
Formal Modeling in Context Aware Systems

Anjum Shehzad, Hung Q. Ngo, Kim Anh Pham, and S. Y. Lee

Computer Engineering Dept. Kyung Hee University
449-701 Suwon, Republic of Korea

{anjum, nqhung, kimanh, sylee}@oslab.khu.ac.kr

Abstract. Ubiquitous computing environment consists of diverse range of
hardware and software entities, and is about the interactivity of such entities.
Context-awareness, being an important ingredient plays a vital role in enabling
such interactive smart environments. The entities and contextual information
provided/utilized by them must have invariant meanings in order to have a
common understanding among them. This results in sharing of information with
common semantics, at different times and at different places and provides
testability of formalized knowledge, emerging as a pool of consistent contextual
knowledge available to different context-aware systems. In this paper, we
discuss our context model for the home domain and show that how it entails
implicit reasoning.

1 Introduction

Ubiquitous computing is viewed as a major paradigm shift from conventional desktop
application development. This view is enabled through the use of diverse hardware
(sensors, user devices, computing infrastructure etc.) and software, anticipating user
needs and acting on their behalf in a proactive manner [1], [2]. This diversity of
hardware and software information increases the degree of heterogeneity.

Context-awareness is considered as an important ingredient of today’s most
ubiquitous computing applications. The behavior of these applications is mostly
characterized by embedding the interpretation logic of contextual information inside
applications, creating problems for reusability of this information by other
applications. Since ubiquitous computing is about interactive and smart environments,
in order to enable such interactions, applications need a shared understanding of
context to communicate and transfer contextual information effectively among them.
Also, the applications demanding the contextual information from the environment
may not have its prior knowledge, further emphasizing the need for common
agreement of such information. All these problems of heterogeneity, independent
interpretation, and need for interactivity leads us to think of a formal context model
for efficient utilization of contextual information in ubiquitous computing
environment.

Most context-aware systems to date mainly focus on the contents of context,
neglecting the importance of interactivity among applications. Some have model the
context as name-value pairs [3] and entity relation model, while others have used

objects [4] to represent context, with fields containing state of context, methods to
access, modify and/or register for notification changes to context. However, context
reuse and sharing among wider application domains demand a need for formal
context modeling enabling common understanding of the structured context.

The remaining paper is organized as follows. First, we emphasize on formal
modeling, its benefits and describe using OWL as formal context modeling language.
Next, we explain shortly our architecture, followed by our basic and detailed context
model. Finally, reasoning mechanisms, future work and conclusion are provided.

2 Formal Context Modeling

Before we dwell on formal context modeling, we would like to define the meaning of
context. The specific conditions, external to the application itself, such as audience,
speaker (user), situation (place and its surroundings), time, environmental and
network conditions, etc., which determine the application behavior, will be called the
‘context’ of the application. Such applications which take advantage of the context are
called context-dependent or context-aware applications and lead us to the
development of context-aware systems [5], [6]. Thus, context-aware systems are more
adaptive to such context and more responsive to the user.

Pervasive environments are characterized by different variable entities (context
entities). These entities may have different meanings associated with them in different
pervasive environments. In order to have invariant meanings of these entities, when
used at different times, in different situations, by different applications, they must be
formalized, i.e. the context semantics should be formalized. Formalizing the context
of an application has a number of clear advantages. First, it allows us to store the
context for a long term since its meaning will remain same for future uses. The
second advantage is for communicating the context universally with other systems.
Third, formal meaning of the context leads to its testability of being a formalized
knowledge. So, formalizing the context model helps to make a growing pool of well-
tested context knowledge available to different context-aware systems.

2.1 Formal Context Modeling using OWL

Context entities are the concepts in a domain of discourse, and to provide formal
meaning of these concepts, ontologies are used, defined as, a formal explicit
description of concepts in a domain of discourse, leading to shared and common
understanding that can be communicated between people and application systems [7].
Formalizing domain not only contains the vocabularies of concepts but relationships
among them as well. W3C’s OWL (web ontology language) [8] allows us to achieve
this goal in two steps. First, it allows us to define concepts and their inter-
relationships e.g. describing person, devices, location etc. Second, it allows us to
define instance data pertaining to some specific time and space e.g. Bob is watching
television. Traditionally, ontologies are only used to describe domains (as mentioned
above) but in OWL, the horizon of ontology has been broadened to include instance
data as well, effectively making the knowledge base [7].

