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Abstract. The electrical activity of brain or EEG signal is very com-
plex data system that may be used to many different applications such
as device control using mind. It is not easy to understand and detect
useful signals in continuous EEG data stream. In this paper, we are de-
scribing an application of data compression which is able to recognize
important patterns in this data. The proposed algorithm uses Lempel-
Ziv complexity for complexity measurement and it is able to successfully
detect patterns in EEG signal.
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1 Introduction

The Electroencephalography (EEG) plays a big role in diagnosis of brain dis-
eases, and, also, in Brain Computer Interface (BCI) system applications that
helps disabled people to use their mind to control external devices. Both re-
search areas are growing today.

The EEG records the electrical activity of the brain using several sensors
placed on a scalp . Different mental tasks produce indiscernible recordings but
they are different. Different brain actions activate different parts of the brain.
The most difficult part is the definition of an efficient method or algorithm for
detection of the differences in recordings belonging to the different mental tasks.
When we define such algorithm we are able to translate these signals into control
commands of an external device, e.g. prosthesis, wheelchair, computer terminal,
etc.

2 The Electroencephalography

The Electroencephalography (EEG) measures the electrical activity of human
brain, by placing set of sensors on a scalp, according to 10/20 EEG International
electrode placement, as is depicted on Figure 1. The measuring of EEG signal
records can be done between two active electrodes (bipolar recording), or be-
tween an active electrode and a reference electrode (mono-polar recording) [16].
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Fig. 1. 10/20 International Electrode Placement

2.1 EEG Waves Types

The types of brain waves distinguished by their different frequency ranges are
recognized as follows.

– Delta (δ) waves lie within the range from approximately 0.5 up to 4 Hz. The
amplitude of this waves is varying and have been associated with deep sleep
and present in the waking state.

– Theta (θ) waves lie within the range from 4 to 7.5 Hz. The amplitude varies
about 20 µV. Theta waves have been associated with access to unconscious
material, creative inspiration and deep meditation.

– The frequency of the Alpha (α) waves lies within the range from 8 to 13
Hz, the amplitude varies between 30 and 50 µV. It is reduced or eliminated
by opening the eyes, by hearing unfamiliar sounds, by anxiety, or mental
concentration or attention.

– Beta (β) waves are the electrical activities of the brain varying within the
frequency range from 14 to 26 Hz. The amplitude is about 5 up to 30 µV.
Beta waves has been associated with active thinking, active attention, focus
on the outside world, or solving concrete problems. A high-level beta wave
may be acquired when a human is in a panic state.

– Gamma (γ) waves have frequency range above 30 Hz, can be used to demon-
strate the locus for right and left index finger movement, right toes, and the
rather broad and bilateral area for tongue movement [19, 18].

– Mu (µ) waves will be same Alpha frequency range 8 to 13 Hz, but Alpha
waves are recorded on occipital cortex area, and Mu waves are recorded on
motor cortex area. Mu waves are related to spontaneous nature of the brain
such motor activities [18].

2.2 History of EEG

Carlo Matteucci and Emil Du Bois-Reymond, were first people who register the
electrical signals emitted from muscle nerves using a galvanometer and estab-
lished the concept of neurophysiology. The first brain activity in the form of
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electrical signals was recorded in 1875, by Richard Caton (1842–1926), a scien-
tist from Liverpool, England, using a galvanometer and two electrodes placed
over the scalp of a human. From here EEG stand to, Electro that referring to reg-
istration of brain electrical activities, Encephalon that referring to emitting the
signals from a brain, and gram or graphy, which means drawing. Then the term
EEG was henceforth used to denote electrical neural activity of the brain [19].

In 1920, Hans Berger, the discoverer of the existence of human EEG signals,
began his study of human EEG. In 1910, Berger started working with a string
galvanometer and later he used a smaller Edelmann model. After the year 1924,
he used larger Edelmann model. Berger started to use the more powerful Siemens
double coil galvanometer (attaining a sensitivity of 130 µ V/cm) in 1926. In 1929
Berger made the first report of human EEG recordings with duration from one to
three minutes on photographic paper and, in the same year, he also found some
correlation between mental activities and the changes in the EEG signals [19].

The first biological amplifier for the recording of brain potentials was built
by Toennies (1902–1970). In 1932 the differential amplifier for EEG recording
was later produced by the Rockefeller foundation. The potential of a multichan-
nel recordings and a large number of electrodes to cover a wider brain region
was recognized by Kornmuller. Berger assisted by Dietch (1932) applied Fourier
analysis to EEG sequences, which was developed during the 1950s [19].

