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Abstract. One of main aims of the spatial analysis of health and medical da-

tasets is to provide additional information to the specialized medical research. 

These analyses can be used for disease mapping; searching for places with a 

higher intensity and probability of the disease event; or the influence assess-

ment of selected natural or artificial phenomena. Suitably selected methods al-

low a proper analysis of these data and identification of irregularities and devia-

tions of the phenomena in the area of interest. The structure of medical data 

usually needs to be standardized (over age structure of the population) before 

the comparison of different regions. Bayesian statistics derives the posterior 

probability as a consequence of a prior probability and a probability model for 

the data observed. Geosciences and geomedicine usually use the Bayesian theo-

ry for smoothing of data - to help depict the real spatial pattern and its changea-

bility. The Bayesian principles, together with the spatial neighbourhood and 

statistical models, are successfully used also for the identification of spatial and 

space-time clusters with significantly higher/lower risk of incidence of the dis-

ease. These procedures are denoted as methods of spatial clustering and can be 

used with or without utilization of properties of certain phenomena.  Particular-

ly, occurrence data of campylobacteriosis infection in four Moravian regions in 

period 2008 – 2012, which were provided by The National Institute of Public 

Health, were used for the case study. 

1   Introduction 

The disease mapping, visualization of disease rates and the clustering of disease data 

are still one of the most interesting topics in geosciences. It is because of the nature of 

the data which are often pure spatial with rich descriptive part and it is easy to com-

bine them with other data (demographic, economic, etc.) [14]. This contribution aims 

to present the usage of empirical Bayesian methods in the disease mapping and subse-

quent creating of disease maps. Bayesian methods incorporate the prior knowledge 

about the phenomenon (or underlying processes) to provide more accurate and easily 

understandable description of the situation. Empirical Bayesian procedures are used 

for disease rates smoothing in the case of choropleth map. They also help to identify 

local clusters of more/less affected areas. The main topic of the case study in this 

paper is the analysis of the spatial distribution of disease called campylobacteriosis in 
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Moravian regions between years 2008 and 2012 with usage of Bayesian estimates 

based on Poisson distribution. 

2   Case study and Data 

The case study, where further described methods are applied, is dealing with the spa-

tial distribution of the campylobacteriosis in four Moravian regions (Moraskoslezsky, 

Zlinsky, Olomoucky and Jihomoravsky) between years 2008 and 2012. There were 

almost 49 thousand of cases of the disease during that period, while only 34 thousand 

were expected according to previous records. Using disease counts and disease rates 

calculated for the municipalities in the area of interest, we tried to identify areas that 

are possibly more vulnerable to the disease than their neighbourhood. The 5-year 

observed number of cases, expected number of cases and relative risk (SIR) were used 

as main disease characteristics for this study. 

Campylobacteriosis is caused by bacteria called Campylobacter jejuni, which is 

found worldwide in the intestinal tracts of animals. The bacteria are spiral shaped and 

can cause disease in animals and humans. Most cases of campylobacteriosis are asso-

ciated with handling or eating raw or undercooked poultry meat or fresh milk. Cam-

pylobacteriosis causes gastrointestinal symptoms, such as diarrhoea, cramping, ab-

dominal pain, and fever in domestic animals and humans. Young animals and humans 

are the most severely affected [23]. 

2.1   Data  

The data set for this study was provided by The National Institute of Public Health of 

the Czech Republic. The database contains almost 50 thousands records of the cam-

pylobacteriosis occurrence in the period 2008 – 2012. Names, surnames, identity 

numbers and sometimes also the full addresses are not included because it is treated 

with sensitive personal data. The data were firstly cleansed of inconsistencies and then 

the geocoding process was run. Furthermore, the individual records were aggregated 

to the municipalities  - administrative units - due to the clarity of the visualization and 

analyses [15]. The problem of the conversion of spatial phenomena between different 

areal or administrative units is well known as MAUP – Modifiable Area Unit Problem 

[18]. During the calculation of disease rates and expected number of cases, the popu-

lation data from the Population and Housing Census of the Czech Republic were used 

as the main basis for the data standardization. 

Figure 1 shows the probability density function of disease events counts, total pop-

ulation and standardized incidence ratio in Moravian municipalities visualized in the 

logarithmic scale (upper graph) and in the logarithmic scale and centred (lower graph) 

in order to simplify visual analysis. The probability function of population and diseas-

es events counts are fairly similar, which indicates the need for standardization and 

also analysis that considers this close relation. Figure 2 then depicts the spatial distri-

bution of standardized incidence ratio (SIR). SIR is the ratio of the number of disease 

cases observed in the study group or population to the number that would be expected 

if the study population had the same specific rates as the standard population, multi-

plied by 100 and usually expressed as a percentage [10]. By this way, SIR expresses 



Spatial Clustering of Disease Events Using Bayesian Methods 27

relative risk (or vulnerability) of the municipality to certain disease. Municipalities 

traversing value of 1 are more vulnerable to disease, while municipalities with SIR 

lower than 1 are healthier. 

