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Preface
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students from Russia and Europe to present and to discuss their new scientific
results in Information Processing.

We have accepted eight technical papers and a tutorial for presentation at the
workshop and publication in these proceedings. The papers were reviewed by an
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Ulrich Furbach, Joáo Leite, Igor Mandriza, Sergei Obiedkov, Josef Schneeberger,
and Sergio Tessaris for providing the reviews.
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particular, Oxana Mesentseva, Tatyana Kortchagina and her team of the Inter-
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organizing this event.
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Review of Modern Techniques of Qualitative
Data Clustering

Sergey Cherevko and Andrey Malikov

The North Caucasus Federal University, Institute of Information Technology
and Telecommunications

cherevkosa92@gmail.com, malikov@ncstu.ru

Abstract: This article made a brief comparative survey of modern cluster-
ing algorithms quantitative and qualitative data. As a practical component to
the process of analysis of algorithms used in the task of analyzing the consumer
basket. The examples of commercial use of clustering algorithms, described the
current problems of using cluster analysis.

Keywords: cluster analysis, qualitative data, algorithm Clope, Kohonen‘s
maps, overview of clustering algorithms

1 Introduction

In general, the concept of clustering and cluster analysis can be described as
segmentation of a set of objects into different groups, called clusters. Affinity
between objects from a same cluster should be higher than affinity between
objects from different clusters. In the process of applying the techniques of
clustering in the bulk of the tasks the number of clusters is unknown in advance
- this characteristic is defined in the algorithm, but it’s worth noting that there
are algorithms that require initial quantification of finite groups.

The possibility of applying different clustering algorithms and their perfor-
mance is determined by the following set of indicators:

1. Type of data to be clustered. Conditionally data types are divided into
numerical continuous (values of a certain period: adult height, projectile
range), discrete numerical (values from a list of some specific numbers:
the number of children in the family, the number of clients seeking day)
and categorical (descriptive characteristic feature of any object).

2. Dimensionality of the data set to be clustered. In accordance with this
feature, you can select the algorithms that work only with sets of small
sizes (for large samples, the effectiveness of these techniques falls due to
low performance of the algorithm), and algorithms designed to handle
large and very large data sets (in this case, however, quality of created
clusters may suffer) [1].

3. Dimensionality of the data set being evaluated. If the set contains a large
amount of emissions, some algorithms can give incorrect results misrepre-
sent the nature and composition of the clusters.



2 Descriptive Comparison of Clustering Algo-
rithms

If we talk about the current level of clustering techniques, it should be noticed
that the range of techniques regarded to the analysis of quantitative data is
wide enough and allows you to perform the tasks of clustering in accordance
with all requirements to processing speed and quality of the final result. The
most well-known representatives of numeric data clustering algorithms are:

1. Algorithm Clustering Using Representatives.

2. Algorithm Balanced Iterative Reducing and Clustering using Hierarchies.

3. Algorithm HCM (Hard C - Means).

Usage of the aforementioned methods for clustering categorical data is inef-
ficient, and often impossible. The main difficulties are associated with high di-
mensionality and huge volumes of data that often characterizes such databases,
because the pairwise comparison of the characteristics of objects from multi-
million records database tables can take quite a long period of time. Clustering
algorithms of aforementioned types are currently having a number of special
requirements - recommendations that will optimize performance when working
with large amounts of data:

1. Ability to work in a limited amount of RAM.

2. The algorithm should work under the condition that the information from
the database can be gathered only in the forward-only cursor.

3. Ability to abort the algorithm with preservation of intermediate results
with the possibility of resuming the process of data processing.

4. Minimizing the number of requests for the full database table scan [2].

Currently, the most promising and popular clustering algorithms qualitative
data include:

Currently, the most promising and popular algorithms for clustering quali-
tative data include:

1. Algorithm Clope. The main advantages of this algorithm are speed and
quality of clustering which are achieved by using the estimated global op-
timization criterion based on the maximization of the gradient histogram
cluster height. During its operation, the algorithm stores a small amount
of information on each of the clusters in memory, and requires a minimum
number of data sets scans. Number of clusters is automatically selected by
the algorithm based on the coefficient of repulsion, which was originally
set by the user (the more the level of the coefficient is, the lower the level
of similarity will be, and more clusters will be generated). [3]
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2. Algorithm LargeItem, which was developed in 1999 as an optimized algo-
rithm for clustering data sets based on the appraised, absolute function
that uses the support parameter.

