
Ternary Tree Optimalization for n-gram
Indexing

Daniel Robenek, Jan Platoš, Václav Snášel

Department of Computer Science, FEI, VSB – Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{daniel.robenek, jan.platos, vaclav.snasel}@vsb.cz

Ternary Tree Optimalization for n-gram Indexing

Daniel Robenek, Jan Platoš, Václav Snášel

Department of Computer Science, FEI, VSB – Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{daniel.robenek, jan.platos, vaclav.snasel}@vsb.cz

Abstract. N-gram indexing is used in many practical applications. Spam
detection, plagiarism detection or comparison of DNA reads. There are many
data structures that can be used for this purpose, each with different
characteristics. In this article the ternary search tree data structure is used. One
improvement of ternary tree that can save up to 43% of required memory is
introduced. In the second part new data structure, named ternary forest, is
proposed. Efficiency of ternary forest is tested and compared to ternary search
tree and two-level indexing ternary search tree.

Keywords: n-gram, ternary tree, ternary forest, inverted index

1 Introduction

Efficient indexing and searching in huge amount of data is big issue in computer
science. For example finding plagiarisms, spam detection or comparison of DNA
sequences are topics, where efficient indexing is a key element of fast software.

The piece of data in these problems can be called n-gram. For DNA sequences n-
grams are nucleotides in the sequence read. For plagiarism and spam detection n-
grams are words in sentences or characters in the words.

First problem is to efficiently extract these n-grams. There are many specific and
optimized algorithms for this purpose. Next is necessary to perform the indexing.

Many data structures for this purpose, with different efficiency in search, insertion
or memory requirements are known. Indexing can be divided into two main
categories, depending on available memory or amount of data. First, when amount of
the data exceeds available memory, the data are stored on hard drive. Data structures
like B+ tree are optimized for this purpose.

Second category is in-memory based indexing, which expects sufficient amount
of memory for this purpose. The article is mainly focused to second category,
specifically to ternary tree optimization for n-gram indexing.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 47–58, ISBN 978-80-01-05482-6.

48 Daniel Robenek, Jan Platoš, Václav Snášel2 Daniel Robenek, Jan Platoš, Václav Snášel

2 Related Work

The path from plain text documents to ready-made search engine is long and difficult.
The first problem is to extract required n-grams out of documents into required
format. In case of spam detection or plagiarism detection we are interested in n-grams
that occur at last m-times [8]. It is because we are comparing similarity of documents,
respectively the most repeated parts of them.

In case of extremely large amount of documents the common data structures like
hash tables or trees are not suitable, because they would probably not fit in the
memory. Therefore another approach is inevitable. By using sophisticated algorithms
and hard drive as a temporary storage high efficiency can be achieved without
necessity of having large amount of RAM [4]. For smaller sets of data the utilized
data structures can be used [6].

A number of data structures have been proposed for text search and inverted index
is the most used one [1]. For example inverted index is used to evaluate queries in
many search engines [7]. The optimization and compression can be used on inverted
index data structures in order to speed up the search and reduce memory requirements
[10,5].

There are many data structures that can do n-gram indexing in memory [9]. One
opportunity how to create in memory inverted index is to use ternary search tree in
which every node stores information about one n-gram character. As it was shown by
tests on collections Google WebIT and English Gigaword corpus, the data structure is
fast enough [3].

However storing the whole n-gram into single data structure as-is may not be
optimal. Repeated words should not be stored many times. Redundant presence of
words causes excessive memory consumption. The idea is to create two data
structures where the words in n-grams are at first converted to unique numbers and
only after that the numbers are processed by data structure [6,7].

Using two-level inverted index can considerably decrease memory consumption
[9,2].

One of the requirements for these types of data structures is the opportunity to use
wildcard placeholders. This is used when is necessary to look for particular similarity.
When using two-level inverted index it is necessary to find range of words on the first
index. However this is only efficient when indexes are sorted with the words. When
this request is fulfilled, it is easy to look up for these words using data structures like
B+ tree [2].

3 Tree Compression

When using general binary or ternary tree, every unigram is contained in separate part
of tree named node. The node contains necessary tree parts, parts that are specific for
different kinds of each type of the tree and the unigram key and n-gram value.

Unigram key can be represented by char data type in case of indexing words. The
pointer can be also used when needed. Situation is similar for n-gram value. When we

Ternary Tree Optimalization for n-gram Indexing 49Ternary Tree Optimalization for n-gram Indexing 3

are not interested in value, for example when use tree as a data set structure, the value
can be omitted.

