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ABSTRACT
Microblogs are an important source of information in emer-
gency management as lots of situational information is
shared, both by citizens and official sources. It has been
shown that incident-related information can be identified
in the huge amount of available information using machine
learning. Nevertheless, the currently used classification tech-
niques only assign a single label to a micropost, resulting in
a loss of important information that would be valuable for
crisis management.

With this paper we contribute the first in-depth analysis
of multi-label classification of incident-related tweets. We
present an approach assigning multiple labels to these mes-
sages, providing additional information about the situation
at-hand. An evaluation shows that multi-label classifica-
tion is applicable for detecting multiple labels with an exact
match of 84.35%. Thus, it is a valuable means for classifying
incident-related tweets. Furthermore, we show that correla-
tion between labels can be taken into account for these kinds
of classification tasks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—Information filtering ; I.2.6
[Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Microblogs, Multi-label Learning, Social Media

1. INTRODUCTION
Social media platforms are widely used by citizens for

sharing information covering personal opinions about vari-
ous topics (e.g., politics) as well as information about events
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such as incidents. In the latter case, citizens act as observers
and create valuable incident-related information. For in-
stance, during incidents such as the Oklahoma grass fires
and the Red River floods in April 2009 [29], or the terror-
ist attacks on Mumbai [4], useful situational information was
shared on Twitter. Also, Ushahidi, a social platform used for
crowd-based filtering of information [15], was heavily used
during the Haitian earthquake for labeling crisis-related in-
formation.

However, the discovery of incident-related information is
a complex task, requiring the separation of valuable infor-
mation from daily chatter in the vast amount of information
created on social platforms. This can be realized based on
techniques from data mining and machine learning. Clas-
sification is one method which can be utilized to extract
relevant information from social networks (for tweets, see
[23]). In a classification task, a system learns to label mes-
sages with exactly one label out of a predefined label set
(e.g., ”fire” or ”crash”). This task is known as multi-class
classification and widely used for text classification. How-
ever, during our research we found that assigning only one
label would result in the loss of important situational in-
formation for decision making in crisis management. For
instance, consider the following tweet:

THIS CAR HIT THE FIRE HYDRANT AND
CAUGHT FIRE....SOMEONE HOLIDAY AL-
TERED

A single label would necessarily lack relevant information.
A better approach is the concurrent assignment of all three
labels, which is known as multi-label learning. In the ex-
ample, all labels (”fire”, ”crash”, and ”injuries”) would be
assigned concurrently using an appropriate learning algo-
rithm. The example also shows that the assignment of mul-
tiple labels is not necessarily an independent process. Once
the label for an incident type such as ”crash” is assigned
the probability of assigning the label ”injuries” is changing.
This dependency is known as label correlation and needs to
be investigated in the context of multi-label learning.

With our analysis we want to investigate three important
aspects of applying multi-label learning on incident-related
tweets: (1) how to apply multi-label learners on tweets, (2)
if the classification accuracy of multi-label classification ap-
proaches is comparable to the accuracy of multi-class clas-
sification approaches, and (3) if correlation between labels
is a factor that needs to be taken into account for incident-
related information. With this paper we contribute the first

Copyright c© 2014 held by author(s)/owner(s); copying permitted
only for private and academic purposes.
Published as part of the #Microposts2014 Workshop proceedings,
available online as CEUR Vol-1141 (http://ceur-ws.org/Vol-1141)

#Microposts2014, April 7th, 2014, Seoul, Korea.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014

http://ceur-ws.org/Vol-1141
http://ceur-ws.org/Vol-1141


in-depth analysis of multi-label classification of incident-
related tweets. In summary, our contributions are twofold:

• We show that multi-label classification on incident-
related tweets is applicable and able to detect the exact
combinations of labels in 84.35% of the cases. Thus, we
show that compared to common multi-class classifica-
tion approaches, multi-label classification of incident-
related tweets is a valuable means.

• We evaluate the influence of label correlation on the
classification results of incident-related tweets. We
show that for classification tasks label correlation
needs to be taken into account.

