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ABSTRACT
This paper presents a pedagogical and instructional-technology
general method for building predictive models for education
from time series log data. While it is common for models
of learner achievement to include cognitive features, we in-
stead are data mining only resource accesses in the learning
environment. This has benefits in that the approach is inher-
ently scalable to new contexts due to its data driven nature.
While we have only just begun to apply these methods to our
institutional Massive Open Online Course (MOOC) data, it
shows promise as both a descriptive modeling technique as
well as an engine for creating predictive early alerts.

1. INTRODUCTION
Predictive models in education generally require intimate

knowledge of the domain being taught, the objectives be-
ing learned, and the pedagogical circumstances under which
the instruction takes place. While there is some work that
focuses on removing some of these constraints and focus-
ing instead on specific tools or pedagogies (e.g. analysis of
discussion forum communication), this limits techniques to
only those courses which use a particular technology or ped-
agogical approach.
In this paper we present our initial work towards a general

method of building predictive models for educational data.
Unlike existing work in the area, we aim to build models
solely from coarse grained observations of interactions be-
tween a student and course resources over time. Our goal
is not to build the most predictive model for a particular
course, though predictive accuracy is an important aspect
of our work. Instead, we aim to enable “one click modelling”
of a large variety of educational data systems without the
need to involve instructors, pedagogical experts, or learning
technologists. These models can then be used to gain insight
into how a course operates, build early-warning systems for
student success, or characterise how courses relate to one
another.
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A strong motivation for this approach comes from the
growing list of educational software systems that collect so-
called “clickstream” data about learners. For instance, the
BlackBoard and Sakai learning content management sys-
tems both collect data on the accesses learners have with
various tools and content, the Opencast lecture capture sys-
tem collects fine-grained data on access to lecture video and
configuration of the playback environment, and the Cours-
era massive open online course platform collects web logs of
how users have navigated through the course website. All of
these systems do this educational data logging in addition
to maintaining traditional operations data based on the fea-
tures available to learners.

This paper proceeds as follows: In section 2 we provide
a more formal definition for our characterisation of educa-
tional log data. This is followed in section 3 where we focus
on demonstrating how time series data from the Coursera
platform can be used to generate predictive models with
little effort. We provide discussion of a novel method of
mining time series data based on n-gram techniques used in
text mining, as well as details on how accurate and reusable
models might be for MOOC environments. We conclude
the work in section 4 with a discussion of impact and future
directions.

2. EDUCATIONAL DATA
Much of the attention in the technology enhanced learning

field has been paid to understanding how people learn from
a cognitive perspective. For instance, Anderson’s ACT-R
theory of skill knowledge [1], which is used as a basis for
many intelligent tutoring systems (see [5]), suggests that
cognitive skills can be described as production rules: small
operations of data manipulation organized around atomic
goals. Firing of correct rules is done repeatedly with the
facts available to a learner, causing them to demonstrate a
particular higher level cognitive skill. Inability to fire correct
rules in such a way that a skill is demonstrated indicates
a lack of having the correct rules, and suggests a need for
educational intervention (learning) or that the rule matching
mechanism needs improvement.

An alternative to this is Ohlsson’s theory of learning based
on performance errors, where he argues that it is through
making mistakes and correcting them that we demonstrate
learning [11]. Providing a correct answer does not signify the
learner understands; instead, the learner may just not yet
have made a mistake and may have inadvertently answered
correctly. It is the times the learner demonstrates mistakes



that indicate learning is happening. This approach is core to
the constraint-based modeling family of intelligent tutoring
systems such as [10].
Interactions with content and problems are not the only

learning theories, and learning through communication with
other individuals has been well explored under the theory of
social constructivism [6]. While the majority of work in
this area has been on peer-to-peer learning through chat or
discussion forums, some have also applied intelligent systems
in the form of peer matching [4] or tutors based on dialogue
systems [7].
In this paper, we refrain from trying to understand, ap-