 
Fig. 1. The probability density function of disease events counts (red), total population (green) 

and standardized incidence ratio (blue) in Moravian municipalities visualized in the logarithmic 

scale (upper graph) and in the logarithmic scale and centred (lower graph) in order to simplify 

visual analysis. 

3   Methods 

During the study of disease spatial distribution, mainly in the case of aggregated data, 

it is often suitable to focus on the local variability of the disease occurrence or relative 

risk rather than examine the study area as a whole. This procedure is usually denoted 

the disease cluster detection. The general review of methodology as well as usage of 

spatial clustering methods and its Bayesian enhancements in the literature, e.g [6, 11, 

21] etc. 

In geosciences the spatial clustering is often encapsulated as the analysis of the spa-

tial autocorrelation. The spatial autocorrelation is the correlation among values of a 

single variable, which is strictly attributable to their relatively close locations on a 

two-dimensional (2-D) surface, introducing a deviation from the independent observa-

tions assumption of classical statistics [7]. Positive spatial autocorrelation refers to the 

patterns where nearby or neighbouring values are more alike; while negative spatial 
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autocorrelation refers to the patterns where nearby or neighbouring values are dissimi-

lar. One can distinguish two main types of spatial autocorrelation, which are global 

and local. The null hypothesis for global clustering is simply that no clustering exists 

(i.e. random spatial dispersion ≈ CSR). Probably the most used method for both global 

and local analyses of spatial autocorrelation is Moran’s I statistics (together with e.g. 

Getis-Ord G and Geary’s C statistics). Moran’s I coefficient of autocorrelation is simi-

lar to Pearson’s correlation coefficient, and quantifies the similarity of an outcome 

variable among areas that are defined as spatially related [16]. The problem with vari-

ance instability for rates or proportions, which served as the motivation for applying 

smoothing techniques to maps may also affect the inference for Moran’s I test for 

spatial autocorrelation [1]. The implementation of the adjustment procedure of 

Assuncao and Reis (1999), which uses a variable transformation based on the Empiri-

cal Bayes principle may be one of solutions. This yields a new variable that has been 

adjusted for the potentially biasing effects of variance instability due to differences in 

the size of the underlying population at risk [1]. 

 
Fig. 2. Choropleth map of standardized incidence ratio, which is generally the ratio between 

observed disease cases and its potential (expected) amount, which is based on the population 

and its age structure in individual municipalities. 

3.1   Spatial clustering of case events data 

If a cluster is described as an uncommon collection of events, then it is needed to 

detect these collections observed within the data set. Such methods define a set of 

potential clusters, collections of events each of which we might define as a cluster if 

the collection appears unusual enough (discrepant from the null model of interest), 

then identifies the most unusual of these [21]. This general idea motivated the “geo-
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graphical analysis machine” (GAM) of Openshaw where potential clusters were de-

fined as collections of events falling within circular buffers of varying radii [17]. The 

buffers were centred at each point in a fine grid covering the study area and the GAM 

approach mapped any circle whose collection of events were detected as unusual, e.g., 

those circles where the number of events exceeded the 99.8th percentile of a Poisson 

distribution with mean defined by the population size within the buffer multiplied by 

the overall disease risk [21]. GAM is very useful for descriptive purposes, but should 

not be used for hypothesis testing. 
Scan statistics provide another approach that is similar to the local case/control ra-

tios. A scan statistic involves definition of a moving window and a statistical compari-

son of a measurement (e.g., a count or a rate) within the window to the same sort of 

measurement outside the window. Kulldorff [8] defines a spatial scan statistic very 

similar to the GAM and other methods, but with a slightly different inferential frame-

work. The primary goal of a scan statistic is to find the collection(s) of cases least 

consistent with the null hypothesis, i.e. the most likely cluster(s) but Kulldorff goes a 

bit further and seeks to provide a significance value representing the detected cluster’s 

unusualness, with an adjustment for multiple testing [22]. Kulldorff [8] considers 

circular windows with variable radii ranging from the smallest observed distance be-

tween a pair of cases to a user-defined upper bound. He builds an inferential structure 

based on earlier works where authors note that variable-width one-dimensional scan 

statistics represent collections of local likelihood ratio tests comparing a null hypothe-

sis of the constant risk hypothesis compared to alternatives where the disease rate 

within the scanning window is greater than that outside the window. The maximum 

observed likelihood ratio statistic provides a test of overall general clustering and an 

indication of the most likely cluster(s), with significance determined by Monte Carlo 

testing of the constant risk hypothesis [22]. 

