
What About Database-centric Enterprise
Application Integration?

Daniel Ritter

HANA Platform, SAP AG
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

daniel.ritter@sap.com

Abstract. The focus on “big data” and the emergence of hybrid Online
Transaction Processing/Online Analytical Processing systems in the
database community creates new opportunities for (business) application
vendors. More and more business logic is “pushed" to the database, i. e.,
close to the application data, for faster and more efficient processing,
while avoiding unnecessary data shipments.
In this position paper, we argue that Enterprise Application Integration
should engage in a liaison with the recent data-processing advances,
especially for supporting the integration of applications running in the
database with remote applications.

Keywords: Enterprise Application Integration, Relational Database.

1 Introduction and Position
The recent advances within the database research community–not limited to
hybrid transactional and analytical systems (e. g., [5,9])–bring applications to-
gether on one platform: the database. For less data shipment and more efficient
processing, (business) application logic is “pushed" to the databases by translating
it to standard SQL, PL/SQL and an increasing number of additional libraries
and programming languages [1,2]. The databases of complete business application
suites1 are not only used for “bookkeeping" anymore, but transform to application
platforms. The conventional application systems remain the presentation layer,
while the control and data flows move closer to the databases.

These applications require message-based integration. Some of the data and
message endpoints like Data Stream and Complex Event Processing (CEP), for
Information Flow Processing [4], and ETL (e. g., Microsoft SQL Server Integra-
tion Services) already operate on database level. While these data endpoints care
about high-performance inbound data loading, (message) protocol and format-
level transformations (e. g., JSON, XML to relational model), data cleansing and
storage to database tables, standard integration capabilities like routing, mapping,
and guaranteed delivery are left for EAI systems, which are still implemented on
application server level. When additionally considering the subsumption premises
1 For example, the SAP Business Suite on HANA: https://www.suiteonhana.com

N. Herzberg, M. Kunze (eds.): Proceedings of the 6th Central European Workshop on Services and
their Composition (ZEUS 2014), Potsdam, Germany, 27-03-2014, published at http://ceur-ws.org

http://ceur-ws.org


74 Daniel Ritter

of “Too much Middleware" [11] (i. e., discussing the costs/benefits of a separate
EAI system) and the requirements to middleware systems that are already well-
covered by most database systems (e. g., scalability, data consistency/transaction
processing, user management, high availability), we target the question whether
message-based integration is viable from a database perspective. The required
system shall realize EAI solely using standard relational processing (e. g., SQL,
PL/SQL) for an efficient evaluation of integration semantics. We address the
following research questions, discussed subsequently: (1) “Can integration logic
(e. g., mapping, routing, aggregation [7]) be “pushed" into the database com-
pletely?", (2) “For which Integration Scenarios does that bring which benefits?",
and (3) “What are its advantages and disadvantages?"

2 The Database as Integration Middleware
We found recent evidence to our position in the areas of declarative message
processing in XQuery/XML-DBMS (e. g., [10,3]) and Publish/Subscribe in rela-
tional databases [6]. Since this work considers only a small subset of integration
semantics, requires massive extensions to standard SQL and most business ap-
plication data is stored in relational databases, these approaches only support
its overall position. Subsequently, we briefly sketch the most relevant aspects,
namely Integration Cases and Common EAI Scenarios.
Table 1. Relevant Integration Cases considered for database and integration systems
(Middlew.) based on control and data flow. Relevant case for this paper is highlighted.

Cases Data Flow Control Flow Comment
Case 1 Middlew. Middlew. no persistent storage of messages;

synchronous messaging
Case 2 Database Database Database with Protocol

Adapters (no Middlew.)
Case 3 Database Middlew. Middlew. controls execution on

Database and its Adapters
Case 4 Middlew./Database Middlew./Database Shared control and data flow
Case 5 Middlew./Database Middlew. Middlew. controls shared data pro-

cessing
Case 6 Middlew./Database Database Database controls shared data flow

Integration Cases For a systematic definition of the term “database-centric
EAI" we distinguished six different and relevant integration cases between the
poles of control and data flow for database and integration systems. These cases
are listed in Table 1. We focus on Case 2, in which the database handles the
control and data flow execution exclusively, while no additional application tier
for the middleware system (short “Middlew.") is required. In general, EAI systems
consist of protocol adapters (i. e., message endpoints) and integration logic. The
endpoints are assumed to be available on database-level (e. g., CEP, ETL on
inbound and messaging [6] on inbound and outbound site). The integration logic
is expressed as standard database artifacts like SQL, PL/SQL. For comparison,
we defined Case 1 as integration system without storage (e. g., no asynchronous



Database-centric Enterprise Application Integration 75

messaging possible) and Case 5 refers to current EAI systems with persistent
message storage (e. g., Java Messaging Service (JMS)2 based processing) and
control over message processing and data flows.

