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Abstract. 3D models play an important role in many industrial appli-
cations. Therefore semantic processing for the purposes of comparing,
cataloging and archiving shapes is a major concern. Most previous work
considers comparisons based on the object’s overall geometry or in a ref-
erence frame which is computed from the object’s geometry alone, disre-
garding its context. There are also approaches which propose to match
feature points to perform context alignment to better analyze a single
element. In complex assemblies created in a CAD system, however, the
parts (components and layers) are often explicitly marked and named
and therefore the geometric context is evident. In this paper we show
how this can be exploited with the aid of Knowledge Management tools
to establish accurate frames of reference where the individual shapes can
be better analyzed.

1 Introduction

In many applications, digital 3D models and shapes play a pivotal role in the cre-
ative design process, visualization and analysis. The application domains include
Industrial Design, Architecture and Medical Imaging, just to name a few. There-
fore extracting, storing and retrieving semantics associated with these models is
important to be able to reuse designs.

Semantics stored in a digital encoding of a 3D model is inherently implicit.
Hence, it must be extracted from the model’s geometry by a dedicated algorithm.
Unfortunately, today’s state of the art shape matching systems (e.g. [24, 3])
which can retrieve objects similar to a query shape are not accurate enough to
distinguish between shapes which have a similar overall shape or have mostly
subtle differences. There are dedicated systems, however, which were designed
for the geometrical analysis for a very specific task (e.g. [22, 21]) and therefore
the algorithms can rely on “hard-coded” domain knowledge to achieve better
performance.

In this paper, we investigate the plausibility to gain domain knowledge au-
tomatically from the geometrical context of a shape S and use it to derive algo-
rithms which are better suited to analyze S. This is achieved by using context
geometry to establish a precise reference frame and therefore the shape descrip-
tor does not have to be invariant under rotation, translation and scaling. These
are the usual requirements for descriptors derived to compare 3D shapes of which
nothing more than the geometry is known. For this work, our system must be



able to establish the shape’s context efficiently. In a multi-component 3D model
created in a CAD environment, each element has its own geometry and can
be given its own name. Moreover, it is relatively straight-forward to produce
these identifiers which can be used to isolate the individual geometric pieces. It
is expected that the same logical model created by two different designers will
have the same components but these will almost certainly be named differently,
unless a precise naming convention is enforced. In this paper we propose to use
Knowledge Management to establish the correspondence of the design elements
and also give examples how the geometric context established by an assembly’s
topology can be used to derive shape descriptors to analyze individual compo-
nents.

2 Related Work

Storing and modeling semantics is a major concern in modern design products.
The new MPEG-7 standard [17, 16] provides a standard to annotate multi-media
content. In the case of a 3D model, it can be used to describe the content of a
scene and its semantics, both in human and machine readable format. MPEG-7
also has shape descriptors (2D and 3D), but these are too general for subtle
analysis.

The descriptors of Osada et al [20], Kazhdan et al [9] and Novotni et al [19]
were designed to mine the Web for 3D models which resemble a query geometry
(either uploaded as a full geometry or sketched). Since models posted on the
Web are arbitrarily scaled and oriented, these descriptors are invariant under
rotation, scaling and translation. It is also common to establish orientation only
considering the model’s own geometry. These are usually the center of mass and
the Principal Component Analysis (PCA) axes [26]. They are used to align the
object first and the shape signature is derived with respect to this coordinate
system [25]. Using domain knowledge to align the object for better analysis has
been considered to compare medical images [13], bones [22] and archaeological
artifacts [21]. In these systems the feature points are selected by comparing the
sample to other images or by semi automatically identifying regions of interest
on the object. Semantics inferred from certain geometric features of the object
were considered in [4], but without the context of the objects. Körtgen et al [12]
consider matching feature points inferred from geometry to establish context
alignment.

Since in CAD models the components are explicitly isolated, to infer context
a correspondence has to be established between differently named but logically
equivalent elements. This is a typical Knowledge Management (KM) problem
which requires an ontology that encodes knowledge about the design element.
The use of KM tools has already been recognized as a means to enhance com-
petitiveness of business companies [5, 11, 10]. The currently running WIDE [27]
and Wise [1] projects are specifically targeting knowledge management in the
Engineering domain. As far as we can tell, we were the first to propose context



geometry inferred with the help of knowledge management tools to be considered
in the derivation of shape descriptors.

