


computers that understand human languages, and various 
forms of web agents. 
 The failure, however, of computers to succeed at the 
task of creating a general-purpose thinking machine begins 
to shed some understanding on the “failures” of the 
imitation game itself. Specifically, the imitation game 
offers no hint of a definition of intelligent activity nor does 
it offer specifications for building intelligent artifacts. 
Deeper issues remain that Turing did not address. What IS 
intelligence? What IS grounding (how may a human’s or 
computer’s statements be said to have “meaning”)? 
Finally, can humans understand their own intelligence in a 
manner sufficient to formalize or replicate it? 
 This paper considers these issues, especially the 
responses to the challenge of building intelligent artifacts 
that the modern artificial intelligence community has 
taken. In earlier venues (Luger 2012, Luger and 
Chakrabarti 2014) we presented general issues of artificial 
intelligence artifacts and the epistemological biases they 
embody. In this paper we view modern artificial 
intelligence, especially the commitment to stochastic 
models, and the epistemological stance that supports this 
approach. In the next section we present a constructivist 
rapprochement of the empiricist, rationalist, and pragmatist 
positions that supported early AI work and addresses many 
of its dualist assumptions. We also offer some preliminary 
conjectures about how a Bayesian model might be 
epistemologically plausible. 

Modern AI: Probabilistic models 
We view a constructivist and model-revising epistemology 
as a rapprochement between the empiricist, rationalist, and 
pragmatist viewpoints. The constructivist hypothesizes that 
all human understanding is the result of an interaction 
between energy patterns in the world and mental categories 
imposed on the world by an intelligent agent (Piaget 1954, 
1970; von Glasersfeld 1978). Using Piaget’s terms, we 
humans assimilate external phenomena according to our 
current understanding and accommodate our understanding 
to phenomena that do not meet our prior expectations.  
Constructivists use the term schemata to describe the a 
priori structure used to mediate the experience of the 
external world. The term schemata is taken from the 
writing of the British psychologist Bartlett (1932) and its 
philosophical roots go back to Kant (1781/1964). On this 
viewpoint observation is not passive and neutral but active 
and interpretative. There are many current psychologists 
and philosophers that support and expand this pragmatic 
and teleological account of human developmental activity 
(Glymour 2001, Gopnik et al. 2010, Gopnik 2011a, 2011b, 
Kushnir et al. 2010). 

Perceived information, Kant’s a posteriori knowledge, 
rarely fits precisely into our preconceived and a priori 
schemata. From this tension to comprehend and act as an 
agent, the schema-based biases a subject uses to organize 
experience are strengthened, modified, or replaced. This 
accommodation in the context of unsuccessful interactions 
with the environment drives a process of cognitive 
equilibration. The constructivist epistemology is one of 
cognitive evolution and continuous model refinement. An 
important consequence of constructivism is that the 
interpretation of any perception-based situation involves 
the imposition of the observers (biased) concepts and 
categories on what is perceived. This constitutes an 
inductive bias (Luger 2009, Ch 16). 
When Piaget (1970) proposed a constructivist approach to 
a child’s understanding the external world, he called it a 
genetic epistemology. When encountering new phenomena, 
the lack of a comfortable fit of current schemata to the 
world “as it is” creates a cognitive tension. This tension 
drives a process of schema revision. Schema revision, 
Piaget’s accommodation, is the continued evolution of the 
agent’s understanding towards equilibration. 
 There is a blending here of empiricist and rationalist 
traditions, mediated by the pragmatist requirement of agent 
survival. As embodied, agents can comprehend nothing 
except that which first passes through their senses. As 
accommodating, agents survive through learning the 
general patterns of an external world. What is perceived is 
mediated by what is expected; what is expected is 
influenced by what is perceived: these two functions can 
only be understood in terms of each other. A Bayesian 
model-refinement representation offers an appropriate 
model for critical components of this constructivist model-
revising epistemological stance (Luger et al. 2002, Luger 
2012). Interestingly enough, David Hume acknowledged 
the epistemic foundation of all human activity (including, 
of course, the construction of AI artifacts) in A Treatise on 
Human Nature (1739/2000) when he stated “All the 
sciences have a relation, greater or less, to human nature; 
and ... however wide any of them may seem to run from it, 
they still return back by one passage or another. Even 
Mathematics, Natural Philosophy, and Natural Religion, 
are in some measure dependent on the science of MAN; 
since they lie under the cognizance of men, and are judged 
of by their powers and faculties.” 
 Thus, we can ask why a constructivist epistemology 
might be useful in addressing the problem of building 
programs that are “intelligent”. How can an agent within 
an environment understand its own understanding of that 
situation? We believe that constructivism also addresses 
this problem of epistemological access. For more than a 
century there has been a struggle in both philosophy and 
psychology between two factions: the positivist, who 
proposes to infer mental phenomena from observable 



