
Advanced Petri Nets and the Fluent Calculus

Steffen Hölldobler and Ferdian Jovan

International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany
sh@iccl.tu-dresden.de ferdian.jovan@gmail.com

Abstract. In this paper we discuss conjunctive planning problems in
the context of the fluent calculus and Petri nets. We show that both
formalisms are equivalent in solving these problems. Thereafter, we ex-
tend actions to contain preconditions as well as obstacles. This requires
to extend the fluent calculus as well as Petri nets. Again, we show that
both extended formalisms are equivalent.

1 Introduction

It is widely believed that humans generate models and reason with respect to
these models [14]. It is less widely believed that logics can be used to adequately
model human reasoning [3]. Based on ideas first presented in [18], Hölldobler
and Kencana Ramli [10] have developed a logic based on weakly completed
logic programs and interpreted under the three-valued Lukasiewicz semantics;
this logic was shown to adequately model human reasoning scenarios like the
suppression and the selection task by generating a least model of an appropriate
logic program and reasoning with respect to this least model [6,7]. Moreover, it
was shown that there is a connectionist realization of this approach based on the
core method [11,1].

However, human reasoning is much more complex than the above mentioned
scenarios and involves – among others – reasoning about actions and causality
including compositionality, concurrency, quick reactions, and resilience in the
face of unexpected events. An architecture for such actions was developed in [2]
based on extended Petri nets. Unfortunately, there is a huge gap between Petri
nets and the logic developed by Hölldobler and Kencana Ramli and it is not at all
obvious how the two approaches can be combined. Moreover, a close inspection
of [2] revealed that some concepts are only specified procedurally.

A central notion in Petri nets are tokens which are consumed and produced
when executing an action. Likewise, in the equational logic programming ap-
proach to actions and causality presented in [12] resources are used. The ap-
proach was later called fluent calculus in [19]. The logic programs in the fluent
calculus admit least models and reasoning is performed with respect to these
models. Hence, the fluent calculus seems to be a promising candidate to add
reasoning about actions and causality to the human reasoning approach of Höll-
dobler and Kencana Ramli.

The goal of the research presented in this paper is to understand the relation
between the fluent calculus and the extended Petri networks used in [2]. To this
end, we will rigorously define various classes of planning problems, we will map
these problems into Petri nets and into the fluent calculus, and we formally prove
that there is a one-to-one correspondence between the two approaches in solving
such problems.

The paper is structured as follows: Following the introduction in Section 1 we
will present main notions and notations in Section 2. Conjunctive and advanced
planning problems are discussed in Sections 3 and 4. In the final Section 5 we
will discuss our results and point to future work. Due to lack of space we cannot
include proofs; they are worked out in detail in [15] if not stated otherwise.

2 Preliminaries

Multisets Multisets are generalizations of sets, where members may occur more
than once. In this paper, multisets are depicted with the help of the parenthesis
{̇ and }̇. ∅̇ denotes the empty multiset and ∪̇, ∩̇, ⊆̇, \̇, .

=, and ˙6= denote the
usual operations and relations on multisets, viz. multiset-union, -intersection,
-subset, -difference, -equality, -inequality, respectively. Moreover, x ∈k M holds
if and if x occurs exactly k times in the multiset M, where k ∈ N.

Petri Nets A Petri net is a tuple (P, T ,F), where P and T are finite sets called
places and transitions, respectively, P ∩ T = ∅, and F ⊆̇ (P × T) ∪̇ (T ×P). A
marking is a finite multisetM over P; its elements are called tokens. The pre-set
•t of t ∈ T is a finite multiset with p ∈k •t iff p ∈ P ∧ (p, t) ∈k F . The post-set
t• of t ∈ T is a finite multiset with p ∈k t• iff p ∈ P ∧ (t, p) ∈k F .

Let N = (P, T ,F) be a Petri net and M, M′, and M′′ be markings. t ∈ T
is enabled at M in N iff •t ⊆̇ M; an enabled transition t can fire leading to

M′, denoted by M [t]−→M′, where M′ .
= (M \̇ • t) ∪̇ t•. Firing sequences are

inductively defined as follows: M []−→ M; if M [t]−→ M′ and M′ w−→ M′′ then

M [t|w]−−−→M′′, where w is a list of transitions. A firing sequence from M to M′
of N is a firing sequence which starts from M and yields M′.