OWL, a knowledge representation language, has explicit semantics associated with
the knowledge, which provides reasoning capabilities used by intelligent systems and
agents to infer useful contexts. As OWL is based on meta-modeling language (RDF
[9]), it can be used to represent meta-information about sensors, like in our
framework, we are also using OWL to represent access mechanisms to the sensors
and associated policies.

3 CAMUS Architecture

The formal context modeling presented in this paper is one part of our CAMUS
architecture, a unified middleware framework for context-aware ubiquitous
computing. Here we briefly describe the core functional components of CAMUS as
depicted in figure 1, more details can be found in another paper [10].

Fig. 1. CAMUS – A Unified Middleware Framework for Context-Aware Ubiquitous
Computing. Multi layered abstraction provides separation of concerns and helps in modeling
and reasoning contextual information independently from sensing technologies. Context
Aggregator is responsible for satisfying certain context queries and providing context to
interested applications through Context Delivery Services.

1. Feature Extraction Agents: These sensing agents extract the most descriptive
features for deducing contexts in upper layers. In order to have a more expressive
representation of contextual information, features are further quantized or
segmented, resulting in a set of symbolic values that describe concepts from the

real world. The quantized features are encapsulated in the form of Feature Tuple.
Feature - Context Mapping module performs the mapping required to convert a
given feature into elementary context based on the meta-information saved in the
ontology repository. For example, see Table 1.

2. Ontology Repository: provides the basic storage services in a scalable and
reliable fashion and contains the domain ontology (concepts and properties),
contextual information (including both elementary and composite contexts), and
meta-information (D = devices, S = sensors access mechanisms, L = Feature -
Context Labeling, as well as the meta-information about the input, output and
capabilities of pluggable reasoning modules = R).

3. Reasoning Engine: is a collection of various pluggable reasoning modules to
handle the facts present in the repository as well as to produce composite contexts.
Ontology Reasoning Module can use various kinds of logics to support inference;
description logic, first order logic, temporal logic and spatial logic to name a few.
Context Reasoning Module can use Fuzzy logic, Bayesian networks and neural
networks to produce composite context, providing different power and
expressivity. Sometimes a combination of both reasoning mechanisms is needed.

Table 1. Example Feature Tuples. Same Sensor ID is assigned to individual sensors in the same
physical space. Sensor ID = 3 indicates Bedroom.

Value
 Sensor

ID
Sensor
Type Feature ID Numeric

Value
Quantized Value
(Symbolic,
Probability)

Time
Stamp

1 (Silent, 0.9) 3 1(Audio) 1(Intensity) X (dB)
2 (Moderate, 0.1) Xxxxx

1 (Stable, 0.8) 3 2(Video) 3(Motion
Pattern)

NA
2 (Regular, 0.2) Xxxxx

3 2(Video) 6(Posture) NA 2 (Lying, 0.9) Xxxxx
1 (TotalDark, 0.2) 3 2(Video) 7(Luminous

Intensity)
Y (cd)

2 (Dark, 0.8)
Xxxxx

4 CAMUS Context Model

While context entities are conceptual entities, the information provided by them is
called the contextual information. This contextual information has its own syntactic
and semantic meanings. Some of the context entities are the producers of contextual
information while others are consumers or both. Contextual information gathered
from atleast one sensor is called the ‘elementary context’ while ‘composite context’ is
any combination of elementary contexts or elementary and composite contexts as
shown in figure 2.

Fig. 2. Contextual information hierarchy

4.1 Basic Model

Diverse context entities ranging from various kinds of devices e.g. PDAs, mobile
phones, ambient displays etc., running various applications, to various environment
conditions e.g. sound intensity, light, temperature, traffic etc., are utilized by various
kinds of agents e.g. software agents, persons, groups etc.

