E2E: An End-to-End Entity Linking System for
Short and Noisy Text

Ming-Wei Chang Bo-June Hsu

Hao Ma

Ricky Loynd Kuansan Wang

Microsoft Research
_ Redmond, WA _
{minchang|paulhsulhaoma|riloynd|kuansanw}@microsoft.com

ABSTRACT

We present E2E, an end-to-end entity linking system that
is designed for short and noisy text found in microblogs and
text messages. Mining and extracting entities from short
text is an essential step for many content analysis applica-
tions. By jointly optimizing entity recognition and disam-
biguation as a single task, our system can process short and
noisy text robustly.

Keywords

Information Extraction, Social Media, Entity Linking

1. INTRODUCTION

In this paper, we describe our entity linking system called
E2E for the #Microposts2014 NEEL Challenge [1]. Our
system focuses on the task of extracting and linking enti-
ties from short and noisy text given entity databases like
Wikipedia or Freebase. An entity linking system usually
needs to perform two key functions: mention recognition
and entity disambiguation. In mention recognition the sys-
tem identifies each mention (surface form) of an entity in
the text. In entity disambiguation, the system maps men-
tions to canonical entities. E2E has been carefully designed
to treats entity recognition and disambiguation as a single
task.

2. THE ARCHITECTURE OF E2E

When a short message is received, E2E processes the mes-
sage in four stages: Text Normalization, Candidate Genera-
tion and Joint Recognition-and-Disambiguation, and Over-
lap Resolution.

Text Normalization.

In this stage, a short message is normalized and tokenized.
For tweets, the retweet symbols and some other special sym-
bols are removed. Punctuation symbols are represented as
separate tokens in general.

Copyright © 2014 held by author(s)/owner(s); copying permitted
only for private and academic purposes.

Published as part of the #Microposts2014 Workshop proceedings,

available online as CEUR Vol-1141 (http://ceur-ws.org/Vol-1141)

#Microposts2014, April 7th, 2014, Seoul, Korea.

Candidate Generation.

The next step is to generate a list of surface form can-
didates that could potentially link to entities. E2E uses
a lexicon to generate the candidate surface forms. A lex-
icon is a dictionary that maps a surface form to its pos-
sible entity set. For example, the word “giants” could re-
fer to “New York Giants”, or “San Francisco Giants”, etc.
Our lexicon is mainly composed by extracting information
from Wikipedia and Freebase. The dictionary is constructed
to support fuzzy mention matching based on edit distance.
Note that we over-generate candidates at this stage, and no
filtering is performed.

Joint Recognition and Disambiguation.

This stage is the key component of the E2E framework.
Given a message, the goal here is to figure out the entity
assignment of each candidate mention generated from pre-
vious stages. Note that a candidate mention may be rejected
altogether (mapped to the null entity).

Our model is based on a supervised learning method.
Given a message m and a candidate mention a, the entity
assignment is generated from the ranking of all possible en-
tities in the entity set £(a).

argmax f(®(m,a,e)), (1)
ec{E(a)NB}

where f is the function of the model, and ® is a feature
function over the input m, the mention a and the candidate
output e. Note that it is very likely E2E rejects a candidate
and does not link it to an entity (link a to @). The joint
approach that recognizes and disambiguates entity mentions
together is crucial for E2E to properly link surface forms to
the corresponding entities.

Overlap Resolution.

At this point, many of the linked mentions will overlap
each other. Dynamic programming resolves these conflicts
by choosing the best-scoring set of non-overlapping mention-
entity mappings. The experimental results show that resolv-
ing overlap improve the models performance consistently in
different settings.

3. SYSTEM IMPLEMENTATION

Our database is constructed from both Wikipedia and
Freebase. The whole system is implemented in C#.

Entity linking systems often require a large amount of
memory due to the size of the structured/unstructured data
for many entities. High memory consumption restricts the
scale of an entity linking system, limiting the number of al-
lowed entities that can be handled. Long loading times also

- #Microposts2014 - 4th Workshop on Making Sense of Microposts - @QWWW2014

http://ceur-ws.org/Vol-1141
http://ceur-ws.org/Vol-1141

reduce the efficiency of conducting experiments. In E2E, we
adopt the completion trie data structure proposed in [4] in-
stead of a hash map dictionary. The completion trie greatly
reduces the memory footprint and loading time of E2E.

We have tested two learning methods when developing
E2E: a structured support vector machine algorithm [2] and
a fast implementation of the MART gradient boosting algo-
rithm [3]. The structural SVM model is a linear model that
takes into account all of the candidates together in the same
tweet. MART learns an ensemble of decision/regression
trees with scalar values at the leaves, but treats each candi-
date separately. The submitted results are generated using
MART due to its superior performance on our development
set.