physical behavior, and a more phenomenological approach 
which allows the use of first person reporting to enable 
access to cognitive phenomena. This factionalism exists 
because both modes of access to cognitive phenomena 
require some form of model construction and inference. 
 In comparison to physical objects like chairs and doors, 
which often, naively, seem to be directly accessible, the 
mental states and dispositions of an agent seem to be 
particularly difficult to characterize. We contend that this 
dichotomy between direct access to physical phenomena 
and indirect access to mental phenomena is illusory. The 
constructivist analysis suggests that no experience of the 
external (or internal) world is possible without the use of 
some model or schema for organizing that experience. In 
scientific enquiry, as well as in our normal human 
cognitive experiences, this implies that all access to 
phenomena is through exploration, approximation, and 
continued model refinement. 
 Bayes theorem (1763) offers a plausible model of this 
constructivist rapprochement between the philosophical 
traditions we have just discussed. It is also an important 
modeling tool for much of modern AI, including AI 
programs for natural language understanding, robotics, and 
machine learning. With a high-level discussion of Bayes’ 
insights, we can describe the power of this approach.  

Consider the general form of Bayes’ relationship used to 
determine the probability of a particular hypothesis, hi, 
given a set of evidence E: 

 

 
 

	  
p(hi|E) is the probability that a particular hypothesis, hi, is 
true given evidence E. 
p(hi) is the probability that hi is true overall. 
p(E|hi) is the probability of observing evidence E when hi 
is true. 
n is the number of possible hypotheses. 
 
 With the general form of Bayes’ theorem we have a 
functional (and computational!) description (model) for a 
particular situation happening given a set of perceptual 
evidence clues. Epistemologically, we have created on the 
right hand size of the equation a schema describing how 
prior accumulated knowledge of occurrences of 
phenomena can relate to the interpretation of a new 
situation, the left hand side of the equation. This 
relationship can be seen as an example of Piaget’s 
assimilation where encountered information fits (is 
interpreted by) the patterns created from prior experiences. 

 To describe further the pieces of Bayes formula: The 
probability of an hypothesis being true, given a set of 
evidence, is equal to the probability that the evidence is 
true given the hypothesis times the probability that the 
hypothesis occurs. This number is divided (normalized) by 
the probability of the evidence itself, p(E). This probability 
of evidence is represented as the sum over all hypotheses 
presenting the evidence times the probability of that 
hypothesis itself. 
 There are limitations to using Bayes’ theorem as just 
presented as an epistemological characterization of the 
phenomenon of interpreting new (a posteriori) data in the 
context of (prior) collected knowledge and experience. 
First, of course, is the fact that the epistemological subject 
is not a calculating machine. We simply don’t have all the 
prior (numerical) values for all the hypotheses and 
evidence that can fit a problem situation. In a complex 
situation such as medicine where there can be hundreds of 
hypothesized diseases and thousands of symptoms, this 
calculation is intractable (Luger 2009, Chapter 5). 
 A second objection is that in most situations the sets of 
evidence are NOT independent, given the set of 
hypotheses. This makes the calculation of p(E)  in the 
denominator of Bayes rule as just presented unjustified. 
When this independence assumption is simply ignored, as 
we see shortly, the result is called naïve Bayes. More often, 
however, the rationalization of the probability of the 
occurrence of evidence across all hypotheses is seen as 
simply a normalizing factor, supporting the calculation of a 
realistic measure for the probability of the hypothesis given 
the evidence (the left side of Bayes’ equation). The same 
normalizing factor is utilized in determining the actual 
probability of any of the hi, given the evidence, and thus, 
as in most natural language processing applications, is 
usually ignored. 
 A final objection asserts that diagnostic reasoning is not 
about the calculation of probabilities; it is about 
determining the most likely explanation, given the 
accumulation of pieces of evidence. Humans are not doing 
real-time complex mathematical processing; rather we are 
looking for the most coherent explanation or possible 
hypothesis, given the amassed data. Thus, a much more 
intuitive form of Bayes rule ignores this p(E ) denominator 
entirely (as well as the associated assumption of evidence 
independence). The resulting formula determines the 
likelihood of any hypothesis given the evidence, as the 
product of the probability of the evidence given the 
hypothesis times the probability of the hypothesis itself 
p(E|hi) p(hi). In most diagnostic situations we are asked to 
determine which of a set of hypotheses hi is most likely to 
be supported. We refer to this as determining the argmax 
across all the set of hypotheses. Thus, if we wish to 
determine which of all the hi has the most support we look 
for the largest p(E|hi) p(hi): 
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argmax(hi)  p(E|hi) p(hi) 
 