ply, and model learning processes directly, and instead aim
to build learning systems that observe patters of interactions
students have with resources. This is a data-driven perspec-
tive on the learning process, and we aim to recognize suc-
cessful patterns of achievement by virtue of their existence
in the learning environment. This has both advantages and
disadvantages to traditional methods of learner modeling,
with both of these explored in section 4.
We view the learning system as being made up of five

pieces: students, resources, interactions, events, and some
measurement of outcome. The first of these, students, is a set
of individuals who interact with some learning environment.
These individuals have characteristics that are known when
they first begin interacting with the environment and, for
simplification of modelling purposes, these characteristics do
not change. For example, demographic variables (e.g. age,
gender, ethnicity) as well as prior knowledge (e.g. previous
grades or other measures of evaluation) can be associated
with an individual, and may be a direct influence on their
outcomes. In the results described in the next session we
omit from our modeling student characteristics, but we note
here that they may be useful (and readily accessible) when
creating predictive models.
Students interact with a learning system through resources.

These resources may be web content, discussion forums, lec-
ture video, or even intelligent tutoring systems. Resources
may be described through different levels of generalization.
For instance the coarse grain“lecture”resource may be make
up of individual “lectures” each of which may be made up of
“segments”. An important distinction between this view of
resources and others is that we intentionally conflate peda-
gogy, technology, and content into a single item, and do not
attempt to disambiguate resources by defining them to be
about concepts, methods, or delivery mechanisms.
An interaction denotes a singular circumstance in which

a student uses a resource, and represents a temporal rela-
tionship between the student and resource. For instance, an
interaction may be viewing a lecture, submitting a quiz, or
reading a discussion forum post. It is expected that individ-
ual interactions will be manipulated through aggregation,
summation, scaling, or other mathematical functions in or-
der to describe different levels of granularity that may be
useful in the modelling process. This manipulation is to be
applied in an automated manner, and not require a priori
hypotheses based on the content, concepts, or individuals
involved.
Each interaction exists between two events. Events are

demarcations of the beginning and end of time-frames of in-
terest. Conceptually, events can be hierarchically arranged,
and a given set of data might have a start and end time
which encompass other events such as assignment deadlines,

examinations, or course beginning and endings. In the in-
vestigation section to follow we will focus only on a single
set of events that note the beginning and end of a course,
but one can readily imagine how it may be useful to predict
outcomes for other pairs of events.

Educational outcomes can be measured in various ways in-
cluding through taxonomies of skill acquisition (e.g. through
Blooms taxonomy [3] or the like), grades (which may be
content-based or a comparison between students in a co-
hort), or student satisfaction (which may be measured through
self-reports or through proxy variables such as retention in a
program). In our characterization of educational data mod-
elling we make no attempt to link specific interactions to
outcomes in a theoretical matter. Instead, we argue that
correlations found through the data mining process will ei-
ther support or not support linkages between interaction
patterns and educational theory. Thus, evidence for learn-
ing theory is an output of the modelling process, which can
be reflected upon by practitioners, but theory is not neces-
sarily an input to the process. The only constraint we put
on the educational outcome is that it be well-defined and
measurable so that it can be used as a predictor variable in
the data mining process.

3. INITIAL INVESTIGATION
For an approach to be considered a strong contribution to

the fields of learning analytics and educational data mining
we outline three criteria: First, the approach must be able
to produce accurate descriptive models for different circum-
stances (which may include different outcomes and/or kinds
of different interactions). While there is no clear cut-off as
to how accurate a model must be to be useful, we find this
discussion one of growing important and refer to it as de-
scriptive validity. Second, the models generated must have
some level of intra-course validity. We recognize that vari-
ance exists between courses (or course offerings), and that
population changes can have a significant impact on validity
of models. We have no clear cut-off as to how applicable a
given model must be in new circumstances in order to be
valuable for the field. Nonetheless, this is an important is-
sue to consider when building predictive models. Finally, in
addition to descriptive validity and intra-course validity, it
is important to recognize the predictive validity of a given
technique. How does the passage of time affect the accuracy
of a model trained from previous circumstances? This is a
not well understood issue in the field, yet a critical one in
being able to compare the results of various techniques.

