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Abstract
This paper reports on experiments in measuring the general
level  of  conversational  interactivity  in  COMPS problem-
solving  dialogues.  COMPS is  a  web-delivered  computer-
mediated problem solving environment for student collabo-
rative exploratory learning. The primary mode of interaction
is typed dialogue. We anticipate that the computer will pro-
vide a status display to aid the instructor, who is effectively
looking over the shoulders of the students as they work. To-
ward the goal of computer monitoring of conversation qual-
ity,  we  have  analyzed  dialogue  turns for  Initiate  and Re-
spond dialogue moves as prescribed by Conversation Anal-
ysis theory. Many of our dialogues are quite interactive by
this measure. However computer tagging of individual turns
as Initiate or Respond has proved difficult.  Here we show
what  makes such tagging difficult  in our problem-solving
environment. We also propose that there are shallow mea-
sures of overall  interactivity  that  may correlate  with  how
much the students are responding, without the need to cor-
rectly tag individual dialogue turns.

 Introduction

The goal of the COMPS project is to provide a computer-
aided  instrument  for  collaborative  learning  of  concepts
through  problem-solving  dialogue  [Desjarlais,  Kim,  and
Glass, 2012; Kim et al., 2013]. The students mainly engage
in typed-chat, though for some problems COMPS has spe-
cific  problem-related affordances for  the students to ma-
nipulate. COMPS shows the instructor the conversations in
real time, permitting the instructor to intervene.

An unusual feature of the COMPS online chat environ-
ment  is  that  students  type  simultaneously.  They can see
each other’s comments as they are typed in real time. This
adds an interactive dimension that even spoken language
does not support, since students chat simultaneously with-
out interrupting each other.

 We anticipate that the computer will provide a status
display  to  aid  the  instructor,  who  is  effectively  looking
over the shoulders of the students as they work. The in-
structor will be informed of each group’s degree of cooper-
ative behavior and progress toward solving their problem. 

This paper illustrates annotated dialogues collected us-

ing COMPS while students were solving problems related
to a Java Swing program. We annotated these dialogues us-
ing our own scheme that describes the social style of the
contribution:  confident  assertion,  suggestion,  asking  a
question,  etc.  One  aspect  of  our  coding  scheme  corre-
sponds to Exchange Structure from Conversation Analysis,
where each turn of dialogue is analyzed as initiating a new
dialogue segment (I) or responding to the initiate turn (R).
Although some exchange structure analyses also recognize
a follow-up category (F),  our own annotations recognize
only the I and R categories. From these R- and I-annotated
dialogues we have documented different styles of group in-
teraction [Kim et al., 2013; Glass et al., 2013].

Theories of student collaborative learning such as group
cognition  [Stahl,  2006]  and  knowledge  co-construction
[Zhou,  2009]  presuppose  that  students are responding to
each others’ utterances. From our annotated transcripts, we
see that COMPS conversations have a high percentage of
respond moves. Being able to machine-tag individual turns
as  respond  or  initiate  would  be  a  step  toward  judging
whether collaboration was happening in our sessions.

In this paper we discuss the issue of building machine
classifiers to recognize whether each turn represents an I or
R dialogue move. Our efforts have been informed by ef-
forts to classify transactivity  [Rosé et al., 2008; Ai et al.,
2010]. Transactivity is a classification of R dialogue turns
specialized for collaborative learning. However our efforts
at building classifiers have not been successful to date. We
discuss  here  possible reasons,  and  suggest  directions  for
future work.

We  also  discuss  another  path  toward  recognizing
whether student conversations contain a high level of inter-
action:  counting  the  easily  recognizable  phenomena  that
occur in conversation when people are responding to each
other.  These dialogue phenomena are independent of the
particular domain under discussion. We propose that mea-
suring the general level of interaction, without tagging in-
dividual I and R dialogue turns, might be sufficient to give
a rough measure of quality. In this paper we identify and
computer-tabulate  several  of  these  phenomena  occurring



within COMPS dialogues, suggesting that a general mea-
sure of interactivity might be possible.

Background

The learning task.  The data for this study come from a
second semester Java programming class at North Carolina
A&T. The protocol was as follows. During lab period, stu-
dents logged into the COMPS web page in groups of 3.
They  solved  problems  in  understanding  a  Java  Swing
graphical  user interface.  The problems were presented to
the students on paper, accompanied by a picture of the GUI
with its components numbered. The nature of the task was
to understand and articulate the Java software structure that
necessarily lay behind the interface they were seeing. For
example, they needed to decide which of the visible com-
ponents could be anonymous in the code, which event lis-
teners must be present in order to support the desired be-
haviors, and what is the visibility of instance variables in
certain Java classes. The questions exercise their ability to
understand Java Swing. 