The remainder of the paper is organized as follows. First,
we describe and discuss related approaches. Second, the
considered multi-label classification algorithms as well as the
technical infrastructure (a machine learning pipeline) used
for the analysis are presented. Next, we introduce our data
collection setup and describe the evaluation of our approach.
We close with a conclusion and future work.

2. RELATED WORK
Techniques of multi-label classification have been applied

to domains such as text categorization [21, 13], music genre
detection [20], or tag recommendation [7]. These applica-
tion domains address long texts, images, or audio informa-
tion. Text is probably one of the oldest domains in which
the demand for categorization appeared, particularly multi-
label categorization [25], with the first multilabel dataset
(Reuters-21578 ) used in machine learning research being
from the year 1987 [5, 8, 9]. Moreover, data is easily ac-
cessible and processable as well as vastly available. Hence,
text classification was also one of the first research fields
for multi-label classification and continues to be the most
represented one among the commonly available benchmark
datasets.1

A common application for texts is the classification of
news articles [10, 18] for which the research focuses on scal-
ability issues regarding the number of articles and especially
the number of labels a text can be assigned to, which can
sometimes go up to the thousands [11, 26]. News texts,
as well as abstracts from scientific papers [14] or radiology
reports [16] may sometimes be relatively short, but they
are usually still structured and homogeneous. This kind of
multi-label text classification problems were very well an-
alyzed in the past and the used approaches showed to be
effective (we refer the interested reader to the cited recent
works).

In contrast, texts such as tweets are mostly unstructured
and noisy, because of their limitations in size and the often
used colloquial language. Related work on such short texts
with a focus on solving multi-class problems exists, e.g., for
sentiment analysis [24] or incident detection and classifica-
tion [23]. In contrast to these approaches, this paper focuses
on the use of multi-label classification for tweets.

Applying multi-label learning on very short texts is a topic
of open research. Only two respective examples are known
to the authors: Sajnani et al. [19] and Daxenberger et al.

1Cf. http://mulan.sourceforge.net/datasets.html [28]
and http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multilabel.html repositories.

[1]. Sajnani et al. provided a preliminary analysis of multi-
label classification of Wikipedia barnstar texts. Barnstars
can be awarded by Wikipedia authors and contain a short
textual explanation why they have been awarded. In this
case, labels for seven work domains have to be differenti-
ated. The authors show which features can be extracted
from short texts for multi-label classification and evaluate
several multi-label classification approaches. Daxenberger
et al. categorize individual edits into non-exclusive classes
like vandalism, paraphrase, etc.

Summarized, although many related approaches cope with
multi-class classification of short texts such as microblogs,
multi-label classification is an open research issue. Espe-
cially for the domain of crisis management, no prior research
on this topic exists.

3. MULTI-LABEL CLASSIFICATION
In this section, we give an overview on multi-label

classification. Multi-label classification refers to the
task of learning a function that maps instances xi =
(xi,1, . . . , xi,a) ∈ X ⊆ Ra to label subsets or label vectors
yi = (yi,1, . . . , yi,n) ∈ {0, 1}n, where L = {λ1, . . . , λn},
n = |L| is a finite set of predefined labels and where each
label attribute yi corresponds to the absence (0) or presence
(1) of label λi. Thus, in contrast to multi-class classifica-
tion, alternatives are not assumed to be mutually exclusive,
such that multiple labels may be associated with a single
instance.

This makes multi-label data particularly interesting from
the learning perspective, since, in contrast to binary or
multi-class classification, there are label dependencies and
interconnections in the data which can be detected and ex-
ploited in order to obtain additional useful information or
just better classification performance. Some examples for
our particular Twitter dataset were already shown up in the
introduction. As we show, around 15% of our tweets could
be assigned to more than one label, thus, we believe that it is
not unusual to encounter tweets with several possible labels,
so that in our opinion the view of microblogs as multi-labeled
data seems more natural, more realistic, and more general.
Nonetheless, previous work focuses on the multi-class label-
ing of tweets and this is the first work known to the authors
which tries to exploit label dependencies on tweets.