The outstanding description of methods including their mathematical apparatus or 

their possible implementations and applications provide mainly [8, 9, 17]. 

3.2   Bayesian mapping and spatial clustering of case events data 

Presentation of disease rates in area units as choropleth maps can inadvertently pro-

vide misleading information. This fact is well known mainly in the case of small-area 

studies that introduces an extra source of variability into the map because of random 

variation. Typically, sparsely populated areas with few (or zero) cases can generate 

extreme values of the SMR (and also prevalence), as the variance of the SMR is in-

versely related to expected number of cases and small populations have large variabil-

ity in the estimated rates [5] and that is why risk estimates and other rates are rather 

unstable.  

Bayesian methods provide a solution for this kind of bias. They use probability mod-

els to obtain smoothed estimates consisting of a compromise between the observed 

rate for each region and an estimate from a larger collection of cases and persons at 

risk (e.g., the rate observed over the entire study area or over a collection of neigh-

bouring regions) [22]. The basic principle of Bayesian methods is that uncertain data 

can be strengthened by combining them with prior information [19]. In the case of 
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empirical Bayes estimation of spatially-varying disease risk, posterior risk can be 

estimated from a weighted combination of the local risk (also called the likelihood) 

and the risk in surrounding areas, the latter representing the prior information [4]. 

The set of areal units on which data are recorded can form a regular lattice or differ 

largely in both shape and size, so data typically exhibit spatial autocorrelation, with 

observations from areal units close together tending to have similar values. A propor-

tion of this spatial autocorrelation may be modelled by including known covariate risk 

factors in a regression model, the residual spatial autocorrelation can be induced by a 

number of factors, and violates the assumption of independence that is common in 

many regression models [12]. The most common remedy for this residual autocorrela-

tion is to augment the linear predictor with a set of spatially correlated random effects, 

as part of a Bayesian hierarchical model. These random effects are typically repre-

sented with a conditional autoregressive (CAR) model, which induces spatial autocor-

relation through the adjacency structure of the areal units. However, the CAR priors 

force the random effects to exhibit a single global level of spatial autocorrelation, 

ranging from independence through to strong spatial smoothing. Such a uniform level 

of spatial smoothness for the entire region is unrealistic for real data, which are in-

stead likely to exhibit sub-areas of spatial autocorrelation separated by discontinuities. 

Such localized spatial smoothing may occur where rich and poor communities live 

side-by-side, and in this context the response variable is likely to evolve smoothly 

within each community with a sudden change in its value at the border where the two 

communities meet [12]. 

To be more particular, the analysis provided in the case study is based  on the func-

tion that fits a Poisson log-normal random effects models to spatial count data, where 

the random effects are modelled by the localised conditional autoregressive (CAR) 

model proposed by [13]. The random effects in neighbouring areas (e.g. those that 

share a common border) are modelled as correlated or conditionally independent, 

depending on whether the populations living in the two areas are similar (correlated 

random effects) or very different (conditionally independent). The model represents 

the natural log of the mean function for the set of Poisson responses by a combination 

of covariates and a set of random effects. Inference is based on Markov Chain Monte 

Carlo (MCMC) simulation, using a combination of Gibbs sampling and Metropolis 

steps [12]. The outstanding overview of Bayesian techniques are provided in [11, 12] 

and others. 

4   Results 

Firstly, the original data of disease events needed to be aggregated to the municipality 

level, filtered to selected area of the Czech Republic. Subsequently, aggregated counts 

that represented actually observed cases served as the bases for the calculation of 

expected number of cases in the area that were found out using internally indirect 

standardization. SIR, which is the ratio between observed and expected number of 

cases and expresses the relative risk of the area can be seen in the Fig. 2.  

Both values served as inputs for the Openshaw’s Geographical Analysis Machine 

that allowed the identification of possible disease clusters in the area. Radius for the 

analysis was chosen as 7 km, the alpha value for the cluster identification was 99.8 
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quantile of the Poisson probability distribution. Several significant clusters can be 

identified throughout the study area (Fig. 3), but 2 most visible can be seen – the first 

is located in the southern part of the area near the Brno municipality, while the second 

cluster is placed in densely populated surroundings of Ostrava (but surprisingly except 

the city itself). As it was mentioned before, GAM is very useful for descriptive pur-

poses, but should not be used for hypothesis testing because of the overestimation of 

clusters. That is why other methods - scan statistics and Bayesian identification of 

inference in the area, were performed. 

 
Fig. 3. Identification of spatial disease clusters of campylobacteriosis with the use of Open-

shaw’s Geographical Analysis Machine. Colours and legend depicts standardized incidence 

ration, while red squares identify locations that are involved in probable disease spatial clus-

ters. 