Fig. 1. Common EAI Scenarios: C1 (App C to App D), C2 (in: App A to App C, out:
App C to App B) and C3 (App A to App B via database). In case of cross-tenant
communication (App D to App E) we assume equivalence to C2 (outbound/inbound).

Common EAI Scenarios Figure 1 shows an overview of common EAI scenarios
that are combined to categories C1-3. Category C1 (local/local: from App C to
App D) refers to the integration of a sender and a receiver application residing
in the same application system, sharing the same database, but not the schema
(e. g., as in business suites). Category C2 (local/external: inbound processing
from App A to App C ; outbound processing from App C to App B) covers the
cases, in which an application on the database (sender or receiver) needs to access
or receive external data (e. g., access remote applications). Finally Category
C3 (external/external: from (App A to App B) features sender and receiver
applications residing in different application systems, while communication is
mediated by a dedicated “integration database system" (i. e., corresponds to the
classical middleware case). The “multi-tenant database" case from [8] is depicted
by the communication from App D to App E, which requires an even stricter
tenant and schema separation that eventually translates to C2. As example for a
C2 scenario, we selected the SAP ERP Convergent Invoicing (FI-CA) use case.
For the invoicing process, high-volume billable items (up to 500k per second–
approx. 4 billion messages per day) wrapped as messages (e. g., one iTunes song
or telephone call decomposes to records for customer, vendor, author etc) are
created and sent by the Convergent Charging application. The messages have
to be validated, enriched with master data, filtered and aggregated according
to multi-dimensional and potentially customer specific criteria, before legally
binding documents are created. JMS messaging could queue that amount of
messages3, however, cannot handle the integration logic.

2 Java Messaging Service: http://www.jcp.org/en/jsr/detail?id=914
3 JMS benchmark: http://www.spec.org/jms2007/



76 Daniel Ritter

3 Discussion
The research questions formulated in Section 1 (i. e., (1)–(3)) target the feasibility
and viability of a database-only integration approach (see Case 2, Section 2). The
question about integration logic “push-down" to the database system (1) was ap-
proached experimentally by a prototypical implementation. The evaluation showed
short-comings in terms of language expressiveness (e. g., timed-aggregations are
not possible), the need for a scheduled pipeline processing, when a (transactional)
decoupling between sender and receiver is required, and a small latency penalty
when mixing SQL and PL/SQL processing. Besides that, the processing of bulks
of messages showed results for throughput comparable to the requirements, e. g.,
of the FI-CA scenario, thus leading to the question about viable scenarios (2). The
natural category for database-centric processing seems to be C1 for database local,
schema-to-schema integration. However, this is currently completely covered by
“shared-schema" integration, although it could untie the tight application coupling.
The support of database adapters with pre-/post-protocol conversion integration
logic processing C2 seems most promising (see FI-CA scenario). Category C3 is
the domain of current EAI systems and only seems to show benefits for scenarios
with qualities that require frequent persistent message storage and/or massive
data-bound computations for database-only integration. The benefits and addi-
tional operational qualities (3) are stable asynchronous and transactional message
processing, portable database code (for standard SQL logic only), interoperability
through database protocol adapters, and less frequent and expensive data format
conversions.
References
1. C. Binnig, N. May, and T. Mindnich. SQLScript: Efficiently Analyzing Big Enter-

prise Data in SAP HANA. In BTW, pages 363–382, 2013.
2. C. Binnig, R. Rehrmann, F. Faerber, and R. Riewe. Funsql: it is time to make sql

functional. In EDBT/ICDT Workshops, pages 41–46, 2012.
3. A. Böhm, C.-C. Kanne, and G. Moerkotte. Demaq: A foundation for declarative

xml message processing. In CIDR, pages 33–43, 2007.
4. G. Cugola and A. Margara. Processing flows of information: From data stream to

complex event processing. ACM Comput. Surv., 44(3):15, 2012.
5. F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The SAP

HANA Database – An Architecture Overview. IEEE Data Eng. Bull., 35(1):28–33,
2012.

6. D. Gawlick and S. Mishra. Information sharing with the oracle database. In DEBS,
2003.

7. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

8. D. Jacobs and S. Aulbach. Ruminations on multi-tenant databases. In BTW, pages
514–521, 2007.

9. A. Kemper and T. Neumann. One size fits all, again! the architecture of the hybrid
oltp&olap database management system hyper. In BIRTE, pages 7–23, 2010.

10. N. Onose and J. Siméon. Xquery at your web service. In WWW, pages 603–611,
2004.

11. M. Stonebraker. Too much middleware. SIGMOD Record, 31(1):97–106, 2002.


	Lecture Notes in Computer Science
	Introduction and Position
	The Database as Integration Middleware
	Discussion


