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Abstract

Urban air pollution have a direct impact on public health. Ultrafine
particles (UFPs) are ubiquitous in urban environments, but their dis-
tribution are highly variable. In this paper, we take data from mobile
deployments in Zürich collected over one year with over 25 million
measurements to build a high-resolution map estimating the UFP dis-
tribution. More specifically, we propose a new approach using a Gaus-
sian Process (GP) to estimate the distribution of UFPs in the city of
Zürich. We evaluate the prediction estimations against results derived
from standard General Additive Models in Land Use Regression, and
show that our method produces a good estimation for mapping the
spatial distribution of UFPs in many timescales.

1 Introduction

Air pollution in urban environments have a direct impact on the health of the people. The World-Health-
Organization (2011) estimated that over 1.3 million deaths per year world-wide are attributed to urban outdoor
air pollution. Currently in most developed countries, a network of government-funded and operated static
measurement stations continuously make highly reliable and accurate measurements on important air pollutants.
However, the high cost of installation and maintenance of these stations limits the number of stations deployed
in a given city. Consequently, only very limited information can be collected about the spatial distribution of air
pollutants in the urban setting.

The OpenSense project, described in Aberer et al. (2010), is a multi-disciplinary project funded by the Swiss
National Science Foundation to study mobile air quality monitoring and modelling in urban environments. It is
deploying multiple mobile air quality monitoring stations on top of trams in the Swiss city of Zürich (Fig. 1),
collecting measurements of ozone concentrations (O3) and the counting of ultrafine particle (UFPs). To this
date, it has publicly released over 25 million measurements over an urban area of 100 km2. The data and their
sensing methodology can be found in Li et al. (2012b) and Hasenfratz et al. (2014). These data form a sufficient
basis to study the spatial variability of the pollutants in the urban environment.
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Figure 1: Left: Interior of an OpenSense sensing node; Right: deployment on a tram in Zürich

Traffic junctions, industrial installations and urban canyons all contribute to the high spatial and temporal
variability of air pollution in urban areas. Small-scale spatial distribution of ambient air pollution have tradition-
ally been studied with Land-Use-Regression (LUR) summarised in Hoek et al. (2008). It uses land-use and traffic
characteristics of a particular grid region as explanatory variables to learn to estimate pollution concentrations
under a Generalized Additive Model (GAM). The learnt model is then used to predict pollution levels for all
locations with the available land-use information.

In this paper, we propose a novel approach of estimating urban ultrafine particle levels across different temporal
aggregates from measurements collected from the trams. Similar to standard models in land use regression, it
estimates the pollution levels within different grid-cells in the urban environment from a set of land-use features.
Our model is based on constructing a Gaussian Process described in Rasmussen and Williams (2006), with
additional consideration to spatial features in the covariance matrix. Following the practice in previous work
of Hasenfratz et al. (2014), we evaluate the models (GAM, pure land use and mixed spatial-land-use) using
standard random 10-fold cross validation.

The outline of this paper is as follows: we begin with a summary of the background to the paper: the data, the
traditional models used in land-use regression, and introducing Gaussian Process Regression. We then introduce
a new approach for estimating UFP levels, and evaluate it against the previous approach over a benchmark
dataset.

2 Background

2.1 The Aggregate Datasets

The data were selected from UFP measurements collected on Zürich trams between April 2012 and March 2013 as
part of the OpenSense project and the sensing methodology is described in Li et al. (2012b) and Hasenfratz et al.
(2014). The data were partitioned into 13,200 grid cells of size 100m × 100m. The profile of a typical grid cell,
such as the one containing Centralplatz in Zürich, is shown in Fig 2. We can see that instead of being fitted to a
normal distribution (solid line shows the best-fit), the measurements fits much better as log-normal distribution
(dotted line). This is consistent with literature on particle count concentrations in urban environments described
in Mølgaard et al. (2012). The data were captured and transmitted in real time to a back-end server running
Global Sensor Network (GSN) by Aberer et al. (2006), and removed to a local database to be preprocessed and
aggregated before entered into the model.

Several preprocessing steps were used before the data were prepared for the model, including removal of
measurements within the indoor tram depot, measurements with bad GPS data, and measurements with ex-
traordinary high levels >100’000 particles per cm3. These steps were described in detail in Hasenfratz et al.
(2014), with the purpose of avoiding bias due to erroneous measurements.

We then aggregate the data within the different grid cells according to the different time windows, such
as yearly, seasonal, monthly, biweekly, weekly, daily and half-daily. This is done to understand the trade-off
between long and short term aggregate data. In order to evaluate and compare our results to previous work, we
followed the convention of selecting only the 200 grid cells with the highest measurements count for the purpose
of modelling and validation, as Hasenfratz et al. (2014) showed that the state-of-the-art models produced the

R@Locate14 Proceedings 146



Figure 2: Distribution of UFP measurements collected in the grid cell near Centralplatz in Zürich during winter
2013. The black line shows the maximum likelihood estimated normal distribution whereas the dashed line shows
the maximum likelihood estimated log-normal distribution.

most reliable predictions when only the top 200 grid cells with the highest measurement count are considered.

