
QuickDB – Yet Another Database Management
System??

Radim Bača, Peter Chovanec, Michal Krátký, and Petr Lukáš

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava
17. listopadu 15, Ostrava, 708 33, Czech Republic

{radim.baca,peter.chovanec,michal.kratky,petr.lukas}@vsb.cz

QuickDB – Yet Another Database Management
System??

Radim Bača, Peter Chovanec, Michal Krátký, and Petr Lukáš

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava
17. listopadu 15, Ostrava, 708 33, Czech Republic

{radim.baca,peter.chovanec,michal.kratky,petr.lukas}@vsb.cz

Abstract. Although DBMS (Database Management Systems) are of-
ten hidden for a user, they are a part of many applications utilized in
day-by-day life. In general, we can suppose two main types of DBMS:
OLTP (On-Line Transaction Processing) and OLAP (On-Line Analytical
Processing). We can also distinguish another classification related to the
connection of a client and DBMS: client-server and embedded DBMS.
The embedded DBMS enable to achieve the maximum performance since
an often slow network connection is not used. As a result, they are uti-
lized by in-memory computations where the maximum throughput is
required. Although it seems that a lot of high quality DBMS exist and
another DBMS are not required, there is not a system to meet all de-
mands of the real world. In this paper, we introduce our prototype of
embedded database system called QuickDB. We show that it includes a
wide variety of data structures and it provides more efficient performance
in many cases compared to up-to-date (embedded) DBMS.

1 Introduction

Although DBMS (Database Management Systems) [9, 6] are often hidden for a
user, they are a part of many applications used in day-by-day life. In general,
we can suppose two main types of DBMS different in the workload for which
they are designed: OLTP (On-Line Transaction Processing) and OLAP (On-Line
Analytical Processing). Whereas the first type is mainly used by information sys-
tems where a user requires a support of transaction processing [9], the second
type is used by, for example, business intelligence applications [15] or some com-
putations and analysis where data structures of DBMS are utilized to manage
data. We can also distinguish another classification related to the connection of
a client and DBMS: client-server and embedded DBMS. The embedded DBMS
enable to achieve the maximum performance since an often slow network con-
nection is not used, therefore, they can be utilized in the case of in-memory
computations where the maximum data throughput is required.

The major representatives of the client-server DBMS are the following sys-
tems: Oracle Database [18], Microsoft SQL Server [14], MySQL [16], PostgreSQL [21],

? This work is partially supported by SGS, VŠB – Technical University of Ostrava,
No. SP2014/211, Czech Republic.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 91–99, ISBN 978-80-01-05482-6.



92 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

Firebird [8] and others. The major representatives of the embedded DBMS are
the following systems: Microsoft Access1, SQLite [20], Berkeley DB [17], eX-
tremeDB2 and so on. When we consider only relational DBMS, many database
systems have appeared during 35 years of their development (see the genealogy
of relational DBMS [12]).

Although it seems that a lot of high quality DBMS exist and another DBMS
are not required, there is not a system to meet all demands of the real world.
For example, Berkeley DB provides the high performance of the B-tree and the
paged queue, but it does not support any multidimensional data structure. On
the other hand, in the case of libraries including an R-tree implementation (see
Table 1), they support especially in-memory implementations, which penalizes
them in the case of huge data. Moreover, they do not often support any other
data structures. In this paper, we introduce a long-time project of the Database
Research Group3, a prototype DBMS called QuickDB [5]. It includes a wide
variety of data structures and it provides more efficient performance in many
cases compared to up-to-date DBMS. In Table 1, we show a comparison of
individual features of selected DBMS and libraries. We can see that there are only
two DBMS supporting all features: QuickDB and SQLite. However, SQLite do
not use any cache buffer for data; only the operating system’s cache is used during
file operations. We must note that the table does not consider all features of
DBMS (a support of transaction processing, availability for more platforms, e.g.
UNIX and Windows, and so on). Since a performance comparison of embedded
and client-server DBMS is rather problematic, QuickDB is compared only with
embedded DBMS and libraries.

Table 1. Summary of supported features for all database systems and li-
braries compared in this article

DBS/Library B-tree Paged Queue R-tree 32 bit 64 bit In Memory/Disk
(Heap table) Only/Cache Buffer

QuickDB [5] X X X X X Cache Buffer

Berkley DB [17] X X × X X Cache Buffer

SQLite [20] X X X X X Disk Only

Boost [4] × X X X X In Memory

libSpatialIndex [11] × × X X X In Memory/
Disk Only

RTreeStar [19] × × X X X In Memory

Superliminal Rtree [7] × × X X X In Memory

1 http://office.microsoft.com/en-us/access/
2 http://www.mcobject.com/extremedbfamily.shtml
3 http://db.cs.vsb.cz/



QuickDB – Yet Another Database Management System? 93

This paper is organized as follows. In Section 2, we describe an architecture
of QuickDB. In Section 3, we put forward a comparison of QuickDB with other
DBMS. In the last section, the paper content is resumed and the possibility of
a future work is outlined.