The students were instructed to come to an agreement on
answers. One student would take the answer to the profes-
sor for feedback in person, then return to the group to fin-
ish the discussion. This process continued for each prob-
lem until all problems were understood by all members of
the group.

Theoretical  justification  for  using  COMPS for  this
kind of learning task. The student skills that are the focus
of this project are oriented toward understanding and ma-
nipulating concepts. This is what Skemp [1987] calls “rela-
tional  understanding,”  a  complement  to  the  instrumental
skills of programming that are the bread and butter of ele-
mentary programming classes. COMPS exercises, such as
this one,  are focused on learning things that  are  hard to
measure.  This  orientation  guides  the  construction  of  our
exercises,  in  particular  having  students  come  to  shared
agreement, telling them the answers, and having them rec-
oncile their understanding with the given answers. 

There is also research showing that collaborative activity
is a desirable pedagogical approach specifically for creat-
ing conceptual  understanding [Tchounikine et  al.,  2010].
Key to engendering  learning is dialogue that  engages  in
domain reasoning, such as explaining, negotiating, or infer-
ring [Stahl, 2006]. Justifying, arguing, and similar knowl-
edge-engendering dialogue moves were notable in the Vir-
tual Math Team dialogues [Zhou, 2009]. 

Collaborative discourse is also, in theory, a fertile appli-
cation for applying computers  to analyze  student knowl-
edge and behavior. When student thinking is naturally ex-
pressed  in  the  conversation  it  is  made  available  for  the
computer  to  find  it.  Working  in  groups  forces  student
thinking  out  in  the  open,  for  example  as  observed  by
Koschmann [2011]. In addition to reasoning together, con-

versational participants also communicate their level of un-
derstanding to achieve grounding and to satisfy discourse
obligations [Clark and Brennan, 1991].  There is no need
for the computer to ask special assessment questions, for
example, because student thinking is visible.

The  construct  representing  interactivity.  To  deter-
mine whether a student conversation is interactive, we pro-
pose to look for transactivity. In educational dialogue anal-
ysis, a dialogue move is transactive if a) it responds to an-
other  dialogue  move,  and  b)  contributes  to  knowledge
building.  If  we can identify by machine in two separate
procedures that a student’s utterance a) responds to another
student and b) is on task, we will have approximately iden-
tified  a  transactive  contribution.  In  this  paper  we  are
largely concerned with tagging the first aspect, whether a
turn responds to another. 

Transactivity  appears  in  Weinberger  and  Fischer’s
[2006]  four  dimensional  framework  for  group cognition.
Transactivity  is  the  “social  mode”  dimension:  it  catego-
rizes in what ways interpersonal processes are at work in
the  construction  of  the  answer  without  addressing  the
knowledge or reasoning. The categories of transactive con-
tribution are:  externalization (simply contributing),  elicit-
ing, quick consensus building, integration-oriented consen-
sus  building,  and  conflict-oriented  consensus  building.
These categories seem to be on a scale of less transactive
to more transactive [Teasley,  1997; Weinberger  and Fis-
cher,  2006]. We hypothesize that for the purposes of as-
sessing  a  conversation,  simply  measuring  the  degree  of
transactivity could be useful.  It  may not be necessary to
specifically identify the above different varieties. 

As a way toward annotating transactivity we turn to the
linguistic  discipline  of  Conversation  Analysis  (CA).  CA
analyzes the exchange structure of a dialogue, dividing up
the  turns  into  three  types:  initiate  (I),  respond  (R),  and
sometimes followup (F). These basic structural units of di-
alogue are the workhorse for analyzing phenomena such as
turn-taking (how people arbitrate who will speak next), so-
cial loafing (who is not participating, or being lazy),  and
power relationships [Wells, 1999]. Followup is sometimes
omitted;  these  turns  can  be  thought  of  as  additional  re-
sponses.

Conversation  Analysis  belongs  to  the  structuralist
branch of linguistics; it is concerned with observables first
(whether  somebody is  responding),  not  what  function is
being accomplished or what the speaker’s intention is. In
this aspect annotating initiate and respond is similar to ana-
lyzing transactivity.