Equational Logic Programming We assume the reader to be familiar with
first-order predicate logic with equality and, in particular, with equational logic
programming as, for example, presented in [9,17,13].

Fluents and Fluent Terms In planning, the notion of a fluent is often used to
describe an item which may be present in one state but not in the next state.
In the fluent calculus, fluents are non-variable terms built over some alphabet
like a, f(a), or f(X), where a is a constant, f a function symbol, and X a
variable; this alphabet must not contain the binary function symbol ◦ and the
constant 1 as these symbols are used to represent multisets of fluents; ground
fluents are fluents which do not contain an occurrence of a variable (e.g., a and

16 Advanced Petri Nets and the Fluent Calculus

f(a)); simple fluents are fluents which are constants (e.g., a). The set of fluent
terms is the smallest set satisfying the following conditions: 1 is a fluent term;
each fluent is a fluent term; if s and t are fluent terms, then so is s ◦ t. As the
sequences of fluents occurring in a fluent term is not important, we consider ◦
to be associative and commutative, and 1 to be a unit element with respect to
◦; let KAC1 be the corresponding equational axioms plus the axioms of equality.

There is a one-to-one correspondence between equivalence classes of fluent
terms with respect to KAC1 and multisets of fluents as follows: Let t be a fluent
term and M a multiset of fluents in:

tI =

∅̇ if t = 1,

{̇t}̇ if t is a fluent,
uI ∪̇ vI if t = u ◦ v,

and M−I =

{
1 if M .

= ∅̇,
s ◦M′−I if M .

= {̇s}̇ ∪̇ M′.

3 Conjunctive Planning Problems

Conjunctive planning problems were considered in [8] to relate the fluent calculus
to the linear connection method and to linear logic. Here, we consider a slightly
simplified version in that we restrict fluents to simple fluents.

A conjunctive planning problem (CPP) is a tuple (I,G,A), where I and G
are finite multisets of simple fluents called initial and goal state, respectively,
and A is a finite set of actions; an action is an expression of the form a : C ⇒ E ,
where a is the name of the action and C and E are finite multisets of simple
fluents called conditions and (immediate) effects, respectively.

Let S be a finite multiset of simple fluents; such multisets are called states in
the sequel. An action a : C ⇒ E is applicable to S iff C ⊆̇ S; its application leads
to the state (S \̇ C) ∪̇ E . A plan is a sequence or list of actions; it transforms
state S into S ′ if and only if S′ is the result of successively applying the actions
occurring in the plan to S. A plan is a solution to a CPP (I,G,A) if and only
if it transforms I into G.

To illustrate CPPs, consider a situation where a man living in an apartment
becomes severely ill and calls the ambulance. The ambulance men decide that he
needs to undergo treatment in a hospital and carry him on a stretcher to the
ambulance. Finally, the ambulance car is driven to the hospital. This problem is
considered as a CPP with fluent ill (denoting the ill man), apt (denoting that he
is in his apartment), amb (denoting that the patient is in the ambulance car), and
hos (denoting that the patient is in the hospital). The action names are c (the
ambulance men are carrying the patient to the ambulance car) and d (driving

to the hospital). Alltogether we obtain a CPP (I,G,A), where I .
= {̇ill , apt }̇,

G .
= {̇ill , hos }̇, and

A .
= {c : {̇ill , apt }̇ ⇒ {̇ill , amb}̇, d : {̇ill , amb}̇ ⇒ {̇ill , hos }̇}.

The goal state G is reached from the initial state I by applying first c yielding
the intermediate state {̇ill , amb}̇ and, thereafter, applying d.