In this section we describe our initial investigations using
the aforementioned characterization of educational data. As
our work is ongoing, we have not completely addressed how
our approach meets these three criteria. Instead, we pro-
vide a work in progress of our initial methods, results, and
validation efforts.

3.1 Methodology
In our first application of this approach we have chosen

two offerings of a Massive Open Online Course (MOOC)
that was delivered through the Coursera platform. Cours-
era stores individual page requests in a JSON-encoded click-
stream file, which we transformed into a comma separated
list of values1. The results are log files where interactions
are in the form (username, timestamp, resource) where the
username is some uniquely identifying hashed value of the



learner interacting with the system, the timestamp is the
server time when a resource was accessed2, and resource is
one of lectureview, forumthread, or quizattempt based on
the URL path being accessed. While more details as to
which resources were being viewed are available (e.g. the
specific lecture, forum thread, or quiz), we began our inves-
tigation with only the coarse grain description of resources
being used.
In this investigation we have three research questions we

want to answer with this data:

R1 Can we create an explanatory model that describes the
patters of interaction that lead to learners achieving a
distinction (85% or higher) in final course grade?

R2 Can we create a predictive model of learner distinc-
tion (85% or higher in course grade) from interactions
in one course that have validity in a second course of-
fering?

R3 How accurate is a predictive model of learner distinc-
tion (85% or higher in course grade) when applied with
limited data (e.g. for the formation of an early alert
system)?

To address these questions, we formed predictive mod-
els with J48 decision trees using the weka toolkit [8]. For
each model, we performed a number of automated transfor-
mations to extract features from the set of interactions as
described in the next section. We have made the software
for creating these features freely available at URL.

3.2 Creating Features from Time Series Data
All of the features here are described in binary; either an

access for a particular time existed (feature = 1) or did not
(feature = 0).

3.2.1 Relative Offsets
As we were interested in comparing two courses offered

in different calendar months, we changed all accesses to be
relative to the start of the course. We also pruned the course
interactions to ten weeks (the listed length of the course)
from the first day the course was made available to students.
Using a single day as our smallest level of granularity, this
provided us with 71 attributes for each learner.

3.2.2 Varying Degrees of Granularity
It is difficult to know at what granularity one should con-

sider educational time series data. Some applications may
generate very fine grained resolution data, such as millisec-
onds for kinesthetic learning tasks (e.g. learning to plan
a musical instrument), or second and minute resolution for
atomic learning tasks (e.g. those used by ACT-R inspired
tutoring systems). Given the sparsity of our data, we ag-
gregated access into three day long, week long, and month
long values for each learner. Thus the feature vector for each
learner included 71 daily accesses, 25 three day accesses, 11
week accesses, and 3 month accesses, all relative values from
the start of the course. We also included counts of the num-
bers of accesses on different days of the calendar week (e.g.
Sunday through Saturday), adding another 7 attributes.

1See https://bitbucket.org/umuselab/mooc-scripts for
the open source scripts used for this process.
2We did no modification of these values for the time zone
the learner happened to be in.

3.2.3 Applying N-Grams to Temporal Accesses
The co-occurrence of features based on the time series

data may represent patterns that describe success (or lack
thereof). For instance, if all students who watch lectures
on the six, seventh, and eighth day of the course end up
with distinction in the course while those who do not watch
lectures these days fail to get distinction then this pattern
of behavior is valuable (and would captured by our existing
transformations). If, however, a successful pattern of in-
teraction was in watching consecutive lectures on any three
days, this pattern may be missed by our existing non-pattern
features.

To capture these kinds of patterns, we apply the well-used
n-gram technique from text mining to interactions. An n-
gram is a sequence of n words, and n-grams features are of-
ten used as counts of particular n-grams. For instance, if the
words “quick brown fox” occurs twice in a given document,
the n-gram (in this case a 3-gram) feature quick brown fox
would have a value of two. In our data we are dealing with
accesses to resources such as lecture videos, so an n-gram
with the pattern (0,1,0), the label of Week, and count of 2
would indicate that a student had two occurrences of the
pattern of not watching lectures in one week, watching in
the next week, and then not watching again in the third
week.