 In a dynamic interpretation, as sets of evidence 
themselves change across time, we will call this argmax of 
hypotheses given a set of evidence at a particular time the 
greatest likelihood of that hypothesis at that time. We show 
this relationship, an extension of the Bayesian maximum a 
posteriori (or MAP) estimate, as a dynamic measure over 
time t: 
 

gl(hi|Et) = argmax(hi) p(Et|hi) p(hi) 
 
 This model is both intuitive and simple: the most likely 
interpretation of new data, given evidence E at time t, is a 
function of which interpretation is most likely to produce 
that evidence at time t and the probability of that 
interpretation itself occurring. 
 By the early 1990s, much of computation-based 
language understanding and generation was stochastic, 
including parsing, part-of-speech tagging, reference 
resolution, and discourse processing, usually using tools 
like greatest likelihood measures (Jurafsky and Martin 
2009). Other areas of artificial intelligence, especially 
machine learning, became more Bayesian-based. In many 
ways these uses of stochastic technology for pattern 
recognition were another instantiation of the constructivist 
tradition, as collected sets of patterns were used to 
condition recognition of new patterns. 
 Judea Pearl’s (1988) proposal for use of Bayesian belief 
nets (BBNs) and his assumption of their links reflecting 
“causal” relationships (Pearl 2000) brought the use of 
Bayesian technology to an entirely new importance. First, 
the assumption of these networks being directed graphs – 
reflecting causal relationships – and disallowing cycles – 
no entity can cause itself – brought a radical improvement 
to the computational costs of reasoning with BBNs (Luger 
2009, Ch 9). Second, these same two assumptions made 
the BBN representation much more transparent as a 
representational tool that could capture causal relations. 
Finally, most all the traditional powerful stochastic 
representations used in language work and machine 
learning, for example, the hidden Markov model in the 
form of a dynamic Bayesian network (DBN), could be 
readily integrated into this new representational formalism. 
 We next illustrate the Bayesian approach in two 
application domains. In the diagnosis of failures in discrete 
component semiconductors (Stern et al. 1997, Chakrabarti 
et al. 2005) we have an example of creating the greatest 
likelihood for hypotheses across expanding data sets. 
Consider the situation of Figure 1, presenting two failures 
of discrete component semiconductors. The failure type is 
called an “open”, or the break in a wire connecting 
components to others in the system. For the diagnostic 

expert, the presence of a break supports a number of 
alternative hypotheses. The search for the most likely 
explanation for a failure broadens the evidence search: 
How large is the break? Is there any discoloration related 
to the break? Were there any (perceptual) sounds or smells 
when it happened? What were the resulting conditions of 
the components of the system? 
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Figure 1. Two examples of discrete component 
semiconductors, each exhibiting the “open” or “connection 
broken” failure. 
 