Steffen Hölldobler and Ferdian Jovan 17

3.1 Conjunctive Planning Problems in the Fluent Calculus

This subsection is based on [12], where an equational logic programming solution
to CPPs was presented. For each action a : C ⇒ E in a given CPP a fact

action(C−I , a, E−I)

is specified; let KA be the set of all facts of this form for a given CPP. For the
running example we obtain

KA = {action(ill ◦ apt , c, ill ◦ amb), action(ill ◦ amb, d, ill ◦ hos)}

The applicability of an action is specified by

applicable(C ◦ Z,A,E ◦ Z)← action(C,A,E),

where Z is a variable which will be used to collect all fluents of a state which
are not affected by the application of an action. Causality is specified with the
help of a ternary predicate symbol causes. Intuitively, causes(X,P, Y) is used
to represent that the execution of plan P in state X transforms X into state Y .
causes is specified inductively on the structure of plans, i.e., lists of actions:

causes(X, [], X)
causes(X, [A|P], Y)← applicable(X,A,U) ∧ causes(U,P, Y)

Let KC be the set containing the clauses for applicable and causes. A CPP
(I,G,A) can now be represented in the fluent calculus by the question of whether

KA ∪ KC ∪ KAC1 |= (∃P) causes(I−I , P,G−I),

and SLDE-resolution can be applied to compute an answer substitution for P
encoding a solution for the CPP if it is solvable.

Let FCQ denote the fluent calculus representation of a CPP Q. The following
theorem is proven in [8]:

Theorem 1. Let Q be a CPP. The following statements are equivalent for a
plan p:

1. p is a solution for Q.
2. p is generated by SLDE-resolution for FCQ.

3.2 Conjunctive Planning Problems in Petri Nets

Let Q = (I,G,A) be a CPP. The Petri net NQ = (P, T ,F) together with the
markings I and G is the Petri net representation of Q, where P is the set of all
simple fluents occurring in Q, T is the set of all action names occurring in Q,
(p, t) ∈k F if and only if t : C ⇒ E ∈ A such that p ∈k C, and (t, p) ∈k F if and
only if t : C ⇒ E ∈ A such that p ∈k E .

18 Advanced Petri Nets and the Fluent Calculus

•
apt

c

amb

d

hos

•
ill

Fig. 1. A Petri net for the ill man problem with initial marking {̇apt , ill }̇.

One should observe that for each action a : C ⇒ E in A we find a transition
a ∈ T with •a .

= C and a• .
= E . Conversely, whenever a transition t is enabled

in NQ given a marking M, then there exists an action with name t in A which
is applicable in M.

The question of whether there exists a plan p solving a CPP (I,G,A) is the
question of whether there exists a firing sequence from I to G in NQ. The Petri
net for the running example is depicted in Figure 1. One should observe that
[c, d] is a firing sequence leading from the {̇apt , ill }̇ to {̇ill , hos }̇.

3.3 Petri Net versus Fluent Calculus Representations

As a first result we extend Theorem 1. Throughout this subsection, let Q be the
CPP (I,G,A) and FCQ and NQ be its representations in the fluent calculus and
in Petri nets, respectively.

Theorem 2. The following statements are equivalent for a plan p:

1. p is a solution for Q.
2. p is generated by SLDE-resolution for FCQ.
3. p is a firing sequence from I to G in NQ.

Proof. Because of Theorem 1 it suffices to show that the 2. and 3. are equivalent.
By induction on the number of transitions occurring in p in can be shown that
3. implies 2.. The converse can be shown to hold by induction on the number of
actions occurring in p.

4 Advanced Planning Problems

In conjunctive planning problems, all conditions of an action are consumed when
the action is executed. In this section we extend planning problems to allow
preconditions which are only tested when an action is executed but are not
consumed and to allow obstacles which prevent an action from being executed
even if its conditions are satisfied.

An advanced conjunctive planning problem (ACPP) is a tuple (I,G,A), where
I and G are finite multisets of simple fluents called initial and goal state, re-
spectively, and A is a finite set of advanced actions; an advanced action is an

Steffen Hölldobler and Ferdian Jovan 19

expression of the form a : C R,O
==⇒ E , where a is the name of the action, C, R, O

and E are multisets of simple fluents called conditions, preconditions, obstacles,
and effects, respectively, and C ∩̇ E .

