


Conversation Architecture
Our architecture has a Knowledge Engine that models the
content semantics, a Conversation Engine that models the
pragmatic semantics, and a Chat Interface that performs pre-
processing and post-processing tasks (Figure 1).

Figure 1: Architecture for the Chatter Bot

The Chat Interface contains modules for receiving user
input, performing stemming, detecting speech acts, detect-
ing topic, and interfacing with the Knowledge Engine and
Conversation Engine (Chakrabarti 2014).

Figure 2: The Chat Interface directly interfaces with the user.

The Knowledge Engine identifies the specific speech act
for the utterance and also the specific topic being dis-
cussed. A goal-fulfillment map (O’Shea, Bandar, and Crock-
ett 2010) specifies the content semantics for the conversa-
tion. The specific goal-fulfillment map is selected from a
double-key hash table, where the keys are the topic and the
speech act (Chakrabarti 2014).

The Conversation Engine models four different types
of conversations, procedural conversations, informational
conversations, troubleshooting conversations, and dispute-
resolution conversations using four different probabilistic fi-
nite state automata (Chakrabarti 2014). Figure 4. shows one
such finite state machine for a troubleshooting conversation.
Distinct finite state machines have been defined for other
types of conversations as well.

Figure 3: The Knowledge Engine models content semantics

Figure 4: The Finite state automaton for Troubleshooting
Conversations.



The conversation planner maintains a workspace of four
types of conversations, and increases or decreases a heuris-
tic score for each type depending on how the conversation
unfolds. A successful conversation is one in which only one
type of conversation remains in the workspace, and the prob-
abilistic finite state automaton associated with that conver-
sation reaches a defined accepting state. A failed conver-
sation is one in which the conversation reaches a defined
unescapable dissatisfaction state for one of the probabilistic
finite state automation, or all four probabilistic finite state
automata associated with the four conversation types are
dropped from the workspace (Chakrabarti 2014). Figure 5.
shows an overview of the conversation planner.

Figure 5: The Conversation Planner consisting of the tran-
sition matrix lookup table, the state tracker, the likeli-
ness score variable, and the conversation solutions in the
workspace.

(Chakrabarti 2014) shows in detail how the Knowledge
Engine in conjunction with the Conversation Engine engi-
neers artificial conversations. The architecture models how a
human would generate a conversation and incorporates well
defined ideas from conversation theory, speech act theory,
and the theory of pragmatics.

Corpus and Parameter Learning
We used a corpus of chat transcripts between a human cus-
tomer and a human customer service agent working for an
online electronic trading portal. The corpus consisted of
2,886 distinct conversations. Each conversation was in the
form of an Excel file and was clearly tagged by a unique
conversation identifier. For example, in each conversation,
the utterances were tagged by who was delivering it, either
the customer or the customer service agent. An utterance is
everything that is said by either the customer or the represen-
tative in a single turn. It consists of one for more sentences.
We assume that each utterance belongs to a single context.

A series of successive utterance pairs on the same context
constitutes a conversation. The shortest conversation had 5
distinct utterances. The longest conversation had 82 distinct

Figure 6: The Conversation Engine models pragmatic se-
mantics

utterances. The median was 26 utterances and the average
was around 22 utterances. The utterances were mostly inter-
leaved, i.e., alternating between the customer and the repre-
sentative. Most of the conversations were related to a single
context. The conversations that were not interleaved and re-
lated to more than one context were not analyzed.

We used a bag-of-words based latent-semantic algorithm
to tag each utterance in each conversation in the corpus with
a speech act. We also used a bag-of-words based latent-
semantic algorithm to tag each conversation in the corpus
with one of the topics (Chakrabarti 2014). The transition
probabilities for the four finite state automaton correspond-
ing to the 4 types of conversations were also learned from
the corpus.

Generation of Artificial Conversations
This section shows in detail how an artificial conversation is
generated in a step-by-step manner.

1. The conversation starts with a human making a comment.

Customer : I would like to open a new
account for day trading.
What are my options?

This message is entered from the standard terminal. The
Utterance Bucket directly collects the text in the form of a
string. A standard spellchecker and grammar checker au-
tocorrects the spelling and grammatical errors in the sen-
tence if any

2. The correct sentence, free of spelling and grammatical er-
ror, is sent to the Stemmer. Using Porter’s Stemming algo-



rithm, the following stems are obtained, ”account”, ”day
trade”, ”open”, and ”options”.

3. The entire stemmed sentence is then passed on simultane-
ously to the Speech Act Detector, the Sentiment detector,
and the Topic Detector. The following events then take
place.

* The Speech Act Detector uses Latent Semantic Anal-
ysis to determine that the type of speech act is ”Ex-
pressive”, since the bag of words included ”would” and
”like”.

* The Sentiment Detector detects that the sentiment is
neutral, since none of the words from the positive or
negative bag of words is encountered.

* The Topic Detector determines using Latent Semantic
analysis that the topic is ”new account” using bag of
words ”new”, ”account”, and ”open”.