3. Kohonen maps (this method is applicable to both qualitative and quanti-
tative indicators). Allows you to identify useful and non-trivial patterns,
consider the influence of hundreds of factors, visualize complex multidi-
mensional clusters in the form of clear and accessible maps.

4. Hierarchical clustering, as an example of MST (Algorithm based on Min-
imum Spanning Trees). MST algorithm first builds minimum spanning
tree on the graph, and then sequentially removes edge with the largest
weight. The disadvantage is the high degree of dependence on emissions
contained in the data sets [4].

3 Comparison of Algorithms Clope and Koho-
nen‘s Maps for the Problem of the Consumer
Basket

For a more practical comparison of algorithms we will describe a typical clus-
tering problem: the consumer’s basket analysis. The aim is to define a set of
products that are most often found in one check (or order).

3.1 Algorithm Clope

”Clope” algorithm functionality is based on the idea of maximizing the global
cost function, which increases the degree of similarity of transactions in the
clusters by increasing the parameter of cluster histogram. Consider a simple
example, we have 5 consumer checks:

1. {[bread, milk]}.

2. {[bread, milk, sour cream]}.

3. {[bread, sour cream, cheese]}.

4. {[cheese, sausage]}.

5. {[cheese, sausage, peppers]}.

Suppose that we already have two partitions into clusters:

1. {[bread, milk, bread, milk, sour cream, bread, sour cream, cheese] [cheese,
sausage, cheese, sausage, peppers]}.

2. {[bread, milk, bread, milk, sour cream}, {[bread, sour cream, cheese,
cheese, sausage, cheese, sausage, peppers]}.

Sergey Cherevko and Andrey Malikov 9



Let’s calculate the height (H) and width of the cluster (W) for both clusters.

Figure 1 - distribution of the first cluster

Figure 2 - distribution of the second cluster

H - height of the chart, is calculated as the average height (density) of all
the columns in the chart. For example, for the first cluster we got H = 2 as a
result of the following arithmetic operation:

(3 +2 +2 +1) / 4 = 2.
W - the width of the cluster, which is equal to the number of columns in the

cluster. To determine the quality of the partition clusters by Clope it is necessary
to calculate cluster diagram parameter (H / W) for both distributions. For the
first cluster it will be (2 + 1.67) / (3 + 4) = 0.52. For the second cluster,
respectively (1.67 + 1.67) / (3 + 5) = 0.41. Obviously, the first partition is
better option because cluster diagram parameter is higher, which indicates that
the transaction have a large overlap with each other.

3.2 Kohonen’s Maps

Let’s try to perform this distribution using Kohonen maps. Compose a text
file containing information about the checks. Column ”Id” corresponds to the
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check box and ”Item” describes the subject contained in the check.

Figure 3 - The composition of a text file for processing

Processing options in the input file define that we want to get 2 clusters as
a result of processing, composed on the basis of field ”Item”. Neurons odds left
by default, without changing the coefficients. The result of the processing is
following (see Figure 4, 5).

Figure 4 - a graphic representation of the clusters

Sergey Cherevko and Andrey Malikov 11



Figure 5 - Distribution of the consumer basket items in clusters

According to the results of distribution two clusters were allocated, the first
checks were 1,2,3, the second 4,5. Distribution is obtained similarly to distri-
bution provided by Clope algorithm. Basic formula, in which the distribution is
a function of the neighborhood, allows us to define a ”measure neighborhood”
nodes compared:

hci(t) = α(t)×exp(− ||rc−ri||
2

2σ2(t) ), where 0 < α(t) < 1 is learner and decreasing

factor, ri and rj are coordinates of nodes Mi(t) and Mc(t). The last step of the
algorithm is to change the vectors of weights on approaching the observation
under consideration:

mi(t) = mi(t− 1) + hci(t)× (x(t)−mi(t− 1)).
As the results of the algorithm, the user has a visual map, where similar

indicators will be grouped into visually isolated clusters.