= ∅̇.
Let S be a state. An extended action a : C R,O

==⇒ E is applicable to S if and
only if C ⊆̇ S, R ⊆̇ S, and ∀e ∈k O(e ∈j S → j < k). Its application yields

the state (S \̇ C) ∪̇ E . If the last condition in the definition of applicability to
S is violated, i.e., if there is an extended action with name a, obstacles O and
e ∈k O, and e ∈j S such that j ≥ k, then a is hindered in S. Plans and solutions
are defined as before.

To illustrate ACPPs we modify the running example by assuming that the
patient was so fat that he did not fit through the appartment door. Hence, the
ambulance men cannot carry him to the ambulance car. We introduce an ad-
ditional fluent fat and obtain the ACPP (I,G,A), where I .

= {̇ill , fat , apt }̇,
G .

= {̇ill , fat , hos }̇, and

A .
= {c : {̇apt }̇ {̇ill }̇,{̇fat }̇======⇒ {̇amb}̇, d : {̇amb}̇ {̇ill }̇,∅̇====⇒ {̇hos }̇}.

Obviously, this ACPP cannot be solved as the obstacle fat hinders the application
of the action c. By the way, the ill man was later rescued with a help of a mobile
cran, which carried him out of his apartment through a window.

4.1 Advanced Planning Problems in Petri Nets

Petri nets were extended by so-called inhibitory arcs, which may by weighted
and which increase the modeling power of Petri nets to the level of Turing
machines [16,5,4]. We combine inhibitor arcs with so-called test arcs, which were
introduced in [2] to allow for places, which may contain real-valued or discrete
tokens in order to enable an action, but which are not consumed.

An advanced Petri net is a tuple (P, T ,F ,H,L), where (P, T ,F) is a Petri
net, H ⊆̇ P × T , and L ⊆̇ P × T ; H and L are the multiset of inhibitory and
test arcs, respectively. The multiset Ht of inhibitory places of transition t ∈ T is
defined by p ∈k Ht if and only if p ∈ P ∧ (p, t) ∈k H. Likewise, the multiset Nt of
test places of transition t is defined as p ∈k Nt if and only if p ∈ P ∧ (p, t) ∈k L.

Let N = (P, T ,F ,H,L) be an advanced Petri net andM a marking. t ∈ T is
enabled atM in N if and only if •t ⊆̇ M, ∀p ∈ P((p, t) ∈k L∧p ∈j M→ k ≤ j),
and ∀p ∈ P((p, t) ∈m H ∧ p ∈n M → m > n). The notions fire and firing
sequence are defined as before.

Let Q = (I,G,A) be an ACPP. The Petri net NAQ = (P, T ,F ,H,L) together
with the markings I and G is the Petri net representation of Q, where P, T , and

F are defined as in Subsection 3.2, (p, t) ∈k H if and only if ∃(t : C R,O
==⇒ E) ∈ A

such that p ∈k O, and (p, t) ∈k L if and only if ∃(t : C R,O
==⇒ E) ∈ A such that

p ∈k R. The Petri net for the modified running example is shown in Figure 2.

From this definition we learn that for every action t : C R,O
==⇒ E in A we find a

transition t ∈ NAQ with Ht .
= O, Nt .

= R, •t .
= C, and t• .

= E . One should observe

20 Advanced Petri Nets and the Fluent Calculus

•
apt

c

amb

d

hos

•
ill

•
fat

Fig. 2. The advanced Petri net for the modified running example with initial marking.
Test arcs are depicted by dashed arrows, inhibitory arcs by arrows with a diamond
head.

that the requirements for enabling a transition in NAQ are the requirements for
the applicability of an action in Q. Hence, a transition t is enabled at marking
M in NAQ if and only if there exists an action t in Q with t being applicable in
M.

4.2 Advanced Planning Problems in the Fluent Calculus

To maintain the additional features of ACPPs several new facts and rules are
added to the fluent calculus representation introduced in Subsection 3.1. For

each advanced action a : C R,O
==⇒ E and each obstacle o ∈k O the fact

inhib(

k times︷ ︸︸ ︷
o ◦ . . . ◦ o, a)

is added to KA. In addition, for each advanced action a : C R,O
==⇒ E the fact

precon(R−I , A)

is added to KA; it is used in the (modified) definition of applicable to test whether
all preconditions are met. For our modified running example we obtain

KA = { action(apt , c, amb), action(amb, d, hos),
inhib(fat , c), precon(ill , c), precon(ill , d) }.