After that the EEG analysis and classification take grow and development
every day. The application of the EEG signals to diagnosis of the brain diseases
and to control external devices for disabled people such as wheel chair, prosthesis,
etc. Today, several techniques for analysis and classification the EEG signal
exists, by using EEG multichannel recording according to 10/20 International
electrodes standard, which is used in Brain Computer Interface (BCI).

3 Related works

In this section we present some of related works for EEG data analysis using
different techniques such as Non-negative Matrix Factorization (NMF), Normal-
ized Compression Distance (NCD), and Lempel-Ziv (LZ) complexity measure,
and Curve Fitting (CF).

Lee et al. presented a Semi-supervised version of NMF (SSNMF) which
jointly exploited both (partial) labeled and unlabeled data to extract more
discriminative features than the standard NMF. Their experiments on EEG
datasets in BCI competition confirm that SSNMF improves clustering as well as
classification performance, compared to the standard NMF [10].

Shin et al. have proposed new generative model of a group EEG analysis,
based on appropriate kernel assumptions on EEG data. Their proposed model
finds common patterns for a specific task class across all subjects as well as
individual patterns that capture intra-subject variability. The validity of the
proposed method have been tested on the BCI competition EEG dataset [20].

Dohnalek et al. have proposed method for signal pattern matching based on
NMF, also they used short-time Fourier transform to preprocess EEG data and
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Cosine Similarity Measure to perform query-based classification. This method
of creating a BCI capable of real-time pattern recognition in brainwaves using
a low cost hardware, with very cost efficient way of solving the problem [5]. In
this context, Gajdos et al. implemented the well-performing Common Tensor
Discriminant Analysis method [6] using massive parallelism [7].

Mehmood, and Damarla applied kernel Non-negative Matrix Factorization
to separate between the human and horse footsteps, and compared KNMF with
standard NMF, their result conclude that KNMF work better than standard
NMF [14].

Sousa Silva, et al. verified that the Lempel and Ziv complexity measurement
of EEG signals using wavelets transforms is independent on the electrode position
and dependent on the cognitive tasks and brain activity. Their results show that
the complexity measurement is dependent on the changes of the pattern of brain
dynamics and not dependent on electrode position [4].

Noshadi et al. have applied Empirical mode decomposition (EMD) and im-
proved Lempel-Ziv (LZ) complexity measure for discrimination of mental tasks,
their results reached 92.46% in precision, and also they concluded that EMD-LZ
is getting better performance for mental tasks classification than some of other
techniques [15].

Li Ling, and Wang Ruiping calculated complexity of sleeping stages of EEG
signals, using Lempel-Ziv complexity. Their results showed that nonlinear feature
can reflect sleeping stage adequately, and it is useful in automatic recognition of
sleep stages [13].

Krishna, et al. proposed an algorithm for classification of the wrist movement
in four directions from Magnetoencephalography (MEG) signals. The proposed
method includes signal smoothing, design of a class-specific Unique Identifier
Signal (UIS) and curve fitting to identify the direction in a given test signal.
The method was tested on data set of the BCI competition, and the best result
of the prediction accuracy reached to 88.84 % [9].

Klawonn, et al. have applied Curve Fitting for Short Time Series biological
data to remove noise from measured data and correct measurement errors or
deviations caused by biological variation in terms of a time shift etc. [8]

4 Similarity

The main property in the similarity is a measurement of the distance between two
objects. The ideal situation is when this distance is a metric [21]. The distance
is formally defined as a function over Cartesian product over set S with non-
negative real value (see [3, 12]). The metric is a distance which satisfy three
conditions for all:

Definition 1. A mapping D : U → R+ is said to be a distance on the universe
U if the following properties hold:

D1 Non-negativity: D(x, y) ≥ 0 for any x, y ∈ U ;
D2 Symmetry: D(x, y) = D(y, x) for any x, y ∈ U ;
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D3 Identity of indiscernibles: D(x, y) = 0 if and only if x = y;
D4 Triangular inequality: D(x, y) ≤ D(x, z) +D(z, y) for any x, y, z ∈ U .