In the following, we will describe commonly used ap-
proaches for multi-label classification: Binary Relevance
(BR), Label Powerset (LP), and Classifier Chains (CC).
All described techniques are based on the decomposition
or transformation of the original multi-label problem into
single-label binary problems, as most multi-label techniques
do [27]. An illustration of these techniques is presented in
Figure 1. This has the advantage that we can use state-of-
the-art text classification algorithms for learning the binary
problems such as support vector machines [25, 6]. We will
also have a closer look at each classification approach with
respect to taking dependencies between labels into account.
Two of the used approaches are specifically tailored in order
to cope with such dependencies.

3.1 Binary Relevance
The most common approach for multi-label classification

is to use an ensemble of binary classifiers, where each clas-
sifier predicts if an instance belongs to one specific class or
not. The union of all classes that were predicted is taken
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xi Labels ∈ {0, 1}n
x1 (y1,1, . . . , y1,n)
x2 (y2,1, . . . , y2,n)
...

...
. . .

...

(a) input training set

xi Class ∈ {1, . . . , 2n}
x1 σ(y1)
x2 σ(y2)
...

...

(b) label powerset (LP) de-
composition

xi Class1 ∈ {0, 1}
x1 y1,1
x2 y2,1
...

...

· · ·

xi Classn ∈ {0, 1}
x1 y1,n
x2 y2,n
...

...

(c) binary relevance (BR) decomposition

x′i Class1 ∈ {0, 1}
x1 y1,1
x2 y2,1
...

...

· · ·

x′i ∈ Ra × {0, 1}n−1 Classn ∈ {0, 1}
(x1, y1,1, . . . , y1,n−1) y1,n
(x2, y2,1, . . . , y2,n−1) y2,n

...
...

(d) classifier chains (CC) decomposition

Figure 1: Decomposition of multi-label training sets
into multiclass (LP) or binary (BR, CC) problems.
x′i denotes the augmented instance. During predic-
tion, yi,1, yi,2, . . . in the extended input space is re-
placed by the predictions by hCC

1 , hCC
2 , . . . (see text).

as the multi-label output. This approach is comparable to
classical one-against-all for a multi-class problem. Formally,
we convert a training example pair (xi,yi) into n separate
pairs (xi, yi,j), j = 1 . . . n, one for each of the n base clas-
sifiers hj . The predicted labels ŷj for a test instance x are
then the result of hj(x) ∈ {0, 1}.

This method is fast and simple, however, it is not able to
take label dependencies into account since each base classi-
fier is trained independently from the other classifiers. As
was recently stated by Dembczynski et. al [2], this is not
necessarily a disadvantage if the objective is to obtain good
label-wise predictions, such as measured by the Hamming
loss (cf. Section 5). Therefore, BR serves as a fairly good
performing baseline for our experiments.

3.2 Label Powerset
The basic idea of this algorithm is to transform multi-

label problems into a multi-class classification problem by
considering each member of the powerset of labels in the
training set as a single class. Hence, each training example
is converted into (xi, σ(yi)) with σ, σ−1 denoting a bijective
function that maps between the label powerset of L and a
set of 2n meta-classes. The classifier hLP is trained e.g. with
one-against-all (like in our setting), and the prediction for x
is obtained with σ−1(hLP (x)).

LP takes label dependencies into account to some extent,
as each distinct occurrence of a label pattern is treated as
a new class. It is hence able to model the joint label distri-
bution, but not explicitly and directly specific dependencies
(correlations, implications, etc.) between labels. As a conse-
quence, LP is tailored towards predicting exactly the correct
label combination. As it is pointed out in [2] and contrary to
what one may believe at first, this stays usually in contrast

to predicting correctly each label individually (BR), i.e. we
usually have a trade-off between both objectives.

In addition to the obvious computational costs problem
due to the exponential grow of meta-labels, the sparsity of
some label combinations, especially with an increasing num-
ber of labels, often causes that some classes contain only few
examples. This effect can also be observed in our data, cf.
Table 2.

3.3 Classifier Chains
As stated before in Section 1, it is very likely in our dataset

that injured people are mentioned when also any incident
type is mentioned (200 of 967 cases). On the other hand, it
seems almost a matter of course that there was an incident
if there is an injured person. Although this only happens
in 200 out of 232 cases in our data we consider it relevant
for larger data sets. The classifier chains approach (CC) of
Read et al. [17] is able to directly capture such dependencies
and has therefore become very popular recently.