The rule

hinder(X ◦ Z,A)← inhib(X,A)

is added to KC to prohibit the application of action A whenever sufficiently
many obstacles X are present in a state X ◦ Z. The definition of applicable in
KC is modified to

applicable(C ◦ Z,A,E ◦ Z)← action(C,A,E) ∧
precon(R,A) ∧ R ◦ Y ≈ C ◦ Z ∧
¬hinder(C ◦ Z,A)

Steffen Hölldobler and Ferdian Jovan 21

where the subgoal R ◦ Y ≈ C ◦ Z is used to check whether the preconditions R
of action A are satisfied in state C ◦Z. As the equality predicate ≈ is now used
explicitly as a subgoal, the axiom of reflexivity

X ≈ X

must be added to KC , effectively forcing the AC1-unification of the left-hand
and the right-hand side of the subgoal R ◦ Y ≈ C ◦ Z.

Let KAA and KAC be the modified sets of clauses for a given ACPP (I,G,A).
The ACPP can now be presented in the fluent calculus by the question of whether

KAA ∪ KAC ∪ KAC1 |= (∃P) causes(I−I , P,G−I),

and SLDENF-resolution can be applied to compute an answer substitution for P ,
if existing [13]. SLDENF-resolution is sound [17], but it is only shown to be
complete if the completion of KAA ∪ KAC ∪ KAC1 is satisfiable and SLDENF-
derivations neither flounder nor are infinite [13].

Lemma 3. The completion of KAA ∪ KAC ∪ KAC1 is satisfiable.

Proof. By construction of a model for the completion KAA ∪ KAC ∪ KAC1.

Regarding the question of whether SLDENF-derivations flounder or are infi-
nite we observe that the definition of causes is recursive in the second argument,
which is a list. If the length of this list is known in advance and the first argument
of causes is a ground fluent term (which holds by the definition of a planning
problem), then SLDENF-derivations neither flounder nor are infinite.

Proposition 4. Let s be a ground fluent term and a the name of an action.
Then, each SLDENF-derivation of ←hinder(s, a) is finite.

Proof. Follows immediately from the definition of hinder and inhib.

Proposition 5. No SLDENF-derivation of ← causes(I−I , [A1, . . . , An],G−I)
flounders or is infinite.

Proof. By induction on n.

Based on this result we must refine the fluent calculus representation of an
ACPP to the question of whether

KAA ∪ KAC ∪ KAC1 |= (∃A1, . . . , An) causes(I−I , [A1, . . . , An],G−I).

and iteratively increase n in the search for a solution of the planning problem.
Finally, we show that hinder prevents actions from being applicable:

Proposition 6. There are enough obstacles in a state S to hinder an advanced
action a if and only if there is an SLDENF-resolution proof of ←hinder(S−I , a).

Proof. Follows from the definitions of hinder and inhib.

22 Advanced Petri Nets and the Fluent Calculus

4.3 Petri Nets versus Fluent Calculus Representations

Throughout this subsection, let Q be the ACPP (I,G,A), FCAQ and NAQ be
its representations in the advanced fluent calculus and the advanced Petri nets,
respectively, and p be the plan [a1, . . . , an].

Theorem 7. The following statements are equivalent for a plan p:

1. p is a solution for Q.
2. p is generated by SLDENF-resolution for FCAQ.

3. p is a firing sequence from I to G in NAQ .

Proof. The theorem is obtained if we can prove that 1. implies 2., 2. implies 3.,
and 3. implies 1. These implications can be shown by inductions on the length
of the plan p, on the length of the SLDENF-resolution refutation, and on the
length of the firing sequence, respectively.

5 Discussion

In this paper we have shown that there is a close correspondence between Petri
nets and the fluent calculus for conjunctive planning problems. This correspon-
dence is preserved if we extended Petri nets and the fluent calculus by test and
inhibitory arcs. The correspondence can be even further extended to planning
problems with fluents containing real values as investigated in [15]. In [2], it was
shown that Petri nets can be combined with Bayes nets via real-valued fluents,
and, hence, it should now be possible to combine the fluent calculus and Bayes
nets. However, this needs to be rigourously investigated in the near future.