4.1 Lempel-Ziv Complexity

The Lempel-Ziv (LZ) complexity for sequences of finite length was suggested
by Lempel and Ziv [11]. It is a non-parametric, simple-to-calculate measure of
complexity in a one-dimensional data. LZ complexity is related to the number
of distinct substrings and the rate of their recurrence along the given sequence
[17], with larger values corresponding to more complexity in the data. It has been
applied to study the brain function, detect ventricular tachycardia, fibrillation
and EEG [22]. It has been applied to extract complexity from mutual information
time series of EEGs in order to predict response during isoflurane anesthesia with
artificial neural networks [2]. LZ complexity analysis is based on a coarse-graining
of the measurements, so before calculating the complexity measure c(n), the
signal must be transformed into a finite symbol sequence. In this study, we have
used turtle graphic for conversion of measured data into finite symbol sequence
P . The sequence P is scanned from left to right and the complexity counter c(n)
is increased by one unit every time a new subsequence of consecutive characters
is encountered. The complexity measure can be estimated using the algorithm
described in [11, 2].

In our experiment we do not deal with the measure of the complexity. We
create a list of the LZ sequences from the individual subsequence. One list is
created for each data file with turtle commands of the compared files.

The comparison of the LZ sequence lists is the main task. The lists are com-
pared to each other. The main property for comparison is the number of common
sequences in the lists. This number is represented by the sc parameter in the
following formula, which is a metric of similarity between two turtle commands
lists.

SM =
sc

min(c1, c2)
(1)

Where

– sc – count of common string sequences in both dictionaries.
– c1, c2 – count of string sequences in dictionary of the first or the second data

trial.

The SM value is in the interval between 0 and 1. The two documents are
equal if SM = 1 and they have the highest difference when the result value of
SM = 0.

5 Dataset

The data for our experiments was recorded in our laboratory. We have used 7
channels from recorded data. The signal data contains records of the movement
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of one finger from four different subjects. Every subject performed a press of a
button with left index finger. The sampling rate was set to 256 Hz. The signals
were band pass filtered from 0.5 Hz to 60 Hz to remove unwanted lower and
higher frequencies and noise. The data was then processed, that we extract each
movement from the data as well as 0.3s before the movement and 0.3s after the
movement.

The pre-processed data contains 4606 data trials – 2303 data trails with
finger movement and 2303 trails without finger movement. We divided it into
seven groups, one group for each sensor. In our experiment we are using 75% of
data for training and 25% for testing. Each group contains part of training and
testing data part. The training part for one sensor contains 492 trials – 246 data
trails with finger movement and 246 trails without finger movement. The testing
part contains 166 trails – 83 trails with finger movement and 83 trails without
finger movement. The we have used for further model validation.

5.1 Interpolation of the EEG data

After recording and filtering of the EEG data we apply polynomial curve fitting
for data smoothing. The fitting will remove noise from the data and fit the data
trend.

Consider the general form for a polynomial fitting curve of order j:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ ajx
j =

j∑
k=1

akx
k (2)

We minimized the total error of polynomial fitting curve with least square
approach. The general expression for any error using the least squares approach
is:

err =
∑

(dj)
2 (3)

err = (y1 − f(x1))2 + (y2 − f(x2))2 + . . .+ (yj − f(xj))
2 (4)

err =

n∑
i=1

(
yi −

(
a0 +

j∑
k=1

akx
k

))2

(5)

where:

– n is count of data points in one move,

– i is the current data point being summed,

– j is the polynomial order.
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Fig. 2. EGG trail before (blue line) and after smoothing (red line) with 15th order
polynomial curve fitting.

5.2 Turtle Graphics

Consider we have control on a turtle on computer screen, this turtle must be
respond on a sequence of commands. These commands: forward command, is
moving the turtle in front direction a few number of units, right command ro-
tate turtle in clockwise direction a few number of degrees, Back command and
Left command are cause same movement but in opposite way. The number of
commands to determine, how much to move is called input commands, depend-
ing on the application. When moving the turtle under input commands it leave
trace, this trace represent the desired object, as in Figure 3. represent simple
example for drawing on screen by steering the turtle with four commands for-
ward, right, left, and back command [1]. By this way can represent and drawing
the objects, from simple to complex objects.

6 EEG Experiment

The recorded data trail were filtered with band pass filter and divided into
individual sensor trails. For each trial we calculated polynomial fitting curve
with 15th order and total error minimization with least square approach. The
15th order is enough flexible to smooth data, remove unwanted noise, and to keep
the trend of data. After smoothing data we converted calculated curve values
into text using Turtle graphics. For the turtle we used 128 commands in two
right quadrants – first and fourth. Each command represents one angle – a data
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Fig. 3. Simple sequence of Turtle Commands

trend direction. We used only two quadrants – the first and fourth, because the
time line goes from left to right and the signal does not go backwards into past.