The idea of this approach is to construct a chain of n
binary classifiers hCC

j , for which (in contrast to BR) each

binary base classifier hCC
j depends on the predictions of

the previous classifiers hCC
1 . . . hCC

j−1. Particularly, we ex-
tent the feature space of the training instances for the base
classifier hCC

j to ((xi,1 . . . xi,a, yi,1 . . . yi,j−1), yi,j). Since the
true labels yi are not known during prediction, CC uses
the predictions of the preceding base classifiers instead.
Hence, the unknown yj are replaced by the predictions
ŷj = hCC

j (x, ŷ1 . . . ŷj−1).
This shows up one problematic aspect of this approach,

namely the order of the classifiers in the chain. Depending
on the ordering, CC can only capture one direction of depen-
dency between two labels. More specifically, CC can only
capture the dependencies of yi on y1, . . . , yi−1, but there is
no possibility to consider dependencies of yi on yi+1, . . . , yn.
Recovering our example from the beginning, we can either
learn the dependency of the label incident given injury or
the other way around, but not both. In addition, the ef-
fect of error propagation caused by the chaining structure
may also depend on the label permutation. We will evaluate
the effect of choosing different orderings for our particular
dataset later on in Section 5.3.

Furthermore, CC has advantages compared to LP. CC
is considered to predict the correct label-set, such as LP
[2], but unlike LP, CC is able to predict label combinations
which were not seen beforehand in the training data. In ad-
dition, the imbalance between positive and negative training
examples is generally lower than for LP.

4. MULTI-LABEL CLASSIFICATION OF
INCIDENT-RELATED TWEETS

In the following, the data used for multi-label classifica-
tion of incident-related tweets is described in detail. The
taken approach is composed of three steps. As a first step,
unstructured text has to be converted into structured text.
As a second step, the structured information needs to be
transformed to features that can be used by a multi-label
learner. Third, these features are used to train and evaluate
a classifier.

4.1 Preprocessing of Unstructured Text
Our overall goal is to apply text mining on short docu-
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ments that are present in social media, thus, they need to
be represented by a set of features. As texts in social media
are mostly unstructured, they first need to be converted into
a representation which enables feature generation. Hence, as
a first step, we apply Natural Language Processing. Firstly,
we remove all re-tweets as these are just duplicates of other
tweets and do not provide additional information. Secondly,
@-mentions of Twitter users are removed from the tweet
message as we want to prevent overfitting towards certain
user tokens. Before further processing is applied, the text is
converted to Unicode, as some tweets contain non-Unicode
characters. Third, abbreviations are resolved using a dic-
tionary of abbreviations based on the data provided by the
Internet Slang Dictionary&Translator2. Then, we identify
and replace URLs with a common token ”URL”. As a next
step, stopwords are removed. This is important as very fre-
quent words have limited influence when it comes to classi-
fying tweets due to their relative frequency. Based on the
resulting text, we conduct tokenization. Thus, the text is
divided into discrete words (tokens) based on different de-
limiters such as white spaces. Every token is then analyzed
and non-alphanumeric characters are removed or replaced.
Also, lemmatization is applied to normalize all tokens. Ad-
ditionally to the common NLP processing steps, we identify
and replace location mentions such as ”Seattle” with a com-
mon token to allow semantic abstraction. For this, we use
the approach presented in [23] to detect named entities re-
ferring to locations (so-called location mentions) in tweets
and to replace them with two tokens ”LOC” and ”PLACE”.

4.2 Feature Generation
After finishing the initial preprocessing steps, we ex-

tracted several features from the tweets that are used for
training a classifier. We conducted a comprehensive feature
selection, analyzing the value of each feature for the over-
all classification performance. We compared word-n-grams,
char-n-grams, TF-IDF [12] scores as well as syntactic fea-
tures such as the number of explanation marks, question
marks, and upper case characters. We found that the fol-
lowing features are the most beneficial for our classification
problems:

• Word 3-gram extraction: We extract word three-grams
from the tweet message. Each 3-gram is represented
by two attributes. One attribute indicating the pres-
ence of the 3-gram and another attribute indicating
the frequency of the 3-gram.