 Driven by the data search supporting multiple possible 
hypotheses that can explain the “open”, the expert notes 
the bambooing effect in the disconnected wire, Figure 1a. 
This suggests a revised greatest likelihood hypothesis that 
explains the open as a break created by metal 
crystallization that was likely caused by a sequence of low-
frequency high-current pulses. The greatest likely 
hypothesis for the open of the example of Figure 1b, where 
the break is seen as balled, is melting due to excessive 
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current. Both of these diagnostic scenarios have been 
implemented by an expert system-like search through an 
hypothesis space (Stern et al. 1997) as well as reflected in a 
Bayesian belief net (Chakrabarti et al. 2005).  Figure 2 
presents a Bayesian belief net (BBN) capturing these and 
other related diagnostic situations. 
 The BBN, without new data, represents the a priori state 
of an expert’s knowledge of an application domain. In fact, 
these networks of causal relationships are usually carefully 
crafted through many hours working with human experts’ 
analysis of known failures. Thus, the BBN can be said to 
capture a priori expert knowledge implicit in a domain of 
interest. When new (a posteriori) data are given to the 
BBN, e.g., the wire is “bambooed”, the color of the copper 
wire is normal, etc, the belief network “infers” the most 
likely explanation, within its (a priori) model, given this 
new information. There are many inference rules for doing 
this (Luger 2009, Chapter 9). An important result of using 
the BBN technology is that as one hypothesis achieves its 
greatest likelihood, other related hypotheses are “explained 
away”, i.e., their likelihood measures decrease within the 
BBN. 
 This current example demonstrates how the most likely 
current hypothesis can be used to determine the best 
explanation, given a particular time and an hypothesis 
space. We next demonstrate how considering sets of 
hypotheses and data across time, using the most likely 
hypothesis at time t, can produce a greatest likelihood 
hypothesis. 

gl(hi|Et) = argmax(hi) p(Et|hi) p(hi) 
 
 In this model the most likely interpretation of new data, 
given evidence E at time t, is a function of which 
interpretation is most likely to produce that evidence at 
time t and the probability of that interpretation itself 
occurring. If we want to expand this to the next time 
period, t + 1, we need to describe how models can evolve 
across time. 
 As an example of argmax processing, Chakrabarti et al. 
(2005, 2007) analyze a continuous data stream from a set 
of distributed sensors. The running “health” of the 
transmission of a Navy helicopter rotor system is 
represented by a steady stream of sensor data. This data 
consists of temperature, vibration, pressure, and other 
measurements reflecting the state of the various 
components of the running transmission system. An 
example of this data can be seen in the top portion of 
Figure 3, where the continuous data stream is broken into 
discrete and partial time slices. 
 A Fourier transform is then used to translate these 
signals into the frequency domain, as shown on the left 
side of the second row of Figure 3. These frequency 
readings were compared across time periods to diagnose 

the running health of the rotor system. The model used to 
diagnose rotor health the auto-regressive hidden Markov 
model (A-RHMM) of Figure 4. The observable states of 
the system are made up of the sequences of the segmented 
signals in the frequency domain while the hidden states are 
the imputed health states of the helicopter rotor system 
itself, as seen in the lower right of Figure 3.  
 The hidden Markov model (HMM) technology is an 
important stochastic technique that can be seen as a variant 
of a dynamic BBN. In the HMM, we attribute values to 
states of the network that are themselves not directly 
observable. For example, the HMM technique is widely 
used in the computer analysis of human speech, trying to 
determine the most likely word uttered, given a stream of 
acoustic signals (Jurasky and Martin 2009). In our 
helicopter example, training this system on streams of 
normal transmission data allowed the system to make the 
correct greatest likelihood measure of failure when these 
signals change to indicate a possible breakdown. The US 
Navy supplied data to train the normal running system as 
well data sets for transmissions that contained seeded 
faults. Thus, the hidden state St of the A-RHMM reflects 
the greatest likelihood hypothesis of the state of the rotor 
system, given the observed evidence Ot at any time t. 