This variety leads us to categorize context entities, in our framework, mainly into
agents, devices, environment, location and time. Location and time are kept separate
from the other concepts to emphasize on the spatial and temporal aspects of the
ubiquitous computing environment. These conceptual entities and their relationships
are described in the ontology repository. Figure 3 shows the main context categories
and few domain concepts of our context model, termed as, cont-el.

The shadowed ovals show, in figure 3 on next page, the main context categories
while rectangles represent few of the concepts under the corresponding context
category. Many new entities (devices, softwares etc.) may enter/leave the variable
ubiquitous environment, but they can be made part of the system by adding their
definitions at runtime into the ontology database and related to existing entities by
various ontology language (OWL) constructs like subClassOf, disjointWith etc. So,
representing context entities in the ontology brings all benefits of ontology world.

Fig. 3. Expandable Cont-el Basic Categorization and Some Domain Concepts

4.2 Detailed Model

Context entities and contextual information are described in the ontologies;
facilitating various parts of the ubiquitous computing environment to interact with
each other effectively. We have described ontologies for a home domain. The
different ontologies made are based on basic categorization described above. In the
following paragraphs, we will describe part of different ontologies for the home
domain.

For the entities related to Agent, we have top level concept called Agent. It has
been further classified into SoftwareAgent, Person, Organization, and Group. Each
Agent has property hasProfile associated with it whose range is AgentProfile. Also,
an Agent isActorOf some Activity. Activity class, representing any Activity, can be
classified based on the Actor of it e.g. SingleActivity (which has only one actor),

GroupActivity (which has Group as its actor and can have many SinlgeActivity
instances). An Activity having some object of action on which it is done called
ActivityOnObject like CookingDinner, TurnOnLight, or WatchingTV etc., while
SelftActivity has no object of action e.g. Sleeping, or Bathing. Activity itself is not
related to time and location but whenever activity happens, it generates an
ActivityEvent (subclass of Event and LocationContextObject), encapsulating both
time and location information.

The Device ontology is based on FIPA device ontology specification [11]. Every
Device has properties of hasHWProfile, hasOwner, hasService, and hasProductInfo.
Device is further classified into AudioDevice, MemoryDevice, DisplayDevice,
NetworkDevice. PDA is considered here as subClassOf AudioDevice, DisplayDevice,
NetworkDevice, MemoryDevice and PersonalDevice. All different devices have
associated device profiles e.g. DisplayDevice hasDisplayProfile of
DisplayScreenProfile containing properties resolution, color, width, height and unit.
The hasService property of Device class has Range of Service. Service, in our
framework, has at present Software subclass which is further sub-classified into
disjoint classes Application and OS.

The environmental context is provided by the various classes in the Environment
ontology. Humidity, Sound, Light and Temperature are different environmental
information we are utilizing in our framework. This sensed information is available
though different sensors deployed in the smart environment, and used by the
applications to adapt their behavior. An Environment is unionOf all different
variables (temperature, light, sound and humidity) mentioned above. Each of them
has hasParameter property which links them to the different information gathered
from environment. For Sound, the hasParameter has the range of AudioParameter
class, which has subclasses, namely, ACDCParameter (ACDC stands for Average
Crossing Direction Change), HarmonicityRatio, Intensity, TransientDetection etc.
VideoParameter has been classified into MotionPattern, PixelChangeVariance,
PixelPercentageChange, Posture, ZoomComponent etc.

Location ontology, an important aspect of ubiquitous computing environment, has
SpatialObject as its top level class. This class is equivalent of SpatialObject defined at
NASA Jet Propulsion Lab space ontology1. We have imported this ontology into our
space ontology, as it describes useful information related to spatial objects. Place is a
SpatialObject and has IndoorPlace and OutdoorPlace as it two subclasses. Each Place
has hasEnvironment property which describes the environment conditions like
temperature, humidity etc. A Place is a isPartOf some other Place. As we have
defined ontology for the home domain, we have concepts like BedRoom, BathRoom,
DinningRoom and LivingRoom etc. in our ontology. SubRoom isPart of Room, and
represents an interesting place inside room such as OnBed, BesideDinningTable,
InFrontOfTV, InSofa etc. LocationContextObject is anything which can have location
context, having properties of locatedIn, locatedNearBy, locatedFarAwayFrom etc.