• Sum of TF-IDF scores: For every document we calcu-
late the accumulated TF-IDF (term-frequency inverse-
document-frequency) score [12] based on the single TF-
IDF scores of each term in the document. The rational
behind this is to create a similarity score which is not
as strict as traditional TF-IDF scores, but allows form-
ing of clusters of similar documents.

• Syntactic features: Along with the features directly
extracted from a tweet, several syntactic features are
expected to improve the performance of our approach.
People might tend to use a lot of punctuations, such
as explanation marks and question marks, or a lot of
capitalized letters when they are reporting some inci-
dent. In this case, we extract the following features:

2http://www.noslang.com

the number of ’ !’ and ’?’ in a tweet and the number
of capitalized characters.

• Spatial features: As location mentions are replaced
with a corresponding token, they appear as word uni-
grams in our model and can therefore be regarded as
additional features.

4.3 Dataset
We focus on three different incident types throughout the

paper in order to differentiate incident-related tweets. Three
classes have been chosen, because we identified them as the
most common incident types using the Seattle Real Time
Fire Calls dataset3, which is a frequently updated source
for official incident information. We included also injury as
an additional label. This results in four labels consisting
of very common and distinct incident types and the injury
label: Fire, Shooting, Crash, and Injury.

We collected public tweets in English language using the
Twitter Search API, which provides geotagged tweets as well
as tweets for which Twitter inferred a geolocation based on
the user profile. For the collection, we used a 15km radius
around the city centers of Seattle, WA and Memphis, TN.
We focused on only two cities, as for our analyses we are
interested in the stream of tweets for these cities and a spe-
cific time period instead of a scattered sample of the world,
which could be retrieved using the Twitter Streaming API.
This gave us a set of 7.5M tweets collected from 11/19/12
to 02/07/13. Though we know about the limitations of the
Search API, we think that we collected a relevant sample for
our experiments.

The dataset was further reduced to be usable for high
quality labeling as well as the machine learning experiment.
We first identified and extracted tweets mentioning incident-
related keywords. Compared to other approaches that com-
pletely rely on filtering using hashtags, we take the whole
message into account for identifying incident-related key-
words. We retrieved a set of different incident types using
the ”Seattle Real Time Fire 911 Calls” dataset and defined
one general keyword set with keywords that are used in
all types of incidents like ’incident’, ’injury’, ’police’, etc.
For each incident type, we further identified specific key-
words. For instance, for the incident type ’Motor Vehicle
Accident Freeway’ we use the keywords ’vehicle’, ’accident’,
and ’road’. Based on these words, we use WordNet4 to ex-
tend this set by adding the direct hyponyms. For instance,
the keyword ’accident’ was extended with ’collision’, ’crash’,
’wreck’, ’injury’, ’fatal accident’, and ’casualty’. Based on
these incident-related keywords, we filtered the datasets.
Furthermore, we removed all re-tweets, as the originated
tweets are also contained in our datasets and only these are
needed for our experiments. Based on this filtered dataset,
we randomly selected 20.000 tweets.

The selected tweets have been labeled manually by one
researcher of our department. Out of these tweets, we ran-
domly selected 2.000 tweets for further re-labeling for our
multi-label classification problem. Those tweets were manu-
ally examined by five researchers using an online survey. To
assign the final coding, we differentiated between two types
of agreement:

3http://data.seattle.gov
4http://wordnet.princeton.edu
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Table 1: Overview of real-world incident types used for extraction of incident-related keywords as well as
and the number of extracted keywords for keyword-based classification approach.

Class Fire Shooting Crash Injury

Real-World Incident
Type

Fire In Building Assault w/Weap Motor Vehicle Accident -

Fire In Single Family Res Assault w/Weapons Aid Motor Vehicle Accident
Freeway

Automatic Fire Alarm Resd Medic Response Freeway
Auto Fire Alarm Car Fire

Car Fire Freeway

# of Keywords 148 36 73 23

Table 2: Distribution of the 10 label combinations
occurring in the 2000 tweets of the dataset.