3 Geometric Context

A usual 3D model is made up of a hierarchy of layers. A layer is a geometric
grouping of elements which, in practice, often corresponds to a functional co-
hesion. Figure 1 depicts an engine which itself is a layer of geometries and it

Fig. 1. Complex assembly with layers.
.

also includes sublayers corresponding to smaller components. When the model
is exported in some formats, the names of layers and their elements can verba-
tim be found in the file and can be used to isolate the individual geometries.
Elements which belong to different layers could also define topologies which are
often representative for a number of different products in the same product line.
For example, consider the layout of the car body parts depicted in Figure 2.
While there are many different car designs, the elements that make up the body
of a car and their topology are very similar for all makes. This layout is obvi-
ous for anyone familiar with cars, but it would be a very hard task to reverse
engineer from geometry alone. On the other hand, the topology can easily be
translated into logical sentences which can be used to identify elements that are
connected to each other. For example, the hood of a car is between the front
fenders and between the windshield and the front bumper. These axioms can
easily be expressed using the between predicate (in Prolog style notation).

...
between(_,fr_fender,fl_fender,hood).
between(_,windshield,f_bumper,hood).
left(fl_fender).
right(fr_fender).
...

?- between(sedan,X,Y,hood).
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Fig. 2. Typical topology of car body parts.
.

From this, the context geometry of the hood consists of the windshield, the left
and right front fenders and the front bumper.

4 Reference Frames

“Knowing” (domain knowledge) that the hood of the car is aligned with the top
of the front fenders, we can establish a reference frame in which hoods can be
analyzed. Consider the two cars shown in Figure 3. The front fenders and the

Fig. 3. Two cars with different hoods
.

hoods are highlighted. The fender inclines are quite different for both cars and the
van’s hood also includes a sticking out grill. Even if the two car models are scaled



proportionally and oriented the same way (which is quite unlikely) the actual
positioning of the hoods is not a good choice for analyzing their shapes because
of their different slopes. A popular approach to establish a coordinate system is
to perform Principal Component Analysis. As it can be seen from Figure 4, in
our case, the protruding grill tilts the principal axes considerably which makes
the resulting PCA coordinate systems inadequate to use as a common frame of
reference. α shows the rotation angle between corresponding axes. A common

α
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x
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y
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Fig. 4. (a) PCA axes from the tessellated hood surfaces, (b) reference frame obtained
from the fenders’ geometry.

reference frame to compare the hoods can be established as follows. A plane
is fitted between the top line of the fenders and this is taken to be the y = 0
plane. Since fenders are often slightly curved, the slope can be approximated
by finding the linear regression lines with the top line segment of the fenders
that also have contact with the hood. The x and z axes are also clear, since
the fenders are symmetric and the mid-line between the front fenders toward
the front bumper is the “forward direction” (x-axis) which will halve the y = 0
plane and the z-axis is perpendicular to these. The origin can either be taken
at the centroid’s projection on the y = 0 plane or at the midpoint between the
fenders. The hoods, now in the same reference frame, are also depicted in Figure
4. Also note that regardless how the model is scaled, from the components of the
model an accurate scale can often be determined (eg. knowing that the model is
to scale and the diameter of the wheels should be 17”).

5 The Shape Descriptor

Now we derive two shape descriptors for comparing the hoods. These descrip-
tors are examples, only meant to demonstrate how one can exploit context and
domain knowledge. This construction is inspired by [25], but we use 2D and 1D
discrete cosine transforms (also used in the JPEG compression algorithm) in-
stead of a 3D Fourier transform (we obtained better surface reconstruction using
the same number of harmonic components with the cosine transform). Besides



compression, cosine transforms have also been used to obtain feature vectors for
face recognition [7]. The dimension reduction comes from the domain knowledge
that a car hood is usually a bent piece of sheet metal and therefore it is a surface
rather than a volume. The coordinate system is obtained by aligning the hood
on the front fenders as described in the previous section. For our first descriptor,
D1, we take the bounding box and subdivide its xz face (Figure 4) into a Nx×Nz

grid. Let f1
ij be the average y value in the grid i, j, 0 ≤ i < Nx, 0 ≤ j < Nz. We

take the 2D discrete cosine transform of f1.
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The shape descriptor is composed of the low harmonics ω1
uv for 0 ≤ u < Kx, 0 ≤

v < Kz, where Kx << Nx and Kz << Nz.
The other shape descriptor, D2, is derived from contour points on the surface.