Whereas in this paper we were computing answer substitutions by SLDE-
and SLDENF-resolution in the fluent calculus, we also like to invesigate the
corresponding fixpoint characterization of the fluent calculus. This is the obvious
next step in order to combine the human reasoning approach mentioned in the
introduction with reasoning about actions and causality in the fluent calculus.
Finally, the ultimate goal is a connectionist realization of the combined approach
within the core method [11,1].

Acknowledgements We would like to thank Bertram Fronhöfer and Christoph
Wernhard for many fruitful discussions and the anonymous referees for there
comments.

References

1. S. Bader and S. Hölldobler. The core method: Connectionist model generation.
In S. Kollias et. al., editor, Proceedings of the 16th International Conference on
Artificial Neural Networks (ICANN), volume 4132 of Lecture Notes in Computer
Science, pages 1–13. Springer, 2006.

2. L. Barrett. An Architecture for Structured, Concurrent, Real-time Action. PhD
thesis, Computer Science Division, University of California at Berkeley, 2010.

Steffen Hölldobler and Ferdian Jovan 23

3. R. M. J. Byrne. Suppressing valid inferences with conditionals. Cognition, 31:61–83,
1989.

4. R. David and H. Alla. On hybrid Petri nets. Discrete Event Dynamic Systems,
11(1-2):9–40, 2001.

5. J. Desel and W. Reisig. Lectures on Petri Nets I: Basic Models, volume 1491 of
LNCS, chapter Place/Transition Petri Nets, pages 122–173. Springer, 1998.

6. E.-A. Dietz, S. Hölldobler, and M. Ragni. A computational logic approach to the
suppression task. In N. Miyake, D. Peebles, and R. P. Cooper, editors, Proceedings
of the 34th Annual Conference of the Cognitive Science Society, pages 1500–1505.
Cognitive Science Society, 2012.

7. E.-A. Dietz, S. Hölldobler, and M. Ragni. A computational logic approach to
the abstract and the social case of the selection task. In Proceedings Eleventh
International Symposium on Logical Formalizations of Commonsense Reasoning,
2013.

8. G. Große, S. Hölldobler, and J. Schneeberger. Linear deductive planning. Journal
of Logic and Computation, 6(2):233–262, 1996.

9. S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lec-
ture Notes in Artificial Intelligence. Springer, Berlin, 1989.

10. S. Hölldobler and C. D. P. Kencana Ramli. Logic programs under three-valued
 Lukasiewicz’s semantics. In P. M. Hill and D. S. Warren, editors, Logic Program-
ming, volume 5649 of Lecture Notes in Computer Science, pages 464–478. Springer
Berlin Heidelberg, 2009.

11. S. Hölldobler and C. D. P. Kencana Ramli. Logics and networks for human rea-
soning. In C. Alippi, Marios M. Polycarpou, Christos G. Panayiotou, and Georgios
Ellinasetal, editors, Artificial Neural Networks – ICANN, volume 5769 of Lecture
Notes in Computer Science, pages 85–94. Springer Berlin Heidelberg, 2009.

12. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New
Generation Computing, 8:225–244, 1990.

13. S. Hölldobler and M. Thielscher. Computing change and specificity with equational
logic programs. Annals of Mathematics and Artificial Intelligence, 14:99–133, 1995.

14. P.N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Cambridge University Press, Cambridge, 1983.

15. F. Jovan. Planning problems in Petri nets and fluent calculus. Master’s thesis, TU
Dresden, Faculty of Computer Science, 2014.

16. T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, volume 77, pages 541–580, 1989.

17. J. C. Shepherdson. SLDNF–resolution with equality. Journal of Automated Rea-
soning, 8:297–306, 1992.

18. K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive Science.
MIT Press, 2008.

19. M. Thielscher. Introduction to the fluent calculus. Electronic Transactions on
Artificial Intelligence, 2:179–192, 1998.

24 Advanced Petri Nets and the Fluent Calculus