Label Combination Number of Tweets
{} 971
{Fire} 313

{Shooting} 184
{Crash} 268
{Injury} 32

{Crash, Fire} 2
{Injury, Crash} 47
{Injury, Shooting} 149
{Injury, Fire} 33

{Injury, Fire, Crash} 1

• if four out of five coders agree on one label, only this
label is assigned

• if less than four coders agree on one label, all labels
which at least two coders assumed as correct are as-
signed as possible labels and further verified in a group
discussion

The final labeled dataset consists of 10 different label com-
binations. The distribution for every combination is outlined
in Table 2. The distribution indicates that around 15% (232)
of all tweets in our dataset have been labeled with multiple
labels. Another observation is that almost exactly 50% of
the tweets do not have any label assigned, which is rather un-
usual compared to typically used and analyzed multi-label
datasets5. In addition, the label cardinality, i.e., the av-
erage number of labels assigned to an instance, is around
0.59, whereas common datasets have at least more than 1
assigned. On the other hand, this is mainly due to the low
number of total labels, since the label density (the aver-
age percentage of labels which are true) is 15%, which is a
relatively high value. From a multi-label learning perspec-
tive, this is an interesting property of this dataset since it
is not clear how commonly used techniques will behave un-
der this circumstance. For example, many algorithms ignore
instances without any label given.

5We refer to the repository at http://mulan.sourceforge.
net/datasets.html for an overview of the statistics of the
commonly used benchmark datasets in multi-label classifi-
cation

5. EVALUATION
In the following section, we provide the evaluation results

for the presented multi-label classification approaches on our
dataset. We also present the result for a keyword-based ap-
proach as a simple way for conducting multi-label classifica-
tion.

5.1 Evaluation Setup
We performed our experiments with Mulan, an open-

source library for multi-label classification based on Weka
[28]. We used two learners for our evaluation. First, we use
the LibLinear implementation of support vector machines
with linear kernel [3] as our base learner. We use the default
settings, as we found that additional parameter optimization
was not beneficial for improving the overall classification re-
sults. Second, we used the Weka implementation of Naive
Bayes. The results were obtained using 10-fold cross valida-
tion.

The evaluation of multi-label problems requires different
measures compared to those used for multi-class problems.
In our paper, we use the following metrics:

Exact Match: Exact match is the percentage of the m
test instances for which the labelsets were exactly correctly
classified (with [[z]] as indicator function returning 1 if z is
true, otherwise 0)

ExactMatch(h) =
1

m

m∑

i=1

[[yi = h(xi)]] (1)

Hamming Loss: The instance-wise Hamming loss [22]
is defined as the percentage of wrong or missed labels com-
pared to the total number of labels in the dataset. In this
case, it is taken into account that an incorrect label is pre-
dicted and that a relevant label is not predicted. As this is
a loss function, the optimal value is zero.

Recall, Precision and F1: We use micro-averaged
precision and recall measures to evaluate our results, i.e.,
we compute a two-class confusion matrix for each label
(yi = 1 vs. yi = 0) and eventually aggregate the results
by (component-wise) summing up all n matrices into one
global confusion matrix (cf. [27]). Recall and precision is
computed based on this global matrix in the usual way, F1
denotes the unweighted harmonic mean between precision
and recall. In Section 5, we also report recall, precision and
F1 for each label using the label-wise confusion matrices.

5.2 Results for Keyword-Based Filtering
As mentioned before, we use a keyword-based pre-filtering

for selecting an initial set of tweets that is suitable for la-
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Figure 2: Percentages of exact matches for all label combinations.

beling. A first and simple approach for detecting incident
related tweets is to use these keywords for classification.

In Table 1, the real-world incident types from the Seattle
Real Time Fire Calls dataset and the corresponding number
of extracted keywords is shown. For the injury class, no
specific type in the Seattle dataset could be found, thus, we
extended the set with a manually created list of keywords
and their direct hyponyms.

The results for classifying each individual class are shown
in Table 3. The results indicate that precision as well as
recall are rather low. Only for the fire class a high recall
could be achieved.

Table 3: Precision and recall for each individual la-
bel when applying keyword-based classification.