There is a caveat: I/R/F can be hard to analyze in con-
versations  where  there  are  more  than  two  participants.
When there is only one other person deciding which state-
ment a person might be responding to is easier. Also, in a
many-party  conversation  a  single  statement  might  elicit
several responses from different participants. 



Data and Manual Analysis

We conducted 17 COMPS problem-solving dialogues over
two semesters with the Java Swing problem. Students were
in  the  General  Engineering  165 class  at  North  Carolina
A&T,  the  second  semester  of  elementary  programming.
Statistics on the dialogues are:

 Sessions: 17
 Dialogue turns: 1827
 Turns per session: 107
 Mean / median duration: 50min / 52min
 Min / max duration: 26min / 67min

Three  of  these dialogues  have been  extensively anno-
tated by hand. The annotation categories have been revised
since our earlier work [Kim et al., 2013] to a) more accu-
rately match the judgments  of  the annotators,  b) include
conversation analysis  I  or R variants  of most categories.
The annotation categories are in Tables 1 and 2. Figure 1
(at end) shows an extract of annotated dialogue.

In Figure 1, dialogue turns marked ‘<<’ are not catego-
rized as I or R. The annotations with a hyphen ‘-’ suffix are
I, the other annotations are R. 

The following annotation categories were devised by our
student  annotators  after  they  and  previous  students  had
some experience with the categories  of transactivity out-
lined above.  Essentially the difference between the com-
monly used transactivity codes and our codes is that in our
codes the perceived affect of the speaker substitutes for the
social construction of reasoning. For example, the coders
felt they could more reliably distinguish whether a speaker
was being hesitant or confident, as opposed to distinguish-
ing whether a contribution was more integration-oriented
or conflict-oriented. 

Table 1: Mode of participation: response categories.

Response R A statement that refers to one 
made earlier

Acknowledge-
ment

A Cosigning on a message/defini-
tive//suggestion

Contradictory C Response that disagrees with a 
message

Definitive D Response that confidently gives
a solution

Suggestion S A less confident possible solu-
tion

Group Work G Group working together

Question Q Someone asking for clarifica-
tion or stating confusion

Table 2: Mode of participation: Initiate categories.

Initiate I- General start of a new thread

Definitive D- A sure answer to a question or 
problem

Suggestion S- A less-sure answer to a question or 
problem

Question Q- A request for feedback/statement of
confusion

Group Work G- Group working together

If  successive  turns  respond  to  each  other  or  build  on
each  other  serially,  we annotate  them as  a  string  of  re-
sponses. In other words, turn  i+2 can respond to turn  i+1
which responds to turn  i. This differs  from conventional
Conversation Analysis practice which would divide these
into a number of Initiate/Respond/Followup exchange seg-
ments. One motivation for this departure is the nature of
multi-party conversation.  In  two-party conversation,  it  is
possible to (somewhat arbitrarily) declare that a new seg-
ment has started. In multi-party conversations students B
and C may both respond to A, or C may respond to B who
responded to A. It becomes impossible to isolate initiate-
respond pairs without assigning two roles to one turn. For
example: B responds to A, while B’s same turn simultane-
ously initiates to C. Motivated in part by that kind of case,
we  changed  the  protocol  to  admit  serial  response  turns.
This is also more in line with how transactivity is usually
annotated.

 Overlapped typing presents another difficulty in anno-
tating I and R. Figure 2 (at end) illustrates overlapped dia-
logue,  specifically  turns  5 and 6 from the Figure 1 tran-
script. 

1. Time 2:21: A starts to type  "Labels 1, 2, 3, 4, 5,
and 14 can be instantiated ... 

2. Time 3:16: B types: “what about 6 and 7?” 
3. Time 3:48: A finishes typing: “...these do not have

to be changed."
Notice that B started asking a question after A started. In-
spection reveals that B was probably responding to A. But
B also finished first. B’s response to A thus occurs as the
earlier dialogue turn in the transcript.

Observations from Manual Analysis

Annotation of the dialogues reveals patterns of group inter-
action and group cognitive functioning. One phenomenon
that is illustrated in the Figure 1 segment is that student C
is the primary initiator and serves to set the goal structure
of the conversation. Other students largely respond to C’s



agenda. This is an example of a pattern we often see [Kim
al., 2013; Glass et al., 2013] where one student takes the
role  of  metacognitive  regulator  for  the  group  cognitive
process.  This regulator student is not necessarily the one
who contributes the most to the solution. Two of the three
intensively annotated transcripts illustrate this pattern, visi-
ble in Table 3. Student B in both sessions 1 and 2 had the
largest fraction of turns in these three-party conversations.
Most tellingly, in both discussions large percentages of stu-
dent B’s turns were I (initiate). Student B (marked with *)
was  driving  the  conversational  agenda,  initiating  state-
ments  into  the  conversation  that  the  other  two  students
were responding to. Session 3 did not follow this pattern.
Session 3 was also unusual in that participant C joined late
in the conversation; it was a two-party dialogue for much
of its duration. We do not have enough two-party dialogues
to say with confidence, but anecdotally it seems that two-
party dialogues do not usually follow the same pattern of
one person setting the goals.