2.2 Land Use Regression

In literature, land-use regression models are used to assess intra-urban air pollution distributions, and a com-
prehensive review of these techniques can be found in Hoek et al. (2008). They typically combine monitoring
of air pollution at 20-100 locations spread over the study area, and develop a model using predictor variables
obtained through geographic information systems (GIS). The predictor variable generally include some traffic
information, population density, designated land use and features of the landscape such as attitude and slope.
Due to the cost of deployments, studies usually last 1-2 weeks in duration.

For particulate matter such as PM2.5 and PM10 and UFPs, Generalized Additive Models (GAMs) have been
used in land use regression to study their spatial and temporal variability. It typically use the following equation
to model the relationship between the pollution level p and a set of explanatory variables A1, . . . An.

ln(p) = a+ s1(A1) + s2(A2) + · · ·+ sn(An) + ε (1)

where a is known as the intercept, ε the error term, and s1 . . . sn are typically smooth regression splines with
an upper limit of 3 on the degree of freedom. In this paper, we use the GAM data from Hasenfratz et al. (2014)
as a benchmark to compare our model predictions.

2.3 Gaussian Process Regression

Also known as Kriging, Gaussian process regression (GPR) has been extensively used for decades in Geostatistics
to model various spatial phenomena such as soil concentrations, weather-related events, etc., and in-depth
overviews can be found in Cressie and Cassie (1993) and Rasmussen and Williams (2006). Similar to other
non-parametric approaches, GPR does not require prior structural knowledge about the phenomenon. Indeed,
the idea is precisely that structure is directly inferred from the data. Furthermore, GPR outputs statistical
predictions and thus represents an adequate candidate to model phenomena that are inherently noisy and which
one can only observe through noisy instruments. Recently it has been successfully applied in many machine
learning tasks such as bioinformatics in Chu et al. (2005), sensor calibration in Monroy et al. (2012) and crowd-
sourcing Venanzi et al. (2013) It still represents a very active ongoing research area as seen in e.g. Bonilla et al.
(2010), Cao et al. (2013) and Nguyen and Bonilla (2014). To allow the reader to have a better understanding of
our models, in the following we will provide a very brief technical overview of Gaussian Process Regression.

A Gaussian Process (GP) is used to model a phenomenon that takes place in a certain input space X ⊆ Rd.
We formally write f(x) where x ∈ X the function that models the phenomenon. The general idea is to assume
that the function f(x) is a specific realization of a prior Gaussian Process GP, which is the generalization of
a multivariate normal distribution to an infinity of random variables, that is to say a distribution over whole
functions. A GP is fully defined by its mean function m(x) and its covariance function k(x,x′) (also called
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kernel) that are the generalization of the mean vector, respectively the covariance matrix of a multivariate
normal distribution.

Regression with a GP is typically performed as follows. In general, we can only make from the phenomenon
noisy observations yi = f(xi) + εi where the additive noise ε is also assumed to be Gaussian ε ∼ N (0, σ2

n). By
using the marginalization property of GPs and the additive nature of the noise ε we know the joint distribution
of the observations y at locations X and the values f∗ at test points X∗ to be:[

y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X + σ2

nI) k(X,X∗)
k(X∗, X) k(X∗, X∗)

])
(2)

Then for those test points X∗ the regression consists in computing the predictive distribution p(f∗|y). Fortunately
by the conditioning property of a joint multivariate Gaussian distribution this expression is tractable and even
admit a closed formula. It results in another multivariate Gaussian distribution. For any single test points
x∗ ∈ X∗ the predictive mean and variance are given by:

f̄(x∗) = m(x∗) + k(x∗, X)(k(X,X) + σ2
nI)−1(y −m(x)) (3a)

V[f(x∗)] = k(x∗,x∗)− k(x∗, X)(k(X,X) + σ2
nI)−1k(X,x∗) (3b)

The main challenge is to create and choose prior mean and covariance functions that carry adequate assump-
tions about the phenomenon. We describe in detail how we derived such functions in the following section.