Shooting Fire Crash Injury
Precision 31.59% 54.12% 15.04% 63.64%

Recall 68.77% 95.99% 49.37% 37.40%

Furthermore, if the keywords would be used for applying
multi-label classification, a precision of 32.22% and a recall
of 64.90% is achieved, which is a rather bad result. Also
exact match (28.45%) and h-loss (27.08%) are bad, thus, we
conclude that with simple keyword-based filtering, multi-
label classification cannot be done accurately.

5.3 Results for Multi-Label Classification
As a first step, we coped with the question if correlation

between labels is taken into account and beneficial for the
classification results. Thus, we evaluated all different label
sequences using the classifier chains algorithm for our labels
Fire (F), Shooting (S), Crash (C), and Injury (I). The values
for exact match for each sequence are shown in Figure 2
(using SVM as our base learner).

The results indicate that the label sequence has indeed
an influence on the classification performance. In our case,
we get a difference of 1% between the best sequence Shoot-
ing, Crash, Fire, Injury and the worst Injury, Crash, Fire,
Shooting. Also, we see that the Injury label is best used
after incident labels have been classified - for the best cases
even as one of the last labels in the sequence. It is also re-
markable that classifying Shooting as first label followed up
by either Crash or Fire is always a good option. This can

be explained on the one hand by the generally good individ-
ual prediction performance for Shooting (cf., Table 5), hence
leading to low error propagation, and on the other hand by
the resulting label dependencies given the Shooting label is
known: for instance, we can see from Table 2 that we can
safely exclude Crash or Fire if there was a Shooting. This
shows that our initial assumption that correlation between
labels needs to be taken into account is true.

Based on the respective best (MAX) and the worst se-
quence (MIN), we compared CC to the multi-label ap-
proaches with the two different base learners. In Table 4
these evaluation results are shown. The first observation
is that Naive Bayes is not adequate for classifying tweets,
since though it achieves the best recall values using CC, this
is in exchange of very low results on the remaining metrics
and approaches. We will therefore focus on the results ob-
tained by applying LibLinear as base learner. The results
show that, if there is the opportunity of pre-optimizing the
ordering of the labels, e.g., by performing a cross-validation
on the training data, then classifier chains is able to slightly
outperform the other approaches, which is most likely be-
cause the label correlation is valuable. This is also reflected
in the good performance with respect to exact match, where
the worst CC even outperforms LP, which is particularly tai-
lored towards matching the exact label combination. Note
also that LP is a common approach used for circumventing
the need for a multi-label classification by creating meta-
classes, as already mentioned in the introduction. However,
this approach is always inferior to the compared approaches,
which demonstrates the need for more advanced techniques
in this particular use case.

We can also observe that improving the prediction of the
exact label combinations may come at the expense of re-
ducing the performance on label-wise measures, since the
additional features used by CC generally lead to a higher
potential deterioration (MIN) than potential improvement
(MAX) for Hamming loss, recall, precision and F1, whereas
for exact match this is not as clear.

As a last evaluation step, we evaluated the accuracy of
each approach for every individual label. This is important
as we want to understand how well a classifier performs for
each label. The following Table 5 depicts the accuracy of
individual labels using SVM with the best label order.
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Table 4: Results for the different multi-label approaches and base learners obtained by cross-validation.

Naive Bayes SVM
BR LP CC - MIN CC - MAX BR LP CC - MIN CC - MAX

Exact Match 59.60% 66.95% 71.15% 72.45% 83.85% 83.05% 83.25% 84.35%
H-Loss 15.02% 14.08% 9.400% 9.175% 4.688% 5.313% 4.900% 4.588%

F1 52.19% 55.37% 72.90% 73.61% 83.55% 81.53% 82.80% 84.02%
Precision 52.40% 55.34% 66.84% 67.92% 93.61% 90.28% 92.75% 93.46%

Recall 51.98% 55.39% 79.63% 80.35% 75.44% 74.35% 74.72% 76.47%

Table 5: Precision and recall for each individual la-
bel.