Table 4 shows the numbers of I, R and off-task turns in
each of the three coded sessions and in total. The ratio of
R/(I+R) is a responsiveness index: higher numbers mean
the students are responding more and initiating less. The
lesson to note is that our students are indeed mostly on task
and mostly responding to each other.

The number of question turns may also be indicative of
group interactive behavior. In our coding scheme, question
turns can be either responding or initiating. But any ques-
tion (except possibly a rhetorical one) is a sign of students
engaging with each other. Table 5 shows the numbers of
questions, with I and R questions aggregated together.

Table 3: Pattern of one student controlling agenda.
Counts of I and R turns only, off-task turns omitted.

Sess
no.

Stu Turns Stu’s pct. of
all I+R
turns

Pct. of Stu’s
turns that

are I

1 A 23 25% 17%

B* 48 52% 63%

C 21 23% 10%

2 A 28 24% 21%

B* 58 49% 52%

C 32 27% 34%

3 A 27 40% 52%

B 31 46% 32%

C 9 13% 11%

Table 4: Fraction of Responsiveness and On-task Turns.

Sess
No.

I R Off task Off task
pct.

R/(I+R)
pct.

1 36 56 8 8% 61%

2 47 71 17 13% 60%

3 25 42 28 29% 63%

Total 108 169 53 16% 61%

Table 5: Fraction of Question Turns.

Sess No. Q Q/(I+R) pct.

1 19 21%

2 27 23%

3 8 12%

Total 54 19%

I/R Classifier

In order to measure whether a dialogue turn is transactive
we need to identify whether the turn is a) responding to an-
other person and b) on-task addressing epistemic knowl-
edge-building. We are building classifiers to identify initi-
ate and responding categories first.

Using  the  hand-annotated  transcripts  we  tried  to  train
Weka J48 decision tree classifiers to recognize I vs. R dia-
logue turns. In these experiments each training case repre-
sented one dialogue turn. Each case contained the follow-
ing feature set:

 The length of the dialogue turn.
 Presence or absence of each of about 90 common

words, chosen for occurring with high frequency
in the transcripts.

 Presence of a discourse marker word within the
first five words of the turn, chosen from a small
set of discourse markers, e.g. “so.”

 Presence of one of a dozen vocabulary words spe-
cific to the problem domain, e.g. “JPanel.”

 Presence of a question mark.
 Predicted class variable: either a code from Tables

1 and 2, or Initiate / Respond / neither.
Decision trees were trained and tested on the approxi-

mately 300 annotated turns. The decision trees often over-
trained or picked spurious features such as incidental vo-
cabulary words. Thus they did not hold up when applied to
held-out test data.

Another set of experiments incorporated timing informa-
tion as features, using the same classifier methods. When-



ever participant A completed a chat message (by pushing
the enter key), we compared A’s message to the most re-
cent messages of participant B. This generated four time
differences for each record:

A-start-typing – B-start-typing
A-end-typing – B-end-typing
A-end – B-start
A-start – B-end.

In a three-participant conversation, computing time differ-
ences A vs. B and A vs. C doubles the number of cases.
One set of cases contains the delta-times for A vs. B, the
second set is identical except for delta-times A vs. C. Most
of  the  features  in  the  duplicated  records,  e.g.  sentence
length,  discourse markers,  and class variable,  remain the
same. 

The delta-time feature also sometimes revealed cases of
simultaneous typing. For example consider turn 6 vs. turn
5 in Figure 2. Turn 5 is the “earlier” turn because it ended
earlier, therefore the “later” turn 6 is evaluated as a poten-
tial response to 5. However 6 started before 5. The delta
time A-start – B-start is thus negative, indicating overlap.

When  care  is  taken  to  remove  duplicate  records  and
identify which turn is  responding to which other  partici-
pant, J48 pruned decision trees utilizing the delta-time fea-
tures  are  more  robust  than  the  earlier  classifier  experi-
ments. Applying the trained trees to held-out data works
reasonably well. 