3 Our Model

3.1 The Land-Use Model

Our first GP model uses only land-use variables as features to generate predictions on the mean UFP concen-
tration measured by the sensors within the respective grid cells in the timeframe of the specified dataset. They
follow from the features used in Hasenfratz et al. (2014). The model takes a vector xLU containing the land-use
variables values of a certain 100m × 100m grid cell as input. These land-use features were taken from the
following sources:

• Swiss Federal Statistical Office

– Population density, industry density, building heights, heating type, terrain elevation, terrain slope

• Canton of Zürich government

– Average daily traffic volume

• OpenStreetMaps.org

– Main road type, distance to next major road, distance to major traffic signal

As we wanted to start with no particular a priori structural knowledge, only very simple mean functions
were tried such as the trivial fixed 0 function and a constant c. Deriving a suitable covariance function was,
however, a bit more complex. Indeed, to be valid a covariance function must be positive definite. It is common
practice to start from well-known parametrized families of positive definite functions and fit the parameters (that
in the scope of GPR are called hyperparameters) using the data. All the covariance functions that were tried
are stationary that is to say every points of the space shows the exact same covariance structure with its own
surroundings or more formally we have k(x,x′) = k(x − x′). Stationary covariance functions such as squared
exponential, and various flavours of the Matérn class were tried, each one carrying different assumption about
the smoothness of the process. Finally from preliminary tests results, a constant mean function and a squared
exponential covariance function were selected. We note that the chosen covariance function was the one that
carried the strongest smoothness assumptions. The prior GP is thus defined by:

m(xLU) = c (4a)

k(xLU,x
′
LU) = σ2

f exp
(
− 1

2
(xLU − x′LU)>M(xLU − x′LU)

)
where M = diag(`LU )−2 (4b)
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The σ2
f is the magnitude hyperparameter, and the `LU are the length-scale hyperparameters that determine the

relevance of some or other land-use variables. To learn the values of all the hyperparameters θ = (c, σ2
f , `LU , σ

2
n)

one can either use optimization or sampling techniques. In our case, we used the standard approach that consists
in optimizing the log marginal likelihood:

log p(y|X, θ) = −1

2
y>(K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π

Every evaluation of this expression takes O(n3) with n being the number of training points X. From then the
evaluation of its derivatives with regards to hyperparameters takes O(n2) per hyperparameter.

3.2 The Mixed Spatial Land-Use Model

Even though the explanation of the phenomenon given by the land-use variables may already be quite good, it
is very likely that part of it still elude us because of some contributions to the phenomenon that are badly or
not at all reflected in the variables. To address this matter, we tried to incorporate geographical informations
into the model with the hope that such missed contribution will at least be partly explained locally.

The problem with parametric models such as GAM is that we cannot easily add geographic informations into
the model in a sensible way. For example if we naively add the longitude and latitude as covariates, we would
be making very strong assumptions rather unrealistic.

However, with GPR (and this is why it has been extensively used in Geostatistics) it is natural to include
such informations in the reasoning. This is done by including a consideration for geographical distance in the
covariance function. We call our second model a mixed spatial-land-use model, which is a variant of the first
one in which we added a term in the covariance structure. We also tried different isotropic kernels to be this
additional term. From the preliminary experiments the following covariance function was selected:

k(

[
xLU

xS

]
,

[
x′LU

x′S

]
) = σ2

fLU
exp

(
− 1

2
(xLU − x′LU)>M(xLU − x′LU)

)
+ σ2

fS exp
(
− ‖xS − x′S‖

`S

)
(5)

It is worth noting that it is the exponential function, the less smooth of the considered covariance functions, that
was chosen to be the additional term in function of the geographical distance. The values of the hyperparameters
θ = (c, σ2

fLU
, σ2

fS
, `S , `LU , σ

2
n) were once again fixed using marginal likelihood maximization.

4 Evaluations

We implemented our own Java framework to perform GPR. However, the conjugate gradient optimizer, used
to maximize the log marginal likelihood, was taken from the Matlab toolbox GPML v.2 (see Rasmussen and
Nickisch (2010)) and translated in Java. Most of linear algebra operations were carried out using EJML1 library.
The experiments were conducted on a server with 64 AMD Opteron processing cores and 96 GB of RAM. In the
experiments, we compared the following three different type of models on the UFP datasets described earlier.

1. GAM A General Additive Model from Hasenfratz et al. (2014);

2. GP LU Our land-use only GP model;

3. GP LUXY Our mixed spatial-land-use GP model.

From the benchmarking data supplied by Hasenfratz et al. (2014), we get 989 datasets comprise of 597 half-
daily, 309 daily, 44 weekly, 23 biweekly, 11 monthly, 4 seasonally and a single yearly aggregated dataset from
measurements taken from Zürich trams between April 2012 and March 2013. For each aforementioned type of
model, we trained yearly to half-daily models to predict mean pollution level within grid cells (in particle count
per cm3). We evaluated the quality of the models predictions using standard randomised 10-fold cross validation.
That is, for each dataset, we randomly partitioned the data into 10 equal parts, and iteratively we used 9 parts
as training set of the model to generate predictions to be compared against the 1 remaining part.