1 http://sweet.jpl.nasa.gov/ontology/space.owl#

...
<owl:Class rdf:ID="Activity"/>
<owl:ObjectProperty rdf:ID="generatesEvent">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#ActivityEvent"/>
 <rdf:type
 rdf:resource="&owl;InverseFunctionalProperty "/>
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="ActivityEvent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#InstantActivityEvent"/>
 <owl:Class rdf:about="#IntervalActivityEvent"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf
 rdf:resource="&contellocation;LocationContextObject"/>
</owl:Class>
<owl:Class rdf:ID="IntervalActivityEvent">
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/>
 <rdfs:subClassOf
 rdf:resource="&conteltime;IntervalEvent"/>
</owl:Class>
<owl:Class rdf:ID="InstantActivityEvent">
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/>
 <rdfs:subClassOf
 rdf:resource="&conteltime;InstantEvent"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="containsActivity">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Activity"/>
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
</owl:ObjectProperty>
...

...
<owl:Class rdf:ID="Environment">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Humidity"/>
 <owl:Class rdf:about="#Light"/>
 <owl:Class rdf:about="#Sound"/>
 <owl:Class rdf:about="#Temperature"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="Light">
 <rdfs:subClassOfrdf:resource="#Environment"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParameter"/>
 <owl:allValuesFrom rdf:resource="#LightParameter"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Parameter"/>
<owl:Class rdf:ID="LightParameter">
 <rdfs:subClassOf rdf:resource="#Parameter"/>
</owl:Class>
<owl:Class rdf:ID="LuminousIntensity">
 <rdfs:subClassOf rdf:resource="#LightParameter"/>
</owl:Class>
<owl:Class rdf:ID="Bright">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
<owl:Class rdf:ID="TotalDark">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
<owl:Class rdf:ID="Dark">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
...

Fig. 4. Few definitions from Activity and Environment ontology in OWL

Temporal information is ubiquitous in real world situations and also considered as
common need for ubiquitous computing applications. For time, we are using the
concepts from DAML-Time ontology [12]. TemporalThing, a general concept, has
subclass of InstantThing, IntervalThing and Event. InstantEvents (subclass of Event
and InstantThing) can be thought of points which don’t have any interior points e.g.
entering a room, turning the TV on, and turning lights off. While IntervalEvents
(subclass of Event and IntervalThing) denote events, that span some interval of time
e.g. watching movie, playing games, or attending the meeting. Every TemporalThing
has begins and ends properties pointing to the InstantThing and denotes its beginning
and end. inside relation is between IntervalThing and InstantThing stating that some
instant is inside the interval. before indicates that some TemporalThing (sleeping) has
its end before the beginning of some TemporalThing (waking up). More details of our
different ontologies can be found at our website2.

2 http://ucg.khu.ac.kr/ontology/0.1/

5 Reasoning Mechanisms

The contextual information provided by the environment leads to only elementary
contexts. Some contexts are useful only when they are combination of some
elementary and/or composite contexts, and also need consistency of contextual
information. Our framework supports various pluggable reasoning modules and
developer of the context Aggregator services can exploit any kind of reasoning
mechanism based on application requirements. These reasoning modules are broadly
classified into ontology and context reasoning mechanisms, but here we will only
discuss ontology reasoning as context reasoning is out of scope of this paper.

5.1 Ontology Reasoning Mechanisms

High valued ontologies depend heavily on the availability of well-defined semantics
and powerful reasoning modules. The expressive power and the efficiency of
reasoning provided by OWL, (the semantics of OWL can be defined via a translation
into an expressive Description Logics (DL) [13]), make it an ideal candidate for
ontology constructs. The facts gathered from context entities make a factual world in
OWL, consisting of individuals and their relationships asserted through binary
relations.

Ontology reasoning helps us to find subsumption relationships (between
subconcept-superconcept), instance relationships (an individual i is an instance of
concept C), and consistency of context knowledge base, provided by Racer [14]
Server. In the design phase of formalizing the context entities, OWL reasoning
services (such as satisfiability and subsumption) can test whether concepts are non-
contradictory and can derive implied relations between concepts.