4 Conclusion

Nowadays there is enough of active practical usage of clustering methods, as it
makes work with homogeneous data sets much easier and allows the usage of
specific methods of treatment which are not suitable for the total sample. In
fact, the bigger and bigger funds are conducted by different companies around
the globe to provide scientific segmentation and clustering of customers and
end-products. The most famous events in this direction are: ”Svyaznoi” com-
pany with their program ”Svyaznoi Club”, Bank of Moscow with the targeted
marketing automation system SAS Marketing Automation, ”PSB”, ”Tinkoff”
bank and many others. For example, the company ”Svyaznoi” in its loyalty pro-
gram ”Svyaznoi Club” implemented deep customer segmentation - cardholders
of ”Svyaznoi Club”. Specialists from BaseGroup Labs and analytical platform
Deductor were involved to solve this problem. They helped to process the entire
array of raw data, and built more than 120 classification models for client’s re-
sponse per share. Despite the fairly extensive use of qualitative data clustering
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methods there are a number of topical issues that hinder the work and further
developments: 1. Lack of comparable treatment for describing objects with at-
tributes of different nature, measured in different units. 2. The complexity of
making a formalized description of objects having both qualitative and quan-
titative traits. 3. The problem of detecting and displaying the artifacts in the
source data. The need to develop such clustering method that would identify
artifacts in the source data and either exclude them from the final result, or
carry specific processing to visually represent the fact of ”break out”.
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Advanced Petri Nets and the Fluent Calculus

Steffen Hölldobler and Ferdian Jovan

International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany
sh@iccl.tu-dresden.de ferdian.jovan@gmail.com

Abstract. In this paper we discuss conjunctive planning problems in
the context of the fluent calculus and Petri nets. We show that both
formalisms are equivalent in solving these problems. Thereafter, we ex-
tend actions to contain preconditions as well as obstacles. This requires
to extend the fluent calculus as well as Petri nets. Again, we show that
both extended formalisms are equivalent.

1 Introduction

It is widely believed that humans generate models and reason with respect to
these models [14]. It is less widely believed that logics can be used to adequately
model human reasoning [3]. Based on ideas first presented in [18], Hölldobler
and Kencana Ramli [10] have developed a logic based on weakly completed
logic programs and interpreted under the three-valued  Lukasiewicz semantics;
this logic was shown to adequately model human reasoning scenarios like the
suppression and the selection task by generating a least model of an appropriate
logic program and reasoning with respect to this least model [6,7]. Moreover, it
was shown that there is a connectionist realization of this approach based on the
core method [11,1].

However, human reasoning is much more complex than the above mentioned
scenarios and involves – among others – reasoning about actions and causality
including compositionality, concurrency, quick reactions, and resilience in the
face of unexpected events. An architecture for such actions was developed in [2]
based on extended Petri nets. Unfortunately, there is a huge gap between Petri
nets and the logic developed by Hölldobler and Kencana Ramli and it is not at all
obvious how the two approaches can be combined. Moreover, a close inspection
of [2] revealed that some concepts are only specified procedurally.

A central notion in Petri nets are tokens which are consumed and produced
when executing an action. Likewise, in the equational logic programming ap-
proach to actions and causality presented in [12] resources are used. The ap-
proach was later called fluent calculus in [19]. The logic programs in the fluent
calculus admit least models and reasoning is performed with respect to these
models. Hence, the fluent calculus seems to be a promising candidate to add
reasoning about actions and causality to the human reasoning approach of Höll-
dobler and Kencana Ramli.



The goal of the research presented in this paper is to understand the relation
between the fluent calculus and the extended Petri networks used in [2]. To this
end, we will rigorously define various classes of planning problems, we will map
these problems into Petri nets and into the fluent calculus, and we formally prove
that there is a one-to-one correspondence between the two approaches in solving
such problems.

The paper is structured as follows: Following the introduction in Section 1 we
will present main notions and notations in Section 2. Conjunctive and advanced
planning problems are discussed in Sections 3 and 4. In the final Section 5 we
will discuss our results and point to future work. Due to lack of space we cannot
include proofs; they are worked out in detail in [15] if not stated otherwise.

2 Preliminaries

Multisets Multisets are generalizations of sets, where members may occur more
than once. In this paper, multisets are depicted with the help of the parenthesis
{̇ and }̇. ∅̇ denotes the empty multiset and ∪̇, ∩̇, ⊆̇, \̇, .

=, and ˙6= denote the
usual operations and relations on multisets, viz. multiset-union, -intersection,
-subset, -difference, -equality, -inequality, respectively. Moreover, x ∈k M holds
if and if x occurs exactly k times in the multiset M, where k ∈ N.