2 QuickDB

In Figure 2, we see an architecture of QuickDB4. The cache buffer preserves
pages of data structures to prevent disk accesses when a page is required. The
overhead of the page size compared to the size on a disk is approximately 20%,
i.e. the in-memory page size is 9,830B in the case of the 8kB page size. When
a data structure operation returns a result, e.g. the range query, the result is
stored in a ResultSet and returned to a user. After the user closes the ResultSet,
it is returned to QuickDB.

Cache Buffer

QuickDB
Core

Disk

B+-tree

R-tree

ResultSet 0

ResultSet n

...

Paged Queue

Fig. 1. An architecture of QuickDB

There exists an implementation of the B-tree, R-tree, and paged queue uti-
lizing the core of QuickDB. The goal of QuickDB is to provide the maximum
performance instead of an implementation of rich functionalities like a support
of methods stored in a database and so on.

4 QuickDB is implemented in C++.



94 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

3 Comparison of DBMS

3.1 Testing Environment

We perform a set of various tests where we compare our QuickDB with state-of-
the-art implementations in each area. By the term area we mean a data structure
type. Moreover, in Section 3.4, we show results of an application of QuickDB –
a native XML database.

All experiments are executed in a single thread on an Intel Xeon 2.9 GHz
CPU. We use a real data set of meteorological measurements of the Czech Hy-
drometeorological Institute5, where the dimension of each record is 5. The collec-
tion contains 57,852,305 records and the total size of its textual representation
is 1.12 GB. Queries used during the tests are randomly generated.

3.2 Comparison of Basic Data Structures

In this test, we compare the performance of two QuickDB basic data structures:
the B-tree and the heap table (paged queue). The B-tree is a traditional data
structure used by all relational DBMS [2]. The heap table is also supported by
all relational DBMS and we test just a sequential scan in the heap table using a
cursor.

B-tree We compare the QuickDB’s B-tree performance of the insert and point
query operations with the Berkeley DB and SQLite here. The performance of the
insert operation can be influenced by several different aspects where we consider
the following: (1) whether the data fit into the main memory cache or not, and
(2) whether the data are sorted before the insert or not. All combinations for
each B-tree are tested and the results are summarized in Table 2.

We can observe that SQLite performs worst in all cases. An overhead of
SQLite is probably induced by the SQL interface and lack of its own buffer
cache. Clearly, QuickDB and Berkeley DB have very similar performance on our
data set, however, QuickDB slightly outperforms Berkeley DB in all tests. The
only disadvantage of QuickDB is its a slightly bigger index.

Heap Table (Paged Queue) Now we compare the performance of the QuickDB’s
heap table with the Berkeley DB’s queue. We use the Berkeley DB’s queue since
it supports the insert and sequential scan operations. The insert operation is
preformed with limited memory, however, it is not very important here since
only a sequential write is utilized. Then we perform the sequential scan with
both cold and warm caches. The term warm cache means that all the data are
already stored in the main memory.

Results are shown in Table 3. QuickDB is twice faster during the insert than
Berkeley DB. Surprisingly, the performance of the Berkeley DB queue scan is

5 http://www.chmi.cz/



QuickDB – Yet Another Database Management System? 95

Table 2. The B-tree comparison

Operations QuickDB Berkeley DB SQLite

Sorted insertion
531 445 173

80% of data [thousands per second]
fit in the main Random insertion

289 264 21
memory [thousands per second]

Sorted insertion
674 526 173

All data [thousands per second]
fit in the main Random insertion

357 312 21
memory [thousands per second]

Queries [s] 0.35 0.38 0.64

Index size [GB] 3.5 3.39 2.57

the same no matter whether the cache is cold or not. It leads us to a conclusion
that Berkeley DB uses the OS file system cache which influences the results.
However, QuickDB significantly outperforms Berkeley DB during in-memory
sequential scan. On the other hand, the size of the Berkeley DB index file is
quarter of the data set size, whereas, the QuickDB index file is equal to the data
size.