Results of scan statistics used for the identification of spatial disease clusters of 

campylobacteriosis with the use of the clustering function for Kulldorff and Nagarwal-

la's statistic are shown on the Fig. 4. The scan statistics is based on the Poisson distri-

bution of disease events, 15 % significance and 5 % fraction of total population.  Un-

like GAM results, only one significant cluster was identified in the northern part of the 

study area and it is located in the surrounding of the Ostrava with the core in the vil-

lage Kateřinice (dark grey area on the Fig. 4). 

The last analysis is based on the function that fits a Poisson log-normal random ef-

fects models to spatial count data, where the random effects are modelled by the local-

ised conditional autoregressive (CAR) model. The model is based on the list of binary 

neighbourhood with the queen contiguity conceptualization of space. The observed 

amount of cases is modelled as the of  logarithmical scale of amount of expected 

number of disease events (intercept) and the ratio between young people (under 15) 

and elderly people (64+), which is also the basis of the dissimilarity matrix. The anal-

ysis detected only two areas (Fig. 5 - left part) that might be the cores of possible 
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clusters. The first municipality is located in the south-western part of the study area 

(village Podhradí nad Dyjí). The second theoretical core area is placed in the village 

Nelepeč-Žernůvka in the west of the study area. That might indicate other necessary 

customization of the model with the use of other characteristics of the area. Similar 

analysis based on the distribution of the population was performed due to the compar-

ison. It is depicted in the right part of Fig. 5. Unlike the previous analysis, the result 

showed significantly more borders between clustering areas and their neighbourhood. 

On the other hand most of them are densely populated, so the analyst should consider 

their importance carefully and focus on several individual locations. 

 
Fig. 4. Identification of spatial disease clusters of campylobacteriosis with the use of the clus-

tering function for Kulldorff and Nagarwalla's statistic. Dark grey areas stand for central (core) 

area, light grey colour stand for other municipalities in the spatial cluster. 

5   Discussion and Conclusion 

The contribution aimed to introduce methods of spatial clustering and Bayesian spatial 

clustering that were based either on the location of disease events in the study area of 

four Moravian regions or their locations and demographical characteristics of munici-

palities. One has to realize that all presented methods are dependent on the scale and 

also on the prior information, which is entering the models mostly in the form of the 

probability distribution. Therefore, results and their evaluation have to be performed 

carefully in order to avoid misinterpretation. The aim of the contribution is therefore 

not only to use methods in real case study but also to show several different results 

that originally come from the same data. 

Firstly Openshaw’s GAM detected high number of possible diseases clusters, but 

due to its disadvantages, results were taken just as informative and an initial step for 

further analysis. Then, scan statistics based on Kulldorff and Nagarwalla's statistic was 

used for the identification of spatial disease clusters of campylobacteriosis. The scan 

statistics discovered one statistically significant cluster on the north of the study area. 

Lastly, the Poisson log-normal random effects models to spatial count data, where the 
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random effects are modelled by the localised conditional autoregressive (CAR) model, 

was used to proceed more detailed and complex analysis. This model incorporated the 

information about neighbourhood of individual municipalities and also the dissimilari-

ty matrix based on the age structure of the population in the neighbouring villages or 

cities. The model was able to identify two core areas of possible clusters. 

One has to realize that Bayesian techniques usually tend to shift values to the mean 

risk – global or local by incorporating information between areas. The risks in areas 

with more information (e.g., urban areas) are usually less smoothed than in areas that 

exhibit higher sampling variation (typically those with low number of cases), and thus 

produce more stable estimates of the pattern of underlying disease risk [20]. However, 

although raw risks can produce “noisy” maps that are difficult to interpret, over-

smoothed maps may produce a homogeneous risk surface, masking the true risk distri-

bution [3]. It is important to mention that all analyses presented in this paper are heav-

ily dependent on the scale. We chose the scale of municipal districts but results on 

other scales could show differences. When someone chooses to broad scale for the 

analysis, results will probably reveal one (or several) large cluster so the local vari-

ance disappears. On the other hand, to local scale may not lead to identification of  

any clusters. The extension of Bayesian model using other characteristic of the popu-

lation, spatial unit or disease is possible; however their dynamic properties are mainly 

shrunk to the sequential procession of time series or time slices. 

Fig. 5. Identification of spatial disease clusters of campylobacteriosis with the use of localised 

conditional autoregressive (CAR) model based on dissimilarity metrics with binary neighbour-

hood relations to spatial Poisson data. Colours and legend depicts standardized incidence ra-

tion, while red areas identify locations that are centres of probable disease spatial clusters. The 

left part describes the relation of likely clusters to the ratio of old people to children, while the 

right part is based on the population. 
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