Petri Nets A Petri net is a tuple (P, T ,F), where P and T are finite sets called
places and transitions, respectively, P ∩ T = ∅, and F ⊆̇ (P × T ) ∪̇ (T ×P). A
marking is a finite multisetM over P; its elements are called tokens. The pre-set
•t of t ∈ T is a finite multiset with p ∈k •t iff p ∈ P ∧ (p, t) ∈k F . The post-set
t• of t ∈ T is a finite multiset with p ∈k t• iff p ∈ P ∧ (t, p) ∈k F .

Let N = (P, T ,F) be a Petri net and M, M′, and M′′ be markings. t ∈ T
is enabled at M in N iff •t ⊆̇ M; an enabled transition t can fire leading to

M′, denoted by M [t]−→M′, where M′ .
= (M \̇ • t) ∪̇ t•. Firing sequences are

inductively defined as follows: M [ ]−→ M; if M [t]−→ M′ and M′ w−→ M′′ then

M [t|w]−−−→M′′, where w is a list of transitions. A firing sequence from M to M′
of N is a firing sequence which starts from M and yields M′.

Equational Logic Programming We assume the reader to be familiar with
first-order predicate logic with equality and, in particular, with equational logic
programming as, for example, presented in [9,17,13].

Fluents and Fluent Terms In planning, the notion of a fluent is often used to
describe an item which may be present in one state but not in the next state.
In the fluent calculus, fluents are non-variable terms built over some alphabet
like a, f(a), or f(X), where a is a constant, f a function symbol, and X a
variable; this alphabet must not contain the binary function symbol ◦ and the
constant 1 as these symbols are used to represent multisets of fluents; ground
fluents are fluents which do not contain an occurrence of a variable (e.g., a and
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f(a)); simple fluents are fluents which are constants (e.g., a). The set of fluent
terms is the smallest set satisfying the following conditions: 1 is a fluent term;
each fluent is a fluent term; if s and t are fluent terms, then so is s ◦ t. As the
sequences of fluents occurring in a fluent term is not important, we consider ◦
to be associative and commutative, and 1 to be a unit element with respect to
◦; let KAC1 be the corresponding equational axioms plus the axioms of equality.

There is a one-to-one correspondence between equivalence classes of fluent
terms with respect to KAC1 and multisets of fluents as follows: Let t be a fluent
term and M a multiset of fluents in:

tI =




∅̇ if t = 1,

{̇t}̇ if t is a fluent,
uI ∪̇ vI if t = u ◦ v,

and M−I =

{
1 if M .

= ∅̇,
s ◦M′−I if M .

= {̇s}̇ ∪̇ M′.

3 Conjunctive Planning Problems

Conjunctive planning problems were considered in [8] to relate the fluent calculus
to the linear connection method and to linear logic. Here, we consider a slightly
simplified version in that we restrict fluents to simple fluents.

A conjunctive planning problem (CPP) is a tuple (I,G,A), where I and G
are finite multisets of simple fluents called initial and goal state, respectively,
and A is a finite set of actions; an action is an expression of the form a : C ⇒ E ,
where a is the name of the action and C and E are finite multisets of simple
fluents called conditions and (immediate) effects, respectively.

Let S be a finite multiset of simple fluents; such multisets are called states in
the sequel. An action a : C ⇒ E is applicable to S iff C ⊆̇ S; its application leads
to the state (S \̇ C) ∪̇ E . A plan is a sequence or list of actions; it transforms
state S into S ′ if and only if S′ is the result of successively applying the actions
occurring in the plan to S. A plan is a solution to a CPP (I,G,A) if and only
if it transforms I into G.

To illustrate CPPs, consider a situation where a man living in an apartment
becomes severely ill and calls the ambulance. The ambulance men decide that he
needs to undergo treatment in a hospital and carry him on a stretcher to the
ambulance. Finally, the ambulance car is driven to the hospital. This problem is
considered as a CPP with fluent ill (denoting the ill man), apt (denoting that he
is in his apartment), amb (denoting that the patient is in the ambulance car), and
hos (denoting that the patient is in the hospital). The action names are c (the
ambulance men are carrying the patient to the ambulance car) and d (driving

to the hospital). Alltogether we obtain a CPP (I,G,A), where I .
= {̇ill , apt }̇,

G .
= {̇ill , hos }̇, and

A .
= {c : {̇ill , apt }̇ ⇒ {̇ill , amb}̇, d : {̇ill , amb}̇ ⇒ {̇ill , hos }̇}.