Results and Discussion

Results. None of the experiments were notably successful.
Using the non-timing features, typical good results using

10-fold  cross-validation  were  kappa  agreement  of  about
0.45 with human raters, and F scores of 0.7 on identifying
the I and R labels. 

When delta-times were available as features for classi-
fier  training  the  accuracy  was  about  the  same.  Kappa
agreement with the human raters remained in the low end
of the 0.4 – 0.5 range, and F scores remained at about 0.7.

The best decision trees using timing features were not
startling. If A started 61 or more seconds after B ended, A
was  most  likely  not  a  response  to  B.  But  given  that  A
started late, if A’s statement was long it was a little more
likely a response to B.

Introducing delta-times is an improvement in classifica-
tion.  Even  though  classification  accuracy  was  not  im-
proved,  the  timing  features  are  potentially  domain-inde-
pendent.  The  classifier  trained  on  timing  features  might
work  for  all  our  COMPS  dialogues  in  three  different
classes.  Whereas  a  classifier  that  uses  vocabulary  might
work only for the particular problem or student population
it was trained on. The fact that cross-fold validation tended
to degrade accuracy in classifiers using the word features
more than it degraded classifiers using timing features is

another indication that timing features will hold up better
with larger and more diverse data sets.

Generating time difference records against  every other
participant in the conversation proved to be a methodologi-
cal  problem. It  biases the class labels. A single I turn is
represented by two records in the data set with nearly iden-
tical features predicting the same class variable. The result
is a strong tendency for the classifier to predict the doubled
cases. 

Comparison to other results. Other researchers achieve
moderately better Kappa between 0.5 and 0.6, e.g. [Rosé et
al., 2008] working with online chat discussions and [Ai et
al., 2010] working with transcribed classroom discussion.
In  both  cases  the  class  variable  was  transactivity.  They
were able to boost Kappa agreement to 0.7 using several
stages of classification. It is instructive to analyze some of
the differences between their classifiers and ours. In addi-
tion to the features we mentioned above, e.g.  vocabulary
words  and  lengths,  these  researchers  derived  features  so
that one case (one annotated dialogue turn) would include
features  contrasting  that  dialogue  turn  against  previous
turns. These derived features were:

1. LSA (latent semantic analysis) comparisons of the
words in the current turn to a) the words in the
previous  turn  (usually  another  speaker),  b)  two
turns back, and c) three turns back.

2. Type  of  speaker  (student  or  teacher),  type  of
speaker for previous turn, whether the speaker is
the same person as for the previous utterance.

3. Change of topic: whether the topic has shifted in
the previous utterance.

It also appeared that their chat data did not include over-
lapped simultaneous typing. 

Discussion. Examining Figure 1 shows why, we believe,
our classifiers have not been successful to date. A main is-
sue is that much of the dialogue does not contain concepts,
students instead refer to multiple-choice answers by letters
and to numbered items on the Swing GUI. The concepts
and objectives being reasoned about are not situated within
the  conversation.  The  letter  and  number  references  are
more common than sentences containing recognizable rea-
soning in the domain. As evidence that this complicates the
task, we note that it is not possible for a human annotator
to tell whether two people are discussing the same concept
without a picture of the GUI and the multiple-choice an-
swers handy for reference.

A secondary source of complexity is the typing overlap
problem. In addition to the kinds of timing anomaly illus-
trated in Figure 2,  we see  students sometimes neglect  to
press enter. Everybody can see what they typed without it.
We see students pause in the middle of typing,  wait  for
other  student  responses,  then  pick  up  again,  effectively
putting two dialogue turns in one chat message.



The Way Forward 1:
More and Better Features

A priority task is to find shallow features that should corre-
late with either 1) students responding to each other or 2)
students reasoning on topic. These are the two components
of a transactive contribution. We will use these features to
see if the classification task can be improved.

We will also try to use simple detection and counting of
these features to derive a transactivity index that correlates
with human judgment. This is discussed below. 

Features we have extracted from the text but not yet
applied to machine learning experiments.

Discourse markers.  Using an expanded catalog of dis-
course markers [Alemany et al., 2005], we see discourse
markers start 10% of the 1800 turns from 17 sessions. Dis-
course markers might indicate that reasoning or argumen-
tation is happening.  In  addition to the fixed lexicon, we
added some discourse markers recognized by regular ex-
pressions (e.g. “soooo...”). 