Fig. 3 shows the satellite image of the urban area covered in the deployment, the output of the pollution map
for the season of summer in 2012, and the comparison of the prediction against ground truth of the same season
under random 10-fold cross validation. Fig.4 shows the scatter plots of model predictions against ground truth

1http://code.google.com/efficient-java-matric-library/
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Figure 3: left: a satellite image of Zurich; centre: the predicted summer mean UFP level from mixed spatial-
land-use GP model; and right: the scatter plot of the predictions from the same model against ground truth
under random 10-fold cross validation.

Figure 4: Scatter plot of prediction vs. ground truth after random 10-fold cross validation on yearly, seasonal,
monthly, biweekly, weekly, daily and half-daily data. Top row: GP LU model, bottom row: GP LUXY model.

across all time scales, where all predictions of the same time scale are located on the same plot. It is worthy
to note that similar to the previous model presented in Hasenfratz et al. (2014), our models also show little to
no bias, as evident from the fact that across all cases the linear regression lines (in green) are very close to the
optimal 1-to-1 lines. It indicates the absence of systematic model errors.

4.1 RMSE

First we compare the Root Mean Square Error (RMSE) of the predictions derived from the models under
random 10 fold cross validation (Fig. 5). It is a standard metric of predictive power for measuring the accuracy
of prediction models. It is obtained by:

RMSE =

√∑N
i=1(pi − gi)2

N
(6)

where pi denotes the ith prediction, gi the ground truth of the ith prediction, and N the total number of
predictions. In Fig. 5, the plot on the left displays the overall mean of the RMSE, while the box-plot on the right
displays the minimum, lower quartile, median, upper quartile and maximum of the average RMSE of the whole
10-fold validation tests on all the datasets of the same time scale. The yearly data came from a single dataset,
thus it is presented as a single value. It shows that as expected, the higher temporal resolution leads to higher
uncertainty in the prediction, the GP models outperforms GAM across all temporal resolutions, and the mixed
spatial-land-use model produced less error than the land-use only model.
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Figure 5: Mean (left) and distribution (right) RMSE of model predictions across all datasets in random 10 fold
cross validation (the lower the better)
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Figure 6: Mean (left) and distribution (right) R2 score of model predictions across all datasets in random 10 fold
cross validation (the higher the better)
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R@Locate14 Proceedings 151



4.2 R2 Score

We then compare the R2 coefficient, also known as the coefficient of determination of the model predictions
(Fig. 6). It indicates how well the observed outcomes are replicated by the model predictions as the proportional
variation of outcomes explained by the model. Its formula is given by:

R2 = 1−
∑N

i=1(pi − gi)2∑N
i=1(gi − ḡ)

(7)

where pi denotes the ith prediction, gi the ground truth of the ith prediction, and ḡ is the mean of the ground
truth. In Fig. 6 observe that the variance of the R2 score also increases as the the time scale shrinks across all
models. We see that the results of GP models in general have a higher R2 than GAMs, and introducing the
spatial covariance in the GP model also improves the R2 score across all time scales.

4.3 FAC2 Score

Finally, we compare the FAC2 score of the model predictions (Fig. 7). It measures the fraction of data points
that lie inside the factor of two area. It is a robust measure of prediction as it is not overly influenced by high
and low outliers. It is derived by:

FAC2 : 0.5 ≤ pi
gi
≤ 2 (8)

The box plots in Fig. 7 show the FAC2 distributions for all models across all temporal scales. We can see that
they all have very high FAC2 values for yearly, seasonal, monthly, biweekly and weekly data. Daily and half
daily predictions have lower FAC2 values, with GP models perform slightly better than GAM.

5 Conclusion and Future Work

We implemented two schemes based on Gaussian Process for estimating mean UFP concentrations in urban areas
of Zürich, Switzerland. We show that they provide an alternative to GAM approaches in land-use regression,
and there is a general trade off between the length of the time scale and the quality of the model predictions. We
also show that across the timescales the proposed GP models presents an improvement on the current state of
the art. The resulting maps may be useful for application such as assessing population exposure to air pollutants
similar to that of Carroll et al. (1997), uncover areas of high air pollution for persons with allergies, or evaluate
the trustworthiness of measurements contributed by a community of sensors as described in Li et al. (2012a) and
Faltings et al. (2014).

Possible future work includes moving away from a grid-based model to make use of urban spatial features
described in Li et al. (2012b), developing models that handles different aspects of sensor reliability and measure-
ment bias; detecting and filtering spurious measurements, and combining meteorological information and real
time data to produce the best real-time estimations for individual exposure analysis and route planning. Our
approach based on Gaussian Process Regression is very general, and it is interesting to see if it can be generalised
to particulate dispersion outside urban environments to applications such as bush-fire detection; and whether it
can be applied to estimating other air-borne or water-borne pollutant dispersions.
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