6.1 Lempel-Ziv Complexity

After this steps, were prepared a LZ subsequences list from turtle graphics com-
mands list from previous step using LZ complexity for each test EEG trial.
Similarities to all train trails using Eq. 1 were calculated for every test trail.
Then we selected a group of training trails with similarity S satisfying following
condition S ≥ Tmin ∧ S ≤ Tmax for every test trail. The condition threshold
values are depicted in Table 1 for all sensors. This selected group of trials is used
for calculation in which category belongs the tested trial. This was calculated as
a ratio of trials with movement to total count of selected trials in group, using
the formula:

C =
mt

ct

Where:

– mt is a count of trails, which are marked as trail with movement,
– ct is a count of trials in selected group, which satisfy condition.

The tested trail is marked as trail, which belongs to category with movement
trails if C ≥ 0.5 and as a trail without movement otherwise. These steps were
performed separately for all categories of data – with movement and without
movement – and all sensors.

The values of Tmin and Tmax represent the shortest range R in which classifier
has correctly identified maximum trials of both categories, with movement and
without movement, with emphasis to maximum correctly identified trial with
movement, where Tmin ∈ [0, 1] and Tmax ∈ [0, 1] and Tmin < Tmax, for example:

R(Tmin, Tmax) ∈ [0.15, 0.2]
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Figure 4 shows a distribution of individual similarities for a trail with (blue
bars) and without movement (orange bars). We can see that each data category
can be divided into one group. This two groups have with a small intersection
between Tmin and Tmax value.

Fig. 4. Histogram of the similarities for trial with and without movement of one sensor

6.2 Experiment Result

Our experiment is focused on successful detection of both data categories, data
with movement and data trial without movement. Our data was divided into
seven data parts. Each part contains trails from one sensor. Each data parts
has two subparts. The first data subpart contains training data – 75% of trials
with movement and without movement. The other part is used as testing data
sub part. This is used for our model validation. It contains 25% of trials with
movement and without movement.

In our experiment we are able to detect movement of index finger with suc-
cess detection rate between 56.02% and 58.78%. The best results we reach up
on sensor S5 (58.78%) and S2, S4 (58.43%). The worst result is for sensor S7
(56.02%). The detection results and their corresponding threshold values for all
sensor are in Table 1.

Detection rate in trials with movement varies between 36.14% (S6) and
72.28% (S7). Detection rate in trials with no movement varies between 39.75%
(S7) and 77.10% (S6).

Most of the values taken by minThreshold are around 0.30 and maxThreshold
values are situated around value 0.50.
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Table 1. Table of Results

Sensor Tmin Tmax
Detection rate

Total detection rate
Movement No movement

S1 0.40 0.65 61.44% 51.80% 56.62%

S2 0.35 0.45 60.24% 56.62% 58.43%

S3 0.30 0.45 59.03% 55.42% 57.22%

S4 0.30 0.60 66.26% 50.60% 58.43%

S5 0.30 0.40 49.39% 68.29% 58.78%

S6 0.60 0.65 36.14% 77.10% 56.62%

S7 0.25 0.50 72.28% 39.75% 56.02%

7 Conclusion

We made our experiments on our EEG data recorded in our laboratory from four
different subjects performing the same task – pressing a button with index finger.
The EEG data was recorded using 7 channels recording machine with sampling
frequency 256 Hz. The signals were band pass filtered from 0.5 Hz to 60 Hz
to remove unwanted frequencies and noise. The signals record the movement of
one finger. After removing unwanted frequencies and noise we preprocessed data
with polynomial curve fitting with 15th order, turtle graphic – conversion from
number into text and Lempel-Ziv complexity – similarity measurement.

In this paper we applied a successful approach for index finger movement
detection. Our suggested approach use polynomial fitting curve for smooth-
ing recorded data and Lempel-Ziv complexity for measuring similarity between
trails. Our approach is able to correctly detect EEG trail of index finger with
success rate between 56.02% and 58.78%. The best results we reach up on sen-
sor 58.78% and 58.43%. The worst result is for sensor 56.02%. Detection rate
in trials with movement varies between 36.14% and 72.28%. Detection rate in
trials with no movement varies between 39.75% and 77.10% .

The method proposed in this work seems to be able to detect trails with
and without movement with overall successful rate more than 56.02%. It can be
applied to the use on real data.
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