Table 3. The heap table (page queue) comparison

QuickDB Berkeley DB

Inserting [thousands
2,244 1,468

per second]
Sequential scan (warm) [s] 4.64 21.1
Sequential scan (cold) [s] 27.11 21.15

Index size [GB] 1.12 0.25

3.3 Comparison of Multidimensional Data Structures

In this section, we compare a performance a multidimensional data structure
called the R-tree [10, 3] implemented in QuickDB with some other existing im-
plementations. We compare the performance of both insert and range query
operations. In the experiments, we use three collections of queries (a detail de-
scription is shown in Table 4).

The performance of inserting and query processing is compared with several
libraries, namely Boost [4], libSpatialIndex [11], RTreeStar [19], Superliminal
Rtree [7], and SQLite [20] as a representative of embedded database systems.
Relational DBMS based on a client-server architecture (Oracle, PostgreSQL,
MySQL, and so on) have not been taken into account since it is rather problem-
atic to compare embedded and client-server DBMS.



96 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

Table 4. A basic characteristic of query groups

Query Group Result Size Avg. Result Size

1 1 1.0

2 〈2, 999〉 302.5

3 〈10000, 99,999〉 45,172

Since all tested libraries (except QuickDB and libSpatialIndex) support only
an in-memory storage, no secondary storage has been used during the exper-
iments and we do not measure the size of the indices. The page size is 8kB
in all cases. In Table 5, we see that QuickDB and Boost provide the highest
performance. While Boost is more efficient in the case of the insert operation,
QuickDB slightly outperforms it in the case of query processing. We see that
other implementations are outperformed by QuickDB and Boost.

Table 5. The R-tree comparison

Insert Time Query Processing Time
DBMS/Library [thousands of [thousands of quries/s]

inserts/s] QG1 QG2 QG3

QuickDB 68.3 38.9 19.8 1.7

Boost 97.2 33.3 20.0 1.40
libSpatialIndex 12.2 18.5 13.2 0.74
RTreeStar 56.53 20.8 14.7 0.43
Superliminal Rtree 70.2 10.0 6.60 1.30
SQLite 66.4 17.30 12.10 0.76

3.4 Comparison of QuickDB Application

In this section, we present an application of the QuickDB framework. It is a na-
tive XML database called QuickXDB introduced in [13]. We briefly discuss how
the QuickDB framework is exploited here and compare it with some other solu-
tions.

Data structures There are two indexes representing an XML data collection,
namely document index and partition index [1]. The document index serves as
a primary access path since it fully describes both tree structure and actual text
values of an XML collection6. We exploit two persistent data structures of the
QuickDB framework: the B-tree and the paged queue.

6 The reader is expected to understand the terms of the XML tree data model.



QuickDB – Yet Another Database Management System? 97

The B-tree of the document index has a node label as a key. There are two
fundamental purposes of the node label: (1) it uniquely identifies each XML
data node and (2) we are able to resolve a structural relationship of two nodes,
e.g., one is a parent of another. The leaf nodes of the B-tree contain tags (node
names) of XML nodes and pointers into the paged queue where text values are
stored. The records for XML nodes in the leaf nodes of the B-tree are stored in
the same order as in the original XML document or collection. Consequently,
we can profit from using range queries to obtain the whole subtree of an XML
node.

The partition index is the secondary access path. It is also a combination
of the B-tree and the paged queue. However, here a tag name serves as a key
and items of the B-tree leaf nodes include pointers to paged queues where cor-
responding node labels are stored in the document order.

Experimental evaluation We have performed a time comparison with 2 other
native XML databases: MonetDB7 and BaseX8. We have picked up 4 data col-
lections: XMark9 with factor f = 10 (1.1 GB), Swissprot (109 MB), TreeBank
(82 MB), and DBLP (127 MB)10.

For each collection, we have generated 3 sets of 50 distinct random XPath
queries oriented purely on searching structural relationships between XML nodes.
The sets differ in the upper range of their selectivity11: (1) selectivity up to 100%,
(2) selectivity up to 10%, and (3) selectivity up to 1%. Different query selectivity
can cause a different utilization of indexes. The complexity of queries vary for a
different number of location steps (from 2 to 11) and also for a different number
of branching predicates (from 0 to 4). Both ancestor-descendant and parent-child
tree axes are randomly used. Branching predicates contain either single XPath
subqueries or more subqueries connected by a logical conjunction.

Summarized results are presented in Figure 2. The values on the vertical
axis stand for the total processing time of a set of queries. Each single query was
evaluated 5 times, only arithmetic means of 3 times (without the best and the
worst case) are considered.