We take n cylinders with increasing radii with base on the xz plane and intersect
the surface. f2(φ, r) is the y value of the intersection point with the cylinder
whose radius is r measured at the positive angle φ from the x-axis. The shape
descriptor is composed of the first few low harmonics of the discrete 1D cosine
transform of the n contours.
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We verified with our models that, indeed, the low frequency components are the
major constituents. In our experiments, for D1, we sampled the hood surface
based on a 50 × 50 grid and for D2 we used 5 contours, each sampled at 100
equally spread angles. We took only the first 5 low order harmonics and there-
fore both feature vectors are composed of 25 real values. Both descriptors were
accurate to distinguish our synthetic hood surfaces. As it can be seen from Fig-
ure 5, the hoods reconstructed from their respective surfaces, even at this very
high compression ratio, preserve characteristics of the original shapes. Again,
we would like to emphasize that these shape descriptors would certainly be in-
adequate to analyze volumes or free form shapes. They, however, illustrate how
geometric context (common coordinate system) and domain knowledge (hoods
are surfaces) can be incorporated into more informed shape descriptors.

6 Knowledge Management

Building a conceptual model in order to formally describe aspects related to a
product domain is necessary to allow the identification of the context from its
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Fig. 5. Surface reconstructions from the descriptors
.

various parts. This is usually accomplished by identifying and formalizing the
modeling primitives that describe the domain concepts. From this, one can build
a product line’s ontology. Ontologies offer the means for sharing knowledge be-
tween humans and software agents and provide flexible means for establishing
explicit relations between concepts. The purpose of our ontology is to encode
domain knowledge which would otherwise be impractical, difficult or even im-
possible to reverse engineer from geometry alone but can provide useful context
information also for the geometrical analysis of the components.

To build this ontology, first, the elements making up the design have to be
identified in terms of conceptual entities. We are particularly concerned to reflect
the conceptual layout of body panels for different car designs (sedan, cabriolet,
hatchback, van, pick-up, etc). The entities, then, are arranged according to spe-
cific relations. The standard CAD layering, for example, naturally translates to a
“part-of” relationship. This is further complemented by predicates which express
the spacial arrangement of the components (eg. the between predicate we used
earlier). For example, fl fender and fr fender are instances of the class fender
with different attribute settings to express their orientations (left,right,front or
rear). Being fenders they also inherit the relationship “adjacent to hood”.

Our method needs relatively complete domain ontologies, which are not read-
ily available at the moment. For complex and diverse domains (like engine parts)
the encoding of the ontologies would also be a non-trivial task. There are do-
mains, however, where the task of specifying spatial relationships is quite straight
forward. In fact, formal logic may not even be needed to obtain a useful encoding.



Fig. 6. Spatial relationships of car body panels.

Figure 6 shows a tool in action, which we built to create ”context graphs”. The
spatial relationships (eg. left of, behind) and the concepts (eg. hood, roof)
can be loaded dynamically from a domain library. To aid the creation of the
graph, the user can also load a blueprint image in the background. The com-
pleted graph is then used to navigate the model and to identify the context
of individual elements. For example, the front and rear extremities are the two
bumpers which can be used to orient the model. Then, a left of-right of as-
sociation between two panels indicates that part of the panel’s bounding box is
a left or right shared edge with the neighbouring panel. While there are more
than one fenders in the same model, they can also be identified easily once the
model is oriented. For example, the center of mass of the panels (in the car panel
domain at least) can directly be aligned to the concept graph.

CAD systems allow the designer to label layers and group elements but this
information is not always present in exported models. For us, however, these tags
provide valuable information about the hierarchical structure of the model and
they can also help to isolate individual components. For this purpose, we have
built our own exporter tool for Rhino [23] 3D models. It isolates the components
associated with each layer and generates several VRML files, such that the file
names verbatim reflect the layer labels chosen by the designer. Our tool also
creates a meta file in the MPEG-7 standard format [17], which provides pointers
to the files associated with each individual component and it also encodes the
original layering hierarchy. This way we have a fully annotated model in which
the context geometry is explicitly encoded and is readily accessible.



Layered CAD models of the same multi-component object created by differ-
ent designers will likely have many corresponding layers, but these will almost
inevitably have different names. Thus, to match the groups and layers, we must
also provide a term resolution mechanism. For example, we have referred to the
cover of the engine as hood (usually preferred by American English) while it
is also often called bonnet. Since the words are actual synonyms (they are in
the same synset in WordNet), once hood has been identified as a synonym of
bonnet, the terms will be treated as the same component. In the actual model,
it is still unlikely that the layer name of the hood would actually be hood or
bonnet. In practice, designers often abbreviate the component name which is
still suggestive of the original component; eg. hd1 for hood or bnt for bonnet.
Our algorithm to align the layer names to the most likely concepts is based on
the standard Dynamic Programming algorithm used for sequence alignment (eg.
in Bioinformatics) [14]. We, however, use a specific cost function which seems
to be very effective to tell if the acronym corresponds to the concept. First, as
part of the preprocessing stage, we identify the synonyms of the domain con-
cepts. This is achieved using WordNet. To identify the proper sense of a word,
we prefer synsets whose description field also contains “hint terms” that indicate
that the sense is more relevant to the original domain. In our case these include
terms like “auto”, “car”, “engine” and “engineer”. All synsets are considered,
but the ones that contain a hint term are given higher priority. The next step
is to identify the best match concept term corresponding to the acronym. We
calculate a match score for each concept and their synonyms and choose the
concept with the highest score. The score corresponds to the ratio of the longest
common subsequence (as in [8]) and our modified Levenshtein [15] metric. This
latter metric, with actual value Mn,m is the dynamic programming solution of
the recurrence