Features.

Three groups of features were used in our system. The
textual features are the features regarding the textual prop-
erties of the surface form and its context. For example,
one feature indicates if the current surface form and the
surrounding words are capitalized or not. We also use fea-
tures generated from the output of the in-house named en-
tity recognition system that is specially designed to be ro-
bust on non-capitalized words. The entity graph features
capture the semantic cohesiveness between the entity-entity
and entity-mention pairs. This group of features was mainly
calculated using the entity database and its structured data.
Finally, the statistical features indicates the word usage and
entity popularity using the information collected from the
web.

Among the three group features, the statistical feature
group is the most important one. We describe some of the
most important features in the following. Let a denote the
surface form of a candidate, and e denote the an entity.
One important feature is the link probability feature P(a),
which indicates the probability that a phrase is used as an
anchor in Wikipedia. For each phrase a, we also collect
statistics about the probability that a phrase is capitalized
in Wikipedia. We refer to this feature as the capitalization
rate feature, P.(a).

We also compute features that captures the relationships
between an anchor a and an entity e. The probability P(e|a)
captures the likelihood of an anchor linked to an Wikipedia
entity. We have downloaded Wikipedia page view counts,
representing page view information from 2012.' According
to the popularity information, we add another probability
feature that captures the relative popularity of the pages
that could be linked from the anchor a. More precisely,
Pv(e|g) = v(€i)/(Xiece(aynny v(€)), where v(e) represents
the view count for the page e.

4. RESULTS

In our experiments, we split the training set into two sets
that contains 1534 and 800 tweets, respectively. The 800-
tweet data is used as our development set. Our analysis
shows that robust mention detection is often the source of
errors in the current the entity linking systems. In order to
achieve better F1 score, we change the prediction function
to

argmax f(®(m,a,e)) — sle = 0], (2)
ec{E(a)ND}

"http://dammit.1t/wikistats

0.85
-@- Precision A Recall F1
0.8

0.75 ST

0.7 S~<

P/R/F1
|

0.65 — =4 T~
06 _A
055 &

0.5

Figure 1: Results of E2E on the development set.

where [-] is an indicator function. When s increases, the sys-
tem will produce more entities. From the results in Figure 1,
we found that tuning s does impact results significantly. Af-
ter learning parameters and desired value of s are chosen,
we then retrain the E2E using the full training data, and

enerate final results with s = 0, 2.5 and 3.5, respectively.
rror Analysis.

We analyze at our results on the development set with
s = 3.5. In the development set, there are 1304 mentions,
and E2E generates total number of 18746 candidates in the
candidate generation stage. Our error analysis shows that
E2E misses 340 entity mentions and predict extra 284 men-
tions. Among the errors, E2E has troubles on the “num-
ber” entities (e.g. 1_(number)). Further investigation re-
veals that the tokenization choice of E2E plays a big part of
these errors, given that most punctuations are being treated
as separate tokens. Interestingly, E2E only makes 44 cases
where it correctly recognizes the mentions but link to wrong
entities. Most errors occur when E2E fail to recognize men-
tions correctly.

S. CONCLUSIONS

In this paper, we presented E2E, a system that performs
joint entity recognition and disambiguation on short and
noisy text. We found that the substance of a successful
entity linking system consists of successfully combining all
of the components.

Due to the time limitation, the submitted system still has
plenty of room to improve. For example, one important
direction is to explore the relationships between different
tweets to improve entity linking results. Developing a ro-
bust mention detection algorithm is an important research
direction as well.

6. REFERENCES

[1] A. E. Cano Basave, G. Rizzo, A. Varga, M. Rowe,

M. Stankovic, and A.-S. Dadzie. Making Sense of
Microposts (#Microposts2014) Named Entity
Extraction & Linking Challenge. In Proc.,
#Microposts2014, pages 54—60, 2014.

[2] M.-W. Chang and W.-T. Yih. Dual coordinate descent
algorithms for efficient large margin structured
prediction. TACL, 2013.

[3] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 1999.

[4] B.-J. P. Hsu and G. Ottaviano. Space-efficient data
structures for top-k completion. In WWW, 2013.

63

- #Microposts2014 - 4th Workshop on Making Sense of Microposts - @QWWW2014

	Preface
	E2E: An End-to-end Entity Linking System for Short and Noisy Text Ming-Wei Chang, Bo-June Hsu, Hao Ma, Ricky Loynd & Kuansan Wang