We generate the set of n-grams ranging from 2-grams to
5-grams covering all permutations of (0, 1) from (0, 0) to
(1, 1, 1, 1, 1). We repeat this process for features of days, 3-
day lengths, weeks, and months. The n-gram feature counts
for a given course dataset were normalized to be values be-
tween 0 and 1. Together with the features described in sec-
tions 3.2.1 and 3.2.2, we had a total of 1,071 features for
training.

3.3 Results
Our dataset was made up of interactions including 87K

accesses to the discussion forums, 130K accesses to the quiz
system, and 2.8M accesses to the lecture videos. It is well
recognized that the vast majority of users who sign up for
a MOOC do not participate in evaluation mechanisms. Our
educational outcome of interest was whether learners who
were actively involved in the course achieved a distinction
or not, and we split our dataset on the 85% grade for the
course (pruning learners who received a grade of zero), and
balanced the two halves through random subsampling. Our
final dataset size was of 5,118 users.

3.3.1 An Internal Descriptive Model
Our first interest was in building a descriptive model of the

two cohorts (hereafter called low achieving and high achiev-
ing respectively). Such a model could be used by instructors
or instructional designers to help guide the development of
future courses by identifying the correlations between access
patterns and success. After building the model in weka3 us-
ing the features described and ten fold cross validation we
were able to correctly classify 91% of students, attaining a
kappa of 0.8199. Table 1 shows the confusion matrix for this
model.

The rules created for this decision tree are fairly simple
(Figure 1). The first decision is based on the 3 day quiz

3All models described in this paper were built with Weka
version 3.6 and J48 classifier parameters having a confidence
of 0.25 and a minimum leaf node size of 50.



(0, 0, 0, 0, 0) 3 Day Quiz Pattern <= 0.2

| (0, 0, 0) Day Quiz Pattern <= 0.62963: high (2526/275)

| (0, 0, 0) Day Quiz Pattern > 0.62963

| | Month 2 Lecture = 0

| | | (0, 0) Day Quiz Pattern <= 0.711111: high (50/17)

| | | (0, 0) Day Quiz Pattern > 0.711111: low (120/37)

| | Month 2 Lecture = 1: high (200.0/46.0)

(0, 0, 0, 0, 0) 3 Day Quiz Pattern > 0.2: low (2200/73)

Figure 1: The decision tree rules created for an internal descriptive model.

Actual Predicted Class
Class low achievement high achievement
low achievement 2,206 342
high achievement 117 2,431

Table 1: Confusion matrix for internal descriptive model.

access pattern of (0, 0, 0, 0, 0), which represents the number
of times a given student has not accessed quizzes in a 15 day
period (i.e. 5 consecutive three day periods where quizzes
were not accessed). This value is normalized to the dataset4,
and those students who have more than a value of 0.2 were
largely unable to achieve distinction (2,200 students had this
pattern in the training set). Students who had a less than or
equal to 0.2 value for this attribute were next distinguished
by whether they had a high (0.62963 or higher) three single
day quiz patterns of (0, 0, 0), with 2,526 students being
classified as high achievement on this alone. The last two
patterns look at whether the students viewed lectures in
the second month of the course offering and, if not, further
patterns related to quiz usage. While we are not learning
designers, one might infer from this that attempting the
quizzes is perhaps sufficient in order to gain distinction in
this course.

3.3.2 Intra-Course Predictive Validity
We were interested in testing how valid the model de-

scribed in Figure 1 would be at predicting distinction achieve-
ment in subsequent offerings of the same course. This is a
challenging issue for predictive analytics, as changes in the
population or the circumstances by which they interact with
course resources will reduce the efficacy of the model. We
naively applied our previously trained model to a subsequent
course offering with 4,776 users, and correctly classified 65%
of the students, achieving a kappa of 0.307. An investigation
of resource utilization revealed that accesses to the quiz and
forum resources for the second course offering were much dif-
ferent than in the first offering, with zero access to quiz con-
tent after the third week of the course. Figures 4a through
4f show histograms of the access to resources between the
two courses.
While the details as to why the second offering of this

course showed different accesses were not available in time
for workshop publication (e.g. system log failure, dramatic
change in pedagogy, etc.), this does demonstrate an im-

