her own. By contrast, in the navigation mode, the navigation system provides the
interactions. In this navigation mode, moving labels could possibly confuse the
user rather than help. We should test this in a user study. If users do not accept
sliding labels, we just can switch off the movement. This simplified approach is
even faster and, probably, will still place more labels than algorithms of current
commercial systems. We plan to verify this.

6 POI Labeling

The result of the following work package has been published at the 16th ICA
Generalisation Workshop [8].

A point of interest (POI for short) is a place of special interest, for example, a
hospital, a restaurant, or a gas station. In navigation systems a POI annotation
is typically represented by an icon. An icon is a pictorial label; see Figure 6.
Normally, an icon maintains the same size on the screen all the time. So, if the
user zooms the map out, the distance between two points of the map gets smaller
on the screen or, regarded the other way round, the labels grow with regard to the
map background. This generally results in overlapping labels. (Other interaction
types do not substantially influence the current labeling.)

We investigate this problem under the constraint of circular icons with equal
diameters. Additionally, we aim for a consistent labeling. By this we mean that
once a label has vanished, it can only reappear if the user changes the zooming
direction. The idea is to build a data structure in a preprocessing step and to

Fig. 6. Map with some POIs [1].
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(a) schematic represen-
tation of shrinking-cones
heuristic (2D view)

(b) schematic represen-
tation of growing-cones
heuristic (2D view)

(c) visualized data structure (com-
puted by shrinking-cones heuristic)

Fig. 7. Computing a data structure for POI labelings.

query label positions (from this data structure) at run time quickly. In the data
structure, we represent each label by an interval of zoom levels at which the
label is displayed. We can visualize the intervals (over zoom levels) as (disjoint)
cones; see Figure 7(c). In order to maximize the number of placed labels, the
goal is to maximize the sum over the lengths of all intervals. This problem is
NP-hard [3], that is, there is probably no algorithm that solves the problem
optimally in suitable running time. For that reason, we have developed and im-
plemented heuristics. Heuristics are fast but not necessarily optimal algorithms.
Additionally, we have established a mixed integer linear program (MIP for short)
for computing optimal solutions in order to evaluate the quality of the heuristics.

Our algorithms work roughly as follows. The first one, see Figure 7(a), starts
with (overlapping) cones of equal heights. In order to prevent overlapping POI
labels, we just cut the cones so that no two cones intersect. This approach is an
adaption of an algorithm introduced by Been et al. [2,3]. The second heuristic,
see Figure 7(b), works the other way round. We start with cones of height zero.
We let the cones grow until two cones touch. At this point, we decide which cone
stops growing and which cone grows further.

We compared the results of our heuristics with optimal solutions (computed
by the MIP). Due to the high running time of solving the MIP, we only computed
the MIP35, that is, we stopped computations as soon as the result of the MIP was
not worse than 35% of an optimal solution. Figure 8 shows that our heuristics
are much faster than the MIP35 and still yield labelings with a nearly-optimal
number of labels. Indeed, we can prove that the growing-cones heuristic yields
an approximation ratio of 1/5, that is, the sum over all intervals of an optimal
solution is at most five times larger than the sum of any solution computed by
the heuristic. To round off, we can also enhance our algorithms such that they
can deal with priorities and even with labels of different sizes. Then, however,
the proof for the approximation ratio of the growing-cones heuristic does not
hold anymore.
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Fig. 8. Results of our experiments for synthetic data sets. We uniformly distributed
249 points in the unit square [0, 1]2. For each point set of size n = 25, 50, . . . , 225 we
randomly selected n point of the point set. For each n, we averaged the sum of all
heights as well as the running time over five trials. For n = 249, we did only one trial.
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7 Conclusion

We deal with the problem of labeling dynamic maps in an occlusion-free manner;
we are especially interested in dynamic maps that allow for continuous zooming.
The aim is to place as many labels as possible. In this work, we introduced four
work packages, namely, embedded street labeling, active street labeling, city
labeling, and POI labeling, sketched some solutions, and described the current
state of each of the packages. All in all, wide parts of the concepts are already
finished. Mainly, further implementation work is required (for example, speeding
up the programs or combining the algorithms). We ideally should conduct a
study dealing with the user acceptance (for example, to answer the question if
sliding labels does disturb the user). The four work packages are intended to
reduce the gap between theory and practice; between papers dealing with static
labeling problems and navigation system that already use (poor) algorithms for
labeling dynamic maps.
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