Data are partly specific to different tree implementations. Red-black tree needs to
contain color value and each node of AVL tree should contain depth information.
These information are necessary for self-balancing efficiency.

Last parts of tree node are references to next tree nodes. For binary tree, two
pointers are needed. For ternary tree, one more pointer is needed. The question is, if
these references are necessary. Binary tree nodes can be divided into two types -
internal nodes and external nodes (leaf nodes). Internal nodes are those having at last
one child. On the other hand, external nodes have no children.

In following sections, the ternary red-black tree will be used. New method for
unused ternary tree references removal will be introduced and results of test will be
shown.

3.1. Binary Tree

For memory saving computation is necessary to exactly define how both internal and
external node should look like. Comparison is shown in Table 1. For computations the
key variable is 8-bit character type and the value is 32-bit integer. References are also
32-bit integers.

Table 1. Composition of binary tree nodes

Variable Internal node External node
Left reference 4 bytes 0 bytes
Right reference 4 bytes 0 bytes
Color of node 1 byte 0 bytes
Key 1 byte 1 byte
Value 4 bytes 4 bytes
Sum of size 14 bytes 5 bytes
Real size 16 bytes 8 bytes

The size of external node in extreme case is only ~36% of internal node. The real

test showed different values. Because of memory alignment, size of internal node is
16 bytes and external node size is 8 bytes. But the 50% is still large difference. The
real size may vary, depending on the Key and Value variable sizes.

To compute memory saves of tree is necessary to know amount of internal and
external nodes. Lets think about ideal binary tree, where every node has zero or two
child nodes. The relative number of internal is:

cne = 2h-1

cni = 2h-1 - 1

cne = cni + 1

50 Daniel Robenek, Jan Platoš, Václav Snášel4 Daniel Robenek, Jan Platoš, Václav Snášel

Where cne is amount of external nodes, cni is amount of internal nodes and h is height
of tree. If we consider only large trees, we can assume that

cne = cni

with negligible error. Now, for this type of tree and sizes of nodes mentioned in Table
1, we can compute memory saving for whole tree. Without optimization, the size of
the node is 14 bytes. With optimization, the size of average node is ~9.5 bytes. It
means ~32% of saved memory.

If we consider also memory alignment, the results are little different. Node size is
16 bytes and with optimization, average node size is 12 bytes. It results in 25% less
memory usage.

This was one, ideal type of binary tree. But we can generalize these results for
every binary tree. The amount of used references in binary tree is always same, no
matter of tree arrangement. This amount is exactly same as number of nodes minus
one, because root node has no reference to its parent node.

If we remove every unnecessary reference in the tree, the real saved memory
would be about 25%, depending on Key and Value data type.

3.2. Ternary Tree

On Table 2 we can see node sizes of ternary search tree.

Table 2. Composition of ternary tree nodes

Variable Internal node External node
Left reference 4 bytes 0 bytes
Right reference 4 bytes 0 bytes
Middle reference 0 / 4 bytes 0 / 4 bytes
Color of node 1 byte 0 bytes
Key 1 byte 1 byte
Value 4 bytes 4 bytes
Sum of size 14 / 18 bytes 5 / 9 bytes
Real size 16 / 20 bytes 8 / 12 bytes

The difference is middle reference, which can enlarge node size of 4 bytes. Therefore
minimum size of node is 5 bytes for leaf with no middle reference, and maximum is
16 bytes for internal node with middle reference or 8 bytes and 20 bytes for real
allocated size.

If root node reference is omitted, there are 4 bytes per node for reference and 6
bytes for data. Therefore average amount of memory for one node of ternary tree is 10
bytes. This is ~44% less memory usage compared to tree created of nodes with
complete references.

The memory saving can be increased by removing unused value variable.

Ternary Tree Optimalization for n-gram Indexing 51Ternary Tree Optimalization for n-gram Indexing 5

3.3. Ternary Tree Tests

To prove these computations and to get time requirements of this optimization the
tests were performed. The tests were performed on two data structures, which are
previously mentioned compressed red-black ternary tree and ordinary red-black
ternary tree. Every data structure was tested with predefined set of n-grams, from
1,000,000 to 100,000,000 each. These n-grams have average length of 11 characters.
Moreover the efficiency of these structures was tested on different size of n-grams.
The tests were performed on computer with 84xE5-4610@2,4GHz processor with
1 Tb of RAM. N-grams were extracted from Web 1T 5-gram, 10 European Languages
Version 1 collection.