4The student with the most number of (0, 0, 0, 0, 0) quiz
attempt patterns would have a count of 1, and the student
with the least number of these patterns would have a count
of 0. Thus the closer a students’ count is to zero the more
rare this pattern is in their interaction history.

portant issue when building automated predictive models.
Namely, that there should be some metric by which the time
series data of two courses can be compared in order to deter-
mine the appropriateness of applying a particular model. In
this case, access to lecture videos (Figures 4e and 4f) in the
courses appears roughly similar, while the access to quizzes
and forum messages does not.5

We retrained the predictive model for the first offering of
the course using only lectureview resource events. We omit
the confusion matrix for brevity, and show several of the
rules that were generated in Figure 2. We applied this model
to the second course offering data, and were able to correctly
classify 78.1% of instances, achieving a kappa of 0.563. Not
only was this significantly better than the application of the
original model trained on all of the resources, but a kappa
of this magnitude is reasonable when developing low risk
interventions.

3.3.3 Midterm Intra-Course Predictive Validity
Reflecting on patterns of success for a course after it has

finished can be a useful endeavor for course design, and the
patterns of success generated for one course may be indica-
tors of success for similar courses (as shown in the previous
section). However, there is much interest within the learn-
ing analytics community to build models that can be used to
predict academic risk so that automated interventions can
take place while the course is being offered (e.g. [2, 9]. To
investigate the suitability of a time series analysis approach
to the task of early warning, we trained a predictive model
from the first course offering based on five weeks worth (half)
of interaction data with lectures, using the same notion of
success (85% or higher).

When applied to the first five weeks of the second course
offering, we were able to correctly classify 68.69% of the
students, a kappa of 0.374. Table 2 shows the confusion
matrix for this prediction; note the roughly balanced level
of misclassification, suggesting the model is roughly equally
good (or bad) at predicting whether people will fall below
or above the 85% mark. The rules for this model, given in
Figure 3, show a variety of decisions of patterns of smaller
length, suggesting that large patterns may be more useful
with an increase in time frame.

5Despite the apparent similarity of these histograms, a two-
sampled Kolmogorov–Smirnov test of goodness of fit be-
tween the samples did not suggest that they were drawn
from the same population. It may be that this test is too
sensitive with this many data points, or that the samples
were indeed different populations at a p = 0.01 level. Re-
gardless, the demonstrated value of the model as described
in the remainder of this section suggests that other measures
of similarity may be needed.



(0, 0, 0, 0, 0) 3 Day Lecture Pattern <= 0.15

| Month 2 Lecture = 0

| | 3 Day Lecture starting on Day 19 = 0

| | | (0, 0, 0, 0, 1) 1 Day Lecture Pattern <= 0.4: low (50/18)

| | | (0, 0, 0, 0, 1) 1 Day Lecture Pattern > 0.4: high (134/51)

| | 3 Day Lecture starting on Day 19 = 1: 85 (201/32)

| Month 2 Lecture = 1: high (1832/239)

(0, 0, 0, 0, 0) 3 Day Lecture Pattern > 0.15

| Month 2 Lecture = 0

| | Week 8 Lecture = 0: 0 (2471/412)

| | Week 8 Lecture = 1

| | | (1, 1, 0, 0) 1 Day Lecture Pattern <= 0: high (59/16)

| | | (1, 1, 0, 0) 1 Day Lecture Pattern > 0: low (55/23)

| Month 2 Lecture = 1: high (294/87)

Figure 2: The decision tree rules created using only the lecture resource.