M0,0 = 0
Mi,0 = Mi−1,0 + delc(A[i]) boundary condition
M0,j = M0,j−1 + insc(B[j]) boundary condition
Mi,j = min( select

Mi−1,j−1 + c(A[i], B[j]) - substituting B[j] for A[i]
Mi−1,j + delc(A[i]) - delete A[i]
Mi,j−1 + insc(B[j]) - insert B[j]

)

(4)

Here, A and B are the sequences to be aligned. B, of length m is the acronym
and A of length n is the name of the concept. delc(x) is the cost of deleting the
character x from sequence A and insc(x) is the cost of inserting character x from
B. Since acronyms are usually obtained by omitting characters from the original
term, we only penalize a deletion from A by 0.5. On the other hand, it is unlikely
that one would insert a non-present character into the acronym, hence we give
it the full penalty of 1, unless it is a special character (eg. underscore or digit),
which we do not penalize at all. c(x, y) is the cost of using character y from
sequence B in place of sequence A. Unless x = y, or y is a special character, we
assign the penalty value 1. With this cost structure, the value of the alignments



of bnt and bent to bonnet are 2.0 and 1.5 respectively. In both cases the longest
common subsequence is 3 (b.n.t) and the Levenshtein values are 1.5 and 2.0
(as shown in Figure 7). The ratios give the values 3/1.5 = 2 and 3/2.0 = 1.5.
bnt is the more likely alignment, since inserting a special character ( ) carries
less penalty than having a character in the acronym (e) which does not occur in
the concept term.
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Fig. 7. Aligning bnt and bent to bonnet.

It is an additional requirement for our project to be multi-lingual. For this
reason, we are going to switch to MultiWordNet [18] which allows the align-
ment of Italian to the famous Princeton WordNet. MultiWordNet brings also
the advantage of extending the WordNet lexical database with further syntac-
tic relations that permit to take “phrasets” into account [2]. Phrasets are free
combinations of words which are recurrently used to express a concept (called
Recurrent Free Phrases or RFPs). Many English and Italian terms in the me-
chanical domain are considered to be RFPs by lexicographers which cannot be
encoded in the original WordNet.

7 Concluding Remarks

In this paper we have described how context geometry can provide the oppor-
tunity to better analyze an individual component. For many multi component
industrial products, there is often a well known topology of elements. The exam-
ple we have carried in this paper focuses on the panels comprising a car’s body.
In CAD models, the layering hierarchy is also explicitly present when the model
is created and this information can easily be available. Therefore, with the use
of Knowledge Management tools, one can extract the geometries of any individ-
ual component and can also infer its geometric context. This context, in turn,
can be used to establish a common frame of reference which provides additional
information for analysis of the individual component. We have derived two well
performing example shape descriptors to show that it can be relatively simple
to incorporate context and domain knowledge.



We also proposed to use an ontology and a WordNet based term resolution
engine to establish correspondence between the components of existing models.

We also believe that providing the geometric context to the stylist in the
CAD/VR environment can also aid the artist (not only the Mathematical de-
tails of shape analysis). For example, when the designer wants to create a hood,
generic front fenders would automatically “pop-up” in faint rendering so they
are non-intrusive but can lead the “pen” (mouse, 3D mouse or some other input
device). A similar approach is used in SpaceDesign [6], where the designer can
choose context objects (such as engine volume or passenger) to aid the construc-
tion of a car panel surface. The reference frame created by these aid objects can
also be exploited for shape analysis.

There is also a wealth of models available on the Internet which do not
have proper layering but would still be useful if they could be made available
for the designers. These models can be retrieved using existing “context free”
search engines and then converted to properly annotated layered models with the
help of semi-automatic authoring tools (which use standard techniques, such as
PCA analysis for alignment). The conversion of untagged and poorly structured
models is a major concern as proprietary designs actually used in industry are
rarely made available and the model libraries collected by Web spiders contain
many detailed, but unstructured models.
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