Let us take an example to see how ontology reasoning can help deducing implied
context. In location ontology, the property locatedIn is a TransitiveProperty, and
isPartOf is subProperty of locatedIn. So when knowing that Bilbo is locatedIn Bed,
and Bed is a part of BedRoom which is part of Home, the system can deduce that
Bilbo is locatedIn BedRoom and Home.

Another example is how to map between the features we receive from Feature
Extraction layer to simple contexts. Different sub classes of Parameter class have
different hasValue restrictions on sensorTypeID, featureID and quantiziedLevel.
Receiving a feature tuple with sensorTypeID = 1, featureID = 1 and quantiziedLevel
= 1, we can create an instance of class Parameter with them, and then use OWL
Reasoner to infer that the new instance is of type AudioParameter, Intensity and
Silence.

5.2 Context Reasoning Mechanisms

However, many types of contextual information cannot be easily deduced using only
ontology inference. In addition to ontology reasoning, we can also use logic inference.
A set of rules can be defined to assert additional constraints for context entity
instances when certain conditions (represented by a concept term) are met.

Over the concepts and relations defined in Cont-el, we can do a lot of reasoning
based on many types of logics, such as description logic, description temporal logic,
and spatial logic. We will take a closer look at how Cont-el supports these kinds of
reasoning.

The spatial reasoning is based on the Location ontology and Region Connection
Calculus [15]. We can infer about the spatial relations among the symbolic
representation of space, such as spatiallySubsumes or
isDisconnectedFrom relation between two SpatialObject. Here we
illustrate one of those RCC rules:

[(?x spc:spatiallySubsumedBy ?z),
 (?z rcc:isDisconnectedFrom ?y).
 (?x rcc:isDisconnectedFrom ?y)]

Based on the Time concepts in our ontology, we can define a set of rules for

temporal reasoning. Temporal relations e.g. meets, before etc. and their inverses
e.g. metBy, after etc. are taken from [16]. So we can define a set of temporal
reasoning rules like this example:

[instant-before:
 (?x rdf:type tme:InstantThing), (?x tme:at ?timeX),
 (?y rdf:type tme:InstantThing), (?y tme:at ?timeY),
 lessThan(?timeX,?timeY)
 (?x tme:before ?y)]

[interval-before:
 (?x rdf:type tme:IntervalThing), (?x tme:ends ?xE),
 (?y rdf:type tme:IntervalThing), (?y tme:begins ?yB),
 (?xE tme:before ?yB)
 (?x tme:before ?y)]

The inferred temporal and spatial contextual information can be used for higher

level reasoning. For example, categorizing activities into PastActivity,
CurrentActivity and IntentionalActivity help defining some more
complex inference. Following are some rules taken from our current implementation:
(note that each time before calling the time reasoner, we have to update the at
property of Now – a special instance indicating the current time, an individual of class
NowInstantThing - with the current timestamp).

To infer that an activity is PastActivity

[past-act:
 (?a rdf:type act:InstantActivity),
 (?a act:containsActivityEvent ?e),
 (?a rdf:type act:InstantActivityEvent),
 (?e tme:before ?n) ,
 (?n rdf:type tme:NowInstantThing)
 (?a rdf:type act:PastActivity)]

If agent has Waken Up and is Bathing then the Oven will Reheat the Breakfast

In DLRUS syntax [17], this rule can be expressed like this:

((OvenReheatingBreakfast ⊥) (WalkingUp PastActivity

 Bathing CurrentActivity))

And here is the realization in Jena rule syntax:

[reheat:
 (?a1 rdf:type tme:WakingUp), (?a1 rdf:type act:PastActivity),
 (?a2 rdf:type tme:Bathing), (?a2 rdf:type act:CurrentActivity)
 [(?o act:isActorOf ?a3),
 (?a3 rdf:type acthome:ReheatBreakfast)
 (?o rdf:type devhome:Oven),
makeInstance(?a, act:isActorOf, acthome:ReheatBreakfast, ?a3)]]

Such temporal concepts and relations can play a useful role in the reasoning about

contexts. All concepts and relations are written using the Protégé 2000 [18] which
allows writing vocabularies in OWL. At present, we are using the Jena Semantic web
toolkit [19] to insert the context information as it allows parsing, managing, querying
and reasoning the ontologies programmatically.