4. The output of the Speech Act Detector, the Sentiment De-
tector, and the Topic Detector is then sent to the interface.
The Interface combines these into an array list, and sends
the array list to the Conversation Engine and the Knowl-
edge Engine simultaneously.

5. In the Knowledge Engine, the following steps take place.

* The Interface of the knowledge engine receives the ar-
ray list and sends it to the Speech Act Identifier. This
module selects the correct speech act from the list as
”expressive”.

* The interface also sends the bag of words to the topic
hash table. The hash table retrieves the topic as ”new
account”. The appropriate context map is then pulled
out. This context map lists the steps for the encoded
knowledge for opening a new account in the form of a
goal-fulfillment map. The appropriate goal-fulfillment
map, shown in Figure 5.17, is then put in to the
workspace and sent to the interface.

* A goal-fulfillment algorithm is initiated. A counter is
initiated to keep track of the progression of goals in the
map.

6. In the Conversation Engine, the following steps take
place.

* In the Probabilistic finite State Automata, initially all
four possible solutions are maintained. This is because
initially the probabilities of each conversation type will
be nearly equal. A counter is initialized to maintain the
current state of the conversation in each solution.

* The Conversation Planner will calculate the probabil-
ities of transition from one state to another depending
upon the Speech Act being uttered. These transitions
are learned from the corpus and are stored in a lookup
table. The Conversation Planner is responsible for ad-
vancing the counter indicating the current state of the
conversation.

7. The information is sent back to the Chat Interface.
The Utterance Bucket corrects spelling (unlikely) and
grammatical errors, and then outputs the response of the

Figure 7: Goal-fulfillment map selected by the Knowledge
Engine in the anatomy of a conversation.

chatter bot to the standard terminal.

Chatter Bot : Do you have an existing
trading account or would you like to
open a new one?

8. This process is repeated until the end of the conversation
is indicated by the Conversation Planner counter being in
an accepting state.

Conversation Creation
The next step is to actually generate the artificial conversa-
tion using the chatter bot architecture. The conversations are
generated by a person, by interacting with the chatter bot
architecture via a standard terminal. These are the steps to
generate a conversation.

1. Play the role of the customer of the online electronic
trading website. Pick out an issue from the list in 6.1.2.
”Know” the responses to all the customer-side details. For
example, know that the account can have two different
modes and two different trading configurations.

2. Begin a conversation with the chatter bot by typing on the
standard terminal.

3. The bot will then initiate a question. It will be displayed
on to the terminal window. This will almost always be
”small talk” at the beginning of the conversation. Answer
the questions the bot asks by typing back into the terminal
window.

4. The conversation will be lead by the bot, i.e.,

- the bot will either ask the question to which the cus-
tomer will respond (when did you put in the buy or-
der?), or



- the bot will instruct the customer to perform some ac-
tion (change the configuration of the account) to which
the customer will answer affirmatively that he / she has
completed the action, or answer negatively that he / she
is unable to perform the action with a qualifier (I am
unable to access the reset password form. I do not have
my customer relationship number.) or

- The bot will ask a question that will require a Yes or
No answer.

5. The responses of the customer has to be an exact match
with the expected answer in the goal fulfillment map, ir-
respective of the response that the customer choses. For
example, in response to a query from the bot: ”Do you
remember what kind of orders you placed?”
- The customer can either answer negatively ”No, I do

not remember” or
- The customer can answer ”Yes, they were buy orders”

or ”Buy orders” or ”Yes, buy orders”
- The customer can answer ”Yes, they were sell orders”

or ”Sells orders” or ”Yes, sell orders”
But the customer cannot answer ”Very unlikely they were
buy orders, but I am not really sure”. This is because sen-
tence similarity hasn’t been implemented in this architec-
ture. Sentence similarity is the area of research that re-
duces a range of semantically similar sentences into a root
sentence (O’Shea et al. 2004; O’Shea, Bandar, and Crock-
ett 2009). Hence for this dissertation, the responses need
to have the exact words with only a slight change in gram-
mar.

6. The transcript of the conversation is written to a file, and
is tagged with the customer utterance and bot utterance.
These transcripts can then be analyzed.

Results, Conclusions, and Future Directions
We generated 48 artificial conversations using this tech-
nique. Out of these, 42 conversations reached a conclu-
sion state, and 6 conversations failed. Thus, we had a
success rate of 87.5%. The transcripts of all 48 con-
versations are available at www.cs.unm.edu/˜cc/
artificial_conversations/transcripts/.

We demonstrate a modular, robust, and scalable architec-
ture for chatter bots. The specific concepts of pragmatics,
speech acts, and dialogue acts are well known in the field of
conversation theory. However, this research is the first ex-
ample of computationally modeling these specific concepts
to realize pragmatic semantics for chatter bots. Similarly,
specific concepts like goal-fulfillment maps have been ex-
plored previously in the knowledge representation literature.
But this work is the first example of using goal-fulfillment
maps for modeling content semantics for chatter bots in the
form of a series of sub-contexts. In addition, this work is the
first example of combining pragmatic semantics and content
semantics to generate artificial conversations.