Problem domain vocabulary. These words are an indica-
tion that students are discussing the topic at hand. We ex-
panded the vocabulary of problem domain words for the
Java Swing GUI problem. The number of  turns  that  are
now  recognized  as  including  domain-specific  words  is
20%, compared to 7% in the machine learning experiments
described above.

Task-related  vocabulary.  These  are  words  related  to
completing the task but not part of the domain under dis-
cussion.  For  example,  the  multiple-choice  answer  letters
and  the  labels  on  the  different  components  of  the  Java
Swing screenshot are task-related words which we can rec-
ognize. If a student says “I think we can rule out b and c”,
that  student is discussing the task at hand. 30% of turns
contain a reference to a multiple-choice answer or a num-
bered component. 

Overlapped typing. Among the 1800 turns, 47% exhibit
overlapped typing where several people are entering a new
message simultaneously.

Emoticons. People put emoticons into their chat dialogue
precisely because  they are  interacting with other  people.
Emoticons express affective state. Emoticons occur in only
1% of our corpus for this problem but they are much more
prevalent in other COMPS exercises using a different stu-
dent population.

Pronouns. In a similar vein, the presence of 2nd person
pronouns and 1st person plural pronouns could be indica-
tive of interactive discourse. 16% of turns contain such a
pronoun within the first 10 words.

Other features to explore:
Other expressions of affect. Theories of affect generally

hold that people express affect in order for other people to
sense it.  Expressions of affect,  therefore,  may be indica-

tions of social processes at work. We propose that the pres-
ence of such words might be a useful feature.

More use of timing overlap. We may split a turn into two
in the event of a lengthy pause, treating the two parts as
different  dialogue  turns.  Especially  if  other  people  were
typing during the pause, it is likely that the two parts serve
as distinct dialogue turns. We may use timing differences
to try to identify candidate turns as targets of response in a
way that does not duplicate records.

Inter-turn comparisons.  We can  try the LSA compar-
isons  and  other  measurements  on  successive  turns  that
other researchers have found fruitful.

The Way Forward 2:
A different style of measurement.

We will explore measuring the interactivity of a discussion
without labeling each individual turn as transactive or not.
Some of the features may by themselves be indicative of
students interacting with each other, e.g. emoticons, close
timing and overlaps, and pronouns. Other features may be
indicative  of  students  engaging  in  reasoning  (discourse
markers),  of  engaging  the  problem (domain  vocabulary)
and of engaging the task (task vocabulary).  Simply mea-
suring the density of these features might prove sufficient
to evaluate the quality of a student problem-solving discus-
sion. This measurement could be applied in real time to the
entire discussion starting from the beginning, or to a slid-
ing window of most recent dialogue turns.

For purpose of training a computerized formula for this
measurement, we will use the manually coded corpus to in-
dependently assess overall transactivity.  We will start by
counting  the  fraction  of  interactive  turns  in  our  annota-
tions.
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Turn Stu Text Annotation Start time End time

1 C hey people << 00:00 00:02
2 C okay question one?? Q- 00:43 00:47
3 B I'm reading it << 01:08 01:15
4 C do either of you know what the question is even asking? i don’t Q- 01:44 02:10
5 B what about 6 and 7? S 03:16 03:26
6 A "Labels 1, 2, 3, 4, 5, and 14 can be instantiated anonymously. 

Because these do not have to be changed."
D 02:21 03:48

7 B that makes sense A 04:12 04:17
8 A 6 and 7 can not be instantiated anonymously because these val-

ues have to change.
C 03:59 04:18

9 C okay. Im lost where are you guys gettting this from Q- 04:19 04:43
10 C the back ground information? Q- 04:46 04:53
11 A It's on the second page. G 04:52 04:56
12 B the top discription G 04:58 05:02
13 C ohhh mow i see thanks G 05:08 05:16
14 B for problem two I know the actionlistener interface needs to be 

implemented
D- 05:40 05:58

15 B is there any others? Q- 06:09 06:13
16 C and actionListener D 06:27 06:39
17 C i think those are the only two D 06:42 06:51
18 B wha was the first one? Q 06:55 07:01
19 C i ment mouse R 07:02 07:10

Figure 1: Annotated Extract from Java Swing Dialogue

        Labels 1, 2, 3, 4, 5, 14.........................to be changed.
                                                                                                     Turn 6
     2:21                                                                              3:48
                                           What about 6 and 7?
                                                                                                     Turn 5
                                  3:16                                     3:26

Figure 2: Overlapped Typing of Response.