To simplify implementation and not to slow down search and insertion too much
the implementation for tests counts only with two types of nodes. They were
performed with common internal node and with external node without left and right
reference. Each of these nodes has its own type definition in code and the resolution
of the node type is done by the node index. As an alternative, one bit identifier may be
also used. Transformation from red-black tree into compressed red-black tree is made
by post processing.

3.3.1. Search Time
On the Figure 1, there is comparison between search times of compressed red-black
tree and common red-black tree. Graph shows slightly decreasing trend with average
slowdown of 3% amount. This slowdown is caused by type check of node on access.
This amount of slowdown seems to be acceptable in comparison of theoretical
memory saving.

Note that amount of n-grams on Figure 1 do not increase linearly.

Figure 1. Search time comparison

52 Daniel Robenek, Jan Platoš, Václav Snášel6 Daniel Robenek, Jan Platoš, Václav Snášel

3.3.2. Insertion Time
Comparison of insertion time is shown on Figure 2. This graph shows also slightly
decreasing trend. The average slowdown is 16%. This number may be too high, but
for many applications is more relevant search time or memory usage.

Figure 2. Insertion time comparison

3.3.3. Memory Usage
The Figure 3 shows memory usage of compared tree structures. Memory savings
seems to be stable, about 35%. This amount of saved memory is high when we
consider that the implementation does not remove middle reference, single left,
or single right reference.

Ternary Tree Optimalization for n-gram Indexing 53Ternary Tree Optimalization for n-gram Indexing 7

Figure 3. Memory consumption comparison

To explain this behavior is necessary to count amount of internal and external nodes
of tested tree. Results show that almost 90% of all nodes are external nodes, nodes
with no left or right child. The amount of nodes without middle reference is about
17%. This seems to be negligible for removal.

The amount of nodes with value reference is about 82%. Therefore removal of this
type of reference can improve memory saving even more, especially when variable
size is larger than 4 bytes. By modifying external node implementation to have no left
reference, right reference and value variable the memory saving raises to approx. 43%
without substantial slowdown.

3.4. Tests with n-gram Size

In previous chapters the behavior of compressed red-black tree depending on amount
of n-grams was tested. The question is how the size of n-grams affects compressed n-
gram tree performance.

Figure 4 shows search time with different size of n-grams from ~12 to ~24
characters. The amount of n-grams is 25,000,000. Results shows only small
differences compared with common red-black ternary tree, with better results on
greater n-gram size.

54 Daniel Robenek, Jan Platoš, Václav Snášel8 Daniel Robenek, Jan Platoš, Václav Snášel

Figure 4. Search time comparison

Differences in insertion time show Figure 5. The time necessary to create and fill
compressed ternary tree rises with n-gram size. This behavior may be caused by
recursive algorithm used in tree compression.

Figure 5. Insertion time comparison

Figure 6 shows memory requirements. Compressed red-black ternary tree has
greater memory saving on longer n-grams. Increasing amount of single node binary
trees in ternary tree causes this.

Ternary Tree Optimalization for n-gram Indexing 55Ternary Tree Optimalization for n-gram Indexing 9

Figure 6. Memory consumption comparison

4 Ternary Forest

For sentence indexing is appropriate to use two-level (double) indexing. This
approach saves a lot of computer memory, because words in all sentences are many
times repeated.

Common ternary tree n-gram indexing and n-gram double indexing using ternary
trees are two borderline cases. Single ternary tree is much faster in search and
insertion time. This is mainly caused by low height of binary trees deeper in the
ternary tree. Unfortunately this approach requires lot of computer memory.

Double indexing can save large amount of required memory, because it reduces
duplicities in the tree. Disadvantage of this approach is slowdown in both search and
insertion time, because deeper binary trees takes more time to be searched. But can
we combine both approaches to get more balanced data structure?

One approach can be ternary forest. Ternary forest is created from two types
of ternary search trees. First, word tree is indexing characters of words and second, n-
gram tree is indexing whole words. Every of the second trees are connected to the last
node of the first tree.

On Figure 7 is shown how three words “AB AC AB” can be indexed. In the word
tree, node A is first binary tree. Second binary tree consists of nodes B and C. Second
part of structure n-gram tree consists of two more single node binary trees, these are
with keys 3 and 2.