The goal state G is reached from the initial state I by applying first c yielding
the intermediate state {̇ill , amb}̇ and, thereafter, applying d.

Steffen Hölldobler and Ferdian Jovan 17



3.1 Conjunctive Planning Problems in the Fluent Calculus

This subsection is based on [12], where an equational logic programming solution
to CPPs was presented. For each action a : C ⇒ E in a given CPP a fact

action(C−I , a, E−I)

is specified; let KA be the set of all facts of this form for a given CPP. For the
running example we obtain

KA = {action(ill ◦ apt , c, ill ◦ amb), action(ill ◦ amb, d, ill ◦ hos)}

The applicability of an action is specified by

applicable(C ◦ Z,A,E ◦ Z)← action(C,A,E),

where Z is a variable which will be used to collect all fluents of a state which
are not affected by the application of an action. Causality is specified with the
help of a ternary predicate symbol causes. Intuitively, causes(X,P, Y ) is used
to represent that the execution of plan P in state X transforms X into state Y .
causes is specified inductively on the structure of plans, i.e., lists of actions:

causes(X, [ ], X)
causes(X, [A|P ], Y )← applicable(X,A,U) ∧ causes(U,P, Y )

Let KC be the set containing the clauses for applicable and causes. A CPP
(I,G,A) can now be represented in the fluent calculus by the question of whether

KA ∪ KC ∪ KAC1 |= (∃P ) causes(I−I , P,G−I),

and SLDE-resolution can be applied to compute an answer substitution for P
encoding a solution for the CPP if it is solvable.

Let FCQ denote the fluent calculus representation of a CPP Q. The following
theorem is proven in [8]:

Theorem 1. Let Q be a CPP. The following statements are equivalent for a
plan p:

1. p is a solution for Q.
2. p is generated by SLDE-resolution for FCQ.

3.2 Conjunctive Planning Problems in Petri Nets

Let Q = (I,G,A) be a CPP. The Petri net NQ = (P, T ,F) together with the
markings I and G is the Petri net representation of Q, where P is the set of all
simple fluents occurring in Q, T is the set of all action names occurring in Q,
(p, t) ∈k F if and only if t : C ⇒ E ∈ A such that p ∈k C, and (t, p) ∈k F if and
only if t : C ⇒ E ∈ A such that p ∈k E .
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•
apt

c

amb

d

hos

•
ill

Fig. 1. A Petri net for the ill man problem with initial marking {̇apt , ill }̇.

One should observe that for each action a : C ⇒ E in A we find a transition
a ∈ T with •a .

= C and a• .
= E . Conversely, whenever a transition t is enabled

in NQ given a marking M, then there exists an action with name t in A which
is applicable in M.

The question of whether there exists a plan p solving a CPP (I,G,A) is the
question of whether there exists a firing sequence from I to G in NQ. The Petri
net for the running example is depicted in Figure 1. One should observe that
[c, d] is a firing sequence leading from the {̇apt , ill }̇ to {̇ill , hos }̇.

3.3 Petri Net versus Fluent Calculus Representations

As a first result we extend Theorem 1. Throughout this subsection, let Q be the
CPP (I,G,A) and FCQ and NQ be its representations in the fluent calculus and
in Petri nets, respectively.

Theorem 2. The following statements are equivalent for a plan p:

1. p is a solution for Q.
2. p is generated by SLDE-resolution for FCQ.
3. p is a firing sequence from I to G in NQ.

Proof. Because of Theorem 1 it suffices to show that the 2. and 3. are equivalent.
By induction on the number of transitions occurring in p in can be shown that
3. implies 2.. The converse can be shown to hold by induction on the number of
actions occurring in p.

4 Advanced Planning Problems

In conjunctive planning problems, all conditions of an action are consumed when
the action is executed. In this section we extend planning problems to allow
preconditions which are only tested when an action is executed but are not
consumed and to allow obstacles which prevent an action from being executed
even if its conditions are satisfied.

An advanced conjunctive planning problem (ACPP) is a tuple (I,G,A), where
I and G are finite multisets of simple fluents called initial and goal state, re-
spectively, and A is a finite set of advanced actions; an advanced action is an
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expression of the form a : C R,O
==⇒ E , where a is the name of the action, C, R, O

and E are multisets of simple fluents called conditions, preconditions, obstacles,
and effects, respectively, and C ∩̇ E .