(0,0,0) 3 Day Pattern <= 2: high (2162/576)

(0,0,0) 3 Day Pattern > 2

| Week 5 = 0

| | Day 22 = 0

| | | Day 30 = 0: low (2315/606)

| | | Day 30 = 1: high (62/29)

| | Day 22 = 1: high (87/35)

| Week 5 = 1

| | (1,0) 1 Day Pattern <= 1: low (60/22)

| | (1,0) 1 Day Pattern > 1

| | | (1,1,0,0) 1 Day Pattern <= 1

| | | | (0,0) 1 Week Pattern <= 0: low (60/25)

| | | | (0,0) 1 Week Pattern > 0

| | | | | (0,1,1,0,0) 1 Day Pattern <= 0

| | | | | | (0,1) 1 Day Pattern <= 2: low (55/23)

| | | | | | (0,1) 1 Day Pattern > 2: high (152/55)

| | | | | (0,1,1,0,0) 1 Day Pattern > 0: high (83/25)

| | | (1,1,0,0) 1 Day Pattern > 1: high (60/14)

Figure 3: The decision tree rules created using only the lecture resource and a 5 week period.



Actual Predicted Class
Class low achievement high achievement
low achievement 1,672 716
high achievement 779 1,609

Table 2: Confusion matrix for internal descriptive model.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have framed the activity of creating pre-

dictive educational models as one of modelling time series
events inherent in educational log data. This contrasts sig-
nificantly with theory-driven methods of modelling learners
in that we consider no cognitive processes explicitly, and just
analyze the observations of interactions that learners have
with learning resources. Our approach is largely enabled by
the near-ubiquitous interaction level logs kept by modern
educational technology environments, and the growing size
of educational datasets available.
A significant cost in learner modeling is the amount of

time and sophistication required to map both the cogni-
tive and subject domains onto the learning tools being made
available. We aim to ease this by requiring no explicit knowl-
edge of learning process in order to form predictive models.
These models are based solely on the interactions learners
have with resources in the learning environment. Our end
goal is to enable course-specific predictive modeling based on
historic data without requiring the input of subject matter
experts or learning designers.
While no trained educator is required to apply this tech-

nique, historical data is needed. Thus in situations where
historical data is not available (e.g. a new course offering),
other forms of modeling learners must be used. Further, we
know of no clear measure by which two courses (or more
properly, two sets of learner interactions with resources) can
be compared to determine their similarity. Thus it is un-
clear how one might determine whether it is appropriate to
apply an existing models to a new circumstance. We point
to this as being a significant issue in moving forward with
this approach.
This work is in its infancy, and we have presented here

only a basic investigation of how educational time series data
can be used to predict student success. There are a num-
ber of compelling questions which we are considering going
forward, including:

• How much data is required in order to build robust pre-
dictive models? In this paper we used data from a
MOOC offered on the Coursera platform. Is this tech-
nique only appropriate for extremely large datasets, or
is the data available from traditional course manage-
ment systems suitable as well?

• Can more sophisticated temporal manipulations increase
the accuracy of models? For instance, does describing
a time period as if it were a continuous distribution
with a given skew and kurtosis create a useful interac-
tion pattern?

• Can date patterns be generated from the underlying
data instead of through top down direction as we have
done? We chose combinations of days, three day se-
quences, weeks, and months as levels of granularity for
feature extraction, but it does not seem unreasonable

that other segments may also be useful. Is it possi-
ble to derive this from the interaction data directly,
leading to less arbitrary time divisions?
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(a) Histogram of quiz accesses by day for the first course offering.
(b) Histogram of quiz accesses by day for the second course of-
fering. Note the lack of data starting around day 17, leading to
inaccurate predictions from the original trained model.

(c) Histogram of forum accesses by day for the first course offering.
(d) Histogram of forum accesses by day for the second course
offering. Note the lack of data starting around day 17, leading to
inaccurate predictions from the original trained model.

(e) Histogram of lecture video accesses by day for the first course
offering.

(f) Histogram of forum accesses by day for the second course of-
fering. Note the rough similarity in shape of the history compared
to Figure 4e, (left) suggesting feature extraction for this resource
may be appropriate.

Figure 4: Histograms of resource accesses for the two courses. The histograms on the left side represent the accesses for the
first course, which were used to create the original predictive model. The histograms on the right side represent access for
the subsequent course. The three resource, quizzes, forum messages, and lecture views, are read from top to bottom. Of
particular note is that only the histograms for the lecture resource (Figures 4e and 4e) appear to be similar, suggesting a
model trained on all resources would have a low predictive accuracy.