56 Daniel Robenek, Jan Platoš, Václav Snášel10 Daniel Robenek, Jan Platoš, Václav Snášel

Figure 7. Ternary forest example

To search words “AB AC AB” is necessary to find first word in first part of data
structure named word tree. When the first word is found, reference to the second part
of the data structure n-gram tree is stored. Then the second word “AC” is found in the
word tree with result 3. The stored root index of n-gram tree is used to found node
with index 3. Search is done again in the word tree with index 2 and the last node in
the n-gram tree is found.

Advantage of this approach is that indexing trees are not separated, but second n-
gram tree is directly connected to first word tree. This little difference from common
double indexing may look negligibly.

The test was performed to show depth of binary trees in n-gram tree. The set of
10,000,000 5-grams was used. The results shown that over 90% of trees are single
node trees. But more important is, that root tree has depth of size 32. Using ternary
forest instead of double indexing can rapidly reduce this size.

Moreover, sequence amount of words in the word tree can differ. On Figure 7 word
tree covers single word. But this may not be optimal for all purposes.

4.1. Ternary Forest Tests

Figure 8 shows behavior of insertion time, search time and memory requirements of
data structures. First data structure is double indexing ternary search tree. Second is
ternary forest, and the last one is common red-black ternary tree.
Data used for tests was 5-grams with average length of 24 characters. Ternary forest
is used in four tests. In each test the ternary forest has different amount of words
sequentially stored in the word tree in a row.

Ternary Tree Optimalization for n-gram Indexing 57Ternary Tree Optimalization for n-gram Indexing 11

Figure 8. Relative comparison of double indexing ternary search tree (left), ternary

forest and ternary search tree (right)

The results have shown that ternary forest using 1 word indexing in word tree has
greatly improved performance. Insertion time speedup is ~30% and search time is
~20% faster than double indexing. The memory requirements show only negligible
increase, less than 1%.

5 Conclusion

This paper described two improvements on ternary tree for efficient n-gram indexing.
First, ternary tree compression showed how to save up to 43% of computer memory
by removing unused references, without major slowdown.

Second improvement was more focused on n-gram indexing as such. By using
ternary forest instead of common two-level indexing search time has decreased ~20%
and insertion time ~30% with negligible increase of memory requirements.

Acknowledgement: This work was partially supported by the Grant of SGS No.
SP2014/110, VŠB - Technical University of Ostrava, Czech Republic, and was
supported by the European Regional Development Fund in the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods:
research, development and knowledge transfer project, reg. no.
CZ.1.07/2.3.00/20.0073 funded by Operational Programme Education for
Competitiveness, co-financed by ESF and state budget of the Czech Republic.

58 Daniel Robenek, Jan Platoš, Václav Snášel12 Daniel Robenek, Jan Platoš, Václav Snášel

6 References

1. Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern information retrieval. Vol.
463. New York: ACM press, 1999.

2. Ceylan, Hakan, and Rada Mihalcea. "An Efficient Indexer for Large N-Gram
Corpora." ACL (System Demonstrations). 2011.

3. Flor, Michael. "Systems and Methods for Optimizing Very Large N-Gram
Collections for Speed and Memory." U.S. Patent Application 13/168,338, 2011.

4. Huston, Samuel, Alistair Moffat, and W. Bruce Croft. "Efficient indexing of repeated
n-grams." Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 2011.

5. Kim, Min-Soo, et al. "n-gram/2l: A space and time efficient two-level n-gram
inverted index structure." Proceedings of the 31st international conference on Very
large data bases. VLDB Endowment, 2005.

6. Kratky, M., et al. "Index-based n-gram extraction from large document
collections." Digital Information Management (ICDIM), 2011 Sixth International
Conference on. IEEE, 2011.

7. MOFFAT, ALISTAIR AUTOR, and Timothy C. Bell. Managing gigabytes:
compressing and indexing documents and images. Morgan Kaufmann, 1999.

8. Pomikálek, Jan, and Pavel Rychlý. "Detecting Co-Derivative Documents in Large
Text Collections." LREC. 2008.

9. Robenek, Daniel, Jan Platoš, and Václav Snášel. "Efficient in-memory data structures
for n-grams indexing."

10. Scholer, Falk, et al. "Compression of inverted indexes for fast query
evaluation."Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2002.