We can see that our QuickXDB outperforms BaseX on all query sets ex-
cept XMark with selectivity up to 1% and 10%. We also evaluate queries with
the higher selectivity (up to 1% and 10%) on DBLP, Swissprot, and TreeBank
collections faster than MonetDB. On the Swissprot query set with selectivity
up to 1%, QuickXDB is more than 20× faster than BaseX and 8× faster than
MonetDB. On the other hand, our QuickXDB is approximately 2.5× slower than
MonetDB on DBLP and XMark query sets with selectivity up to 100% and 3.3×
slower than BaseX on XMark with selectivity up to 10%.

7 http://www.monetdb.org/XQuery/
8 http://www.basex.org
9 http://www.xml-benchmark.org/

10 http://www.cs.washington.edu/research/xmldatasets/www/repository.html
11 If we for example have a query //a[./b]//c, selectivity can be computed as

count(//a[./b]//c) div count(//c)



98 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

0

5

10

15

20

25

30

(1
0

0
%

) 
D

B
LP

(1
0

%
) 

D
B

LP

(1
%

) 
D

B
LP

(1
0

0
%

) 
Sw

is
sp

ro
t

(1
0

%
) 

Sw
is

sp
ro

t

(1
%

) 
Sw

is
sp

ro
t

(1
0

0
%

) 
Tr

e
eB

an
k

(1
0

%
) 

Tr
e

eB
an

k

(1
%

) 
Tr

ee
B

an
k

(1
0

0
%

) 
X

M
ar

k

(1
0

%
) 

X
M

ar
k

[s]

MonetDB

BaseX

QuickXDB

Fig. 2. A comparison of native XML databases

4 Conclusion

In this paper, we introduced a comparison of our prototype of embedded database
system called QuickDB with other up-to-date embedded DBMS and libraries. As
mentioned, the main goal of QuickDB is to provide the maximum performance.
The results show that QuickDB outperforms these DBMS and libraries in a lot
of cases. In our future work, we want to compare other features of DBMS, for
example, scalability performance, transaction processing performance and so on.

References

1. R. Bača and M. Krátký. XML Query Processing Efficiency and Optimality. In
Proceeding IDEAS 12 Proceedings of the 16th International Database Engineering
& Applications Symposium, pages 8–13. ACM, 2012.

2. R. Bayer and E. M. McCreight. Organization and Maintenance of Large Ordered
Indices. Acta Inf., 1:173–189, 1972.

3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD 1990), 1990.

4. Boost.org. Boost C++ Libraries, http://www.boost.org/, 2014.
5. Database Reasearch Group. QuickDB, http://db.cs.vsb.cz/, 2014.
6. C. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition, 2003.
7. G. Douglas. Superliminal Rtree, http://superliminal.com/sources/

sources.htm#C%20&%20C++%20Code, 2014.
8. Firebird Foundation Incorporated. Firebird, http://www.firebirdsql.org/,

2014.
9. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2nd edition, 2008.
10. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Pro-

ceedings of the ACM International Conference on Management of Data (SIGMOD
1984), pages 47–57. ACM Press, June 1984.



QuickDB – Yet Another Database Management System? 99

11. M. Hadjieleftheriou. libSpatialIndex, http://libspatialindex.github.io/, 2013.
12. Hasso-Plattner-Institut. The HPI Genealogy of Relational Database Man-

agement Systems, http://www.hpi.uni-potsdam.de/naumann/projekte/

rdbms_genealogy.html, 2014.
13. P. Lukáš, R. Bača, and M. Krátký. QuickXDB: A Prototype of a Native XML

DBMS. In Proceedings of the Dateso 2013 Annual International Workshop, pages
36–47, 2013.

14. Microsoft. Microsoft SQL Server 2012, http://www.microsoft.com/en-us/

sqlserver/default.aspx, 2014.
15. S. Negash. Business Intelligence. Communications of the Association for Informa-

tion Systems, 13, http://aisel.aisnet.org/cais/vol13/iss1/15, 2004.
16. Oracle. MySQL Community Edition, http://www.mysql.com/products/community/,

2014.
17. Oracle. Oracle Berkeley DB 12c, http://www.oracle.com/technetwork/database/

berkeleydb, 2014.
18. Oracle. Oracle Database 12c, http://www.oracle.com/us/products/database/

overview/index.html, 2014.
19. D. Spicuzza. R* Tree Implementation for C++,

http://www.virtualroadside.com/blog/index.php/2008/10/04/

r-tree-implementation-for-cpp/, 2014.
20. SQLite Consortium. Sqlite, http://www.sqlite.org/, 2014.
21. The PostgreSQL Global Development Group. PostgreSQL,

http://www.postgresql.org/, 2014.