However, Jena has limited support for other types of inferences, for example
default reasoning and uncertainty reasoning. So we are considering using some other
reasoning mechanisms, such as Bayesian network for uncertainty reasoning, and the
Theorist framework for default and abductive reasoning. Cont-el ontologies and
current reasoning mechanisms over it can provide contextual information, as input,
for those higher inferences.

6. Conclusion and Future work

One of the fundamental characteristics of context-aware systems is formalization of
context models, expressing entities independent of any specific application. Although
complete formalization is impossible but it can be applied to the degree allowed by
the domain for relatively stable or invariant entities. Using ontologies to describe the
entities formally support also knowledge sharing, reuse, and logical reasoning. We
believe that formalizing domains should be seen as emergent phenomenon
constructed incrementally, leading to the sharing of contextual information among
heterogeneous context-aware systems. In this paper, we discussed how formal
modeling is useful for heterogeneous ubiquitous computing environment and
presented our ontology for the home domain. We also discussed few (out of many) of
the reasoning capabilities provided once context models are formalized.

Our final goal is to formalize ontology for the home domain, which is a part of our
“Smart Home” test bed. Another direction is exploiting fully the reasoning provided
by spatial and temporal aspects of the ubiquitous computing environment.

References

1. M. Weiser: Scientific America. The Computer for the 21st Century. (Sept. 1991) 94-104;
reprinted in IEEE Pervasive Computing. (Jan.-Mar. 2002) 19-25

2. M. Satyanarayanan: IEEE Personal Communications. Pervasive Computing: Vision and
Challenges. (Aug. 2001) 10-17

3. Dey, A.K., et al.: A Conceptual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Anchor article of a special issue on Context-
Aware Computing, Human-Computer Interaction (HCI) Journal, Vol. 16. (2001)

4. S. S. Yau, F. Karim, Y. Wang, B. Wang, S.Gupta: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing. (Jul.-Sep. 2002) 33-40

5. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report
TR2000-381, Dartmouth College, Computer Science, Hanover, NH. (Nov. 2000)

6. Winograd T.: Architectures for Context. In: Human-Computer Interaction (HCI) Journal, '01,
Vol. 16.

7. J. Davies, D. Fensel, F. V. Harmelen: Towards the Semantic Web, Ontology-Driven
Knowledge Management, John Wiley & Sons. (Nov. 2002)

8. W3C Web Ontology Working Group: The Web Ontology language: OWL.
http://www.w3.org/2001/sw/WebOnt/

9. Klyne, G., Caroll, J. J.: Resource Description Framework Abstract Concept and Syntax.
W3C Recommendation. (10 Feb. 2004)

10. Hung, N.Q., Shehzad, A., Kiani, S. L., Riaz, M., Lee, S.: A Unified Middleware
Framework for Context Aware Ubiquitous Computing. In: EUC2004, Japan. (Aug. 2004)

11. FIPA Device Ontology Specification. http://www.fipa.org/specs/fipa00091/SI00091E.pdf
12. Hobbs, J. R.: A Daml ontology of time. http://www.cs.rochester.edu/~ferguson/daml/daml-

time-nov2002.txt. (2002)
13. Baadar, F., Horrocks, I., Sattler, U.: Description Logics. Handbook on Ontologies. (2004)

3-28
14. Haarslev, V., Moller, R.: Racer: A Core Inference Engine for the Semantic Web. In:

EON2003, Sanibel Island, Florida. (Oct. 2003)
15. D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In:

Principles of Knowledge Representation and Reasoning (KR92), San Mateo, California,
Aug. (1992)

16. Allen, J. F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Technical
Report 521, The University of Rochester, Computer Science Department, Rochester, New
York. (Jul. 1994)

17. Artale, A., et al.: The DLRUS Temporal Description Logic. In: International Description
Logics Workshop (DL-2001), Stanford, CA, USA. (Aug. 2001)

18. Protégé Project. http://protege.stanford.edu
19. Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