There are several exciting directions in which this work
might be extended. Incorporating richer knowledge repre-
sentation and retrieval techniques, such as ontologies, might
make the architecture work with even less situation specific

contextual conversations. We considered only four types of
conversations, i.e., Procedural, Informational, Troubleshoot-
ing, and Dispute Resolution. Other types of conversations
can be defined and the modeling and analysis can be ex-
tended to these types.The conversations were modeled us-
ing stochastic finite state automata, which worked well in
narrow situational contexts.

References
[Bobrow et al. 1977] Bobrow, D. G.; Kaplan, R. M.; Kay,
M.; Norman, D. A.; Thompson, H.; and Winograd, T. 1977.
Gus: A frame-driven dia—og system. Artificial Intelligence
8:155–173.

[Chakrabarti and Luger 2012] Chakrabarti, C., and Luger, G.
2012. A semantic architecture for artificial conversations. In
The 13th International Symposium on Advanced Intelligent
Systems. Kobe, Japan: IEEE Press.

[Chakrabarti and Luger 2013] Chakrabarti, C., and Luger, G.
2013. A framework for simulating and evaluating artificial
chatter bot conversations. In The 26th International Florida
Artificial Intelligence Research Society Conference. St. Pete
Beach, FL: AAAI Press.

[Chakrabarti 2014] Chakrabarti, C. 2014. Artificial Conver-
sations for Chatter Bots Using Knowledge Representation,
Learning, and Pragmatics. Ph.D. Dissertation, University
of New Mexico, Albuquerque, NM.

[Filisko and Seneff 2003] Filisko, E., and Seneff, S. 2003. A
context resolution server for the galaxy conversational sys-
tems. In Proc. Eurospeech.

[Gasic et al. 2013] Gasic, M.; Breslin, C.; Henderson, M.;
Kim, D.; Szummer, M.; Thomson, B.; Tsiakoulis, P.; and
Young, S. 2013. Pomdp-based dialogue manager adaptation
to extended domains. In SigDial Metz France.

[Ginzburg 2008] Ginzburg, J. 2008. Semantics for Conver-
sation. King’s College, London: CSLI Publications.

[Henderson, Thomson, and Young 2013] Henderson, M.;
Thomson, B.; and Young, S. 2013. Deep neural network
approach for the dialog state tracking challenge. In SigDial
Metz FranceMetz France.

[Levin et al. 2000] Levin, E.; Narayanan, S.; Pieraccini, R.;
Biatov, K.; Bocchieri, E.; Fabbrizio, G. D.; Eckert, W.; Lee,
S.; Pokrovsky, A.; Rahim, M.; Ruscitti, P.; and Walker, M.
2000. The att-darpa communicator mixed-initiative spoken
dialog system. In ICSLP.

[Metallinou et al. 2013] Metallinou, A.; Bohus, D.; ; and
Williams, J. D. 2013. Discriminative state tracking for spo-
ken dialog systems. In Proceedings of Annual Meeting of
the Association for Computational Linguistics (ACL), Sofia,
Bulgaria.

[O’Shea, Bandar, and Crockett 2009] O’Shea, K.; Bandar,
Z.; and Crockett, K. 2009. A semantic- based conversa-
tional agent framework. In The 4th International Conference
for Internet Technology and Secured Transactions (ICITST-
2009), Technical Co- Sponsored by IEEE UK?RI Communi-
cations Chapter, 92–99.

www.cs.unm.edu/~cc/artificial_conversations/transcripts/
www.cs.unm.edu/~cc/artificial_conversations/transcripts/


[O’Shea, Bandar, and Crockett 2010] O’Shea, K.; Bandar,
Z.; and Crockett, K. 2010. A conversational agent frame-
work using semantic analysis. International Journal of In-
telligent Computing Research (IJICR) 1(1/2).

[O’Shea et al. 2004] O’Shea, K.; Bandar, Z.; Crockett, K.;
and Mclean, D. 2004. A comparative study of two short
text semantic similarity measures. Lecture Notes on Artifi-
cial Intelligence 4953:172.

[Polifroni and Seneff 2000] Polifroni, J., and Seneff, S.
2000. Galaxy-ii as an architecture for spoken dialogue eval-
uation. In LREC.

[Rieser and Lemon 2013] Rieser, V., and Lemon, O. 2013.
Reinforcement Learning for Adaptive Dialogue Systems: A
Data-driven Methodology for Dialogue Management and
Natural Language Generation. Springer.

[Seneff et al. 1998] Seneff, S.; Hurley, E.; Lau, R.; Pao, C.;
Schmid, P.; and Zue, V. 1998. Galaxy-ii: A reference ar-
chitecture for conversational system development. In Proc.
ICSLP, Sydney, Australia.


	paper12_Page_1
	paper12
	Introduction to Artificial Conversations
	Conversation Architecture
	Corpus and Parameter Learning
	Generation of Artificial Conversations
	Conversation Creation
	Results, Conclusions, and Future Directions