BR (SVM) LP (SVM) CC (SVM)

Prec. Recall Prec. Recall Prec. Recall
Shooting 95.7% 79.3% 92.0% 76.9% 95.7% 79.3%
Fire 94.7% 82.0% 90.3% 83.0% 93.3% 83.7%
Crash 90.8% 77.4% 88.0% 78.3% 90.9% 78.3%
Injury 92.9% 59.5% 91.1% 54.6% 93.0% 61.0%

The results show that the precision for individual labels is
high with about 90% to 95% for each label, which is much
better compared to the keyword-based classification. The
differences between all approaches are nearly the same, thus,
all approaches seem to be appropriate for classifying the
individual labels. However, the recall drops significantly,
depending on the label type. For instance, injuries often
remain undetected. In this case, classifier chains show the
best results for precision and recall. Note that the results for
BR and CC on Shooting are the same, since the first classifier
in the CC ordering is exactly trained like the corresponding
BR classifier (cf. also Figure 1). This also shows that along
the chain, CC slightly reduces the good precision of BR in
exchange of improved recall.

5.4 Discussion
Though the results show the advantage of multi-label clas-

sification, we want to understand the limitations of our ap-
proach. Thus, we first created a confusion matrix for the
classifier chains approach with the best label order. The
matrix shows that most misclassifications occur due to an
assignment of instances to the ”no incident” label combina-
tion {}. The other wrong classifications are mostly a result
of not detecting the injury label or of predicting it wrongly.

Table 6: Confusion matrix. The rows indicate the
predicted/true label combinations and the columns
the true/predicted ones.

∅ F C F,C I F,I C,I F,C,I S F,S I,S

∅ 924 16 24 0 0 0 0 0 3 0 4
F 49 261 0 0 0 3 0 0 0 0 0
C 54 0 213 1 0 0 0 0 0 0 0

F,C 1 1 0 0 0 0 0 0 0 0 0
I 16 0 1 0 11 0 0 0 1 0 3

F,I 5 10 0 0 1 17 0 0 0 0 0
C,I 8 0 12 0 3 0 23 0 0 0 1

F,C,I 1 0 0 0 0 0 0 0 0 0 0
S 33 4 0 0 1 0 0 0 142 0 4

F,S 0 0 0 0 0 0 0 0 0 0 0
I,S 26 0 0 0 5 0 0 0 22 0 96

The following misclassified tweets show examples for such
wrongly classified instances:

”Tacoma Fire Department replaces 3 fire
engines with pickup trucks: TACOMA
Cutbacks within the Tacoma Fire...
http://t.co/jPe2kuKG” ( {} -> {F} )

”This girl is on fire. This girl is on fire.
She’s walking on fire. This girl is on fire -
Alicia Keys #deep”, ( {} -> {S} )

”NeoMemphis News: Massive fire at fac-
tory in Ripley: Action News 5 is on the scene
of a factory fire at ... http://t.co/brfnVbWp
#memphis”, ( {F} -> {F,I} )

The examples show that certain words such as ”fire” or
digits in the message might lead to wrong classifications.
This could be avoided by adding additional features or with
a larger training set.

In this section we have first shown that a simple keyword-
based classification approach is not suitable for multi-label
classification. Second, we presented results of state-of-
the-art multi-label classification approaches and we showed
that these perform quite well for classifying incident-related
tweets. Compared to current approaches for the classifica-
tion of microblogs, which rely on assigning only one label to
an instance, the results show that it is possible to infer im-
portant situational information with only one classification
step. The results also indicate that the label sequence has an
influence on the classification performance, thus, this factor
should be taken into account for following approaches.

6. CONCLUSION
In this paper we have shown how to apply multi-label

learning on social media data for classification of incident-
related tweets. Furthermore, we analyzed that we are able to
identify multiple labels with an exact match of 84.35%. This
is an important finding, as multiple labels assigned with one
classification approach provide important information about
the situation at-hand, which could not be easily derived from
previously used multi-class classification approaches. Fur-
thermore, we have shown that the natural relation of labels,
which represents for instance the relation between incidents
and injuries in the real-world, can be used and exploited by
classification approaches in order to obtain better results.

For future work, we aim to add costs to our classifications.
For instance, not detecting incident labels should be heavily
punished compared to misclassifying the incident type. Fur-
thermore, we aim to improve the overall performance of our
approach by taking different features and a larger training
set into account.
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