 
Figure 2. A Bayesian belief network representing the 
causal relationships and data points implicit in the discrete 
component semiconductor domain. As data is “discovered” 
the (a priori) probabilistic hypotheses change and suggest 
further search for data. 
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Figure&2.&A&Bayesian&belief&network&representing&the&causal&relationships&and&data&points&implicit&in&
the&discrete&component&semiconductor&domain.&As&data&is&“discovered”&the&(a&priori)&probabilistic&
hypotheses&change&and&suggest&further&search&for&data.&
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example&of&this&data&can&be&seen&in&the&top&portion&of&Figure&3,&where&the&continuous&data&stream&is&broken&
into&discrete&and&partial&time&slices.&

A&Fourier&transform&is&then&used&to&translate&these&signals&into&the&frequency&domain,&as&shown&on&the&
left&side&of&the&second&row&of&Figure&3.&These&frequency&readings&were&compared&across&time&periods&to&
diagnose&the&running&health&of&the&rotor&system.&The&model&used&to&diagnose&rotor&health&the&auto@
regressive,hidden,Markov,model,(ASRHMM)&of&Figure&4.&The&observable&states&of&the&system&are&made&up&
of&the&sequences&of&the&segmented&signals&in&the&frequency&domain&while&the&hidden&states&are&the&
imputed&health&states&of&the&helicopter&rotor&system&itself,&as&seen&in&the&lower&right&of&Figure&3.&&

The&hidden&Markov&model&(HMM)&technology&is&an&important&stochastic&technique&that&can&be&seen&as&a&
variant&of&a&dynamic&BBN.&In&the&HMM,&we&attribute&values&to&states&of&the&network&that&are&themselves&not&
directly&observable.&For&example,&the&HMM&technique&is&widely&used&in&the&computer&analysis&of&human&
speech,&trying&to&determine&the&most&likely&word&uttered,&given&a&stream&of&acoustic&signals&(Jurasky&and&
Martin&2009).&In&our&helicopter&example,&training&this&system&on&streams&of&normal&transmission&data&
allowed&the&system&to&make&the&correct&greatest&likelihood&measure&of&failure&when&these&signals&change&to&
indicate&a&possible&breakdown.&The&US&Navy&supplied&data&to&train&the&normal&running&system&as&well&data&
sets&for&transmissions&that&contained&seeded&faults.&Thus,&the&hidden&state&St&of&the&ASRHMM&reflects&the&
greatest&likelihood&hypothesis&of&the&state&of&the&rotor&system,&given&the&observed&evidence&Ot&at&any&time&t.&

&



 

 

Figure 3. Real-time data from the transmission system of a 
helicopter’s rotor. The top component of the figure 
presents the original data stream (left) and an enlarged time 
slice (right). The lower left figure is the result of the 
Fourier transform of the time slice data (transformed) into 
the frequency domain. The lower right figure represents 
the hidden states of the helicopter rotor system. 
 
 
 
 
 
 

Figure 4. The data of Figure 3 is processed using an auto-
regressive hidden Markov model. States Ot represent the 
observable values at time t. The St states represent the 
hidden “health” states of the rotor system, {safe, unsafe, 
faulty} at time t. 

Conclusion: An epistemological stance 
Turing’s test for intelligence was agnostic both as to what a 
computer was composed of – vacuum tubes, transistors, or 
tinker toys - as well as to the languages used to make it 
run. It simply required the responses of the machine to be 
roughly equivalent to the responses of humans in the same 
situations.  
 Modern AI research has proposed probabilistic 
representations and algorithms for the real-time integration 
of new (a posteriori) information into previously (a priori) 
learned patterns of information (Dempster 1968). Among 
these algorithms is loopy belief propagation (Pearl 1988, 
2000) that captures a system of plausible beliefs constantly 
iterating towards equilibrium, or equilibration, as Piaget 
might describe it. A cognitive system can be in a priori 
equilibrium with its continuing states of learned diagnostic 
knowledge. When presented with novel information 
characterizing a new diagnostic situation, this a posteriori 
data perturbs the equilibrium. The cognitive system then 
infers, using prior and posterior components of the model, 
until it finds convergence or equilibrium, in the form of a 
particular greatest likelihood hypothesis. 
 The claim of this paper is that stochastic methods offer a 
sufficient account of human intelligence in areas such as 
diagnostic reasoning. This includes the computation of a 
greatest likelihood measure of hypotheses, given new 
information and an expert’s a priori cognitive equilibrium. 
Further, we contend that the greatest likelihood calculation 
is cognitively plausible and offers an epistemological 
framework for understanding the phenomena of human 
diagnostic and prognostic reasoning. 
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