= ∅̇.
Let S be a state. An extended action a : C R,O

==⇒ E is applicable to S if and
only if C ⊆̇ S, R ⊆̇ S, and ∀e ∈k O(e ∈j S → j < k). Its application yields

the state (S \̇ C) ∪̇ E . If the last condition in the definition of applicability to
S is violated, i.e., if there is an extended action with name a, obstacles O and
e ∈k O, and e ∈j S such that j ≥ k, then a is hindered in S. Plans and solutions
are defined as before.

To illustrate ACPPs we modify the running example by assuming that the
patient was so fat that he did not fit through the appartment door. Hence, the
ambulance men cannot carry him to the ambulance car. We introduce an ad-
ditional fluent fat and obtain the ACPP (I,G,A), where I .

= {̇ill , fat , apt }̇,
G .

= {̇ill , fat , hos }̇, and

A .
= {c : {̇apt }̇ {̇ill }̇,{̇fat }̇======⇒ {̇amb}̇, d : {̇amb}̇ {̇ill }̇,∅̇====⇒ {̇hos }̇}.

Obviously, this ACPP cannot be solved as the obstacle fat hinders the application
of the action c. By the way, the ill man was later rescued with a help of a mobile
cran, which carried him out of his apartment through a window.

4.1 Advanced Planning Problems in Petri Nets

Petri nets were extended by so-called inhibitory arcs, which may by weighted
and which increase the modeling power of Petri nets to the level of Turing
machines [16,5,4]. We combine inhibitor arcs with so-called test arcs, which were
introduced in [2] to allow for places, which may contain real-valued or discrete
tokens in order to enable an action, but which are not consumed.

An advanced Petri net is a tuple (P, T ,F ,H,L), where (P, T ,F) is a Petri
net, H ⊆̇ P × T , and L ⊆̇ P × T ; H and L are the multiset of inhibitory and
test arcs, respectively. The multiset Ht of inhibitory places of transition t ∈ T is
defined by p ∈k Ht if and only if p ∈ P ∧ (p, t) ∈k H. Likewise, the multiset Nt of
test places of transition t is defined as p ∈k Nt if and only if p ∈ P ∧ (p, t) ∈k L.

Let N = (P, T ,F ,H,L) be an advanced Petri net andM a marking. t ∈ T is
enabled atM in N if and only if •t ⊆̇ M, ∀p ∈ P((p, t) ∈k L∧p ∈j M→ k ≤ j),
and ∀p ∈ P((p, t) ∈m H ∧ p ∈n M → m > n). The notions fire and firing
sequence are defined as before.

Let Q = (I,G,A) be an ACPP. The Petri net NAQ = (P, T ,F ,H,L) together
with the markings I and G is the Petri net representation of Q, where P, T , and

F are defined as in Subsection 3.2, (p, t) ∈k H if and only if ∃(t : C R,O
==⇒ E) ∈ A

such that p ∈k O, and (p, t) ∈k L if and only if ∃(t : C R,O
==⇒ E) ∈ A such that

p ∈k R. The Petri net for the modified running example is shown in Figure 2.

From this definition we learn that for every action t : C R,O
==⇒ E in A we find a

transition t ∈ NAQ with Ht .
= O, Nt .

= R, •t .
= C, and t• .

= E . One should observe
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•
apt

c

amb

d

hos

•
ill

•
fat

Fig. 2. The advanced Petri net for the modified running example with initial marking.
Test arcs are depicted by dashed arrows, inhibitory arcs by arrows with a diamond
head.

that the requirements for enabling a transition in NAQ are the requirements for
the applicability of an action in Q. Hence, a transition t is enabled at marking
M in NAQ if and only if there exists an action t in Q with t being applicable in
M.

4.2 Advanced Planning Problems in the Fluent Calculus

To maintain the additional features of ACPPs several new facts and rules are
added to the fluent calculus representation introduced in Subsection 3.1. For

each advanced action a : C R,O
==⇒ E and each obstacle o ∈k O the fact

inhib(

k times︷ ︸︸ ︷
o ◦ . . . ◦ o, a)

is added to KA. In addition, for each advanced action a : C R,O
==⇒ E the fact

precon(R−I , A)

is added to KA; it is used in the (modified) definition of applicable to test whether
all preconditions are met. For our modified running example we obtain

KA = { action(apt , c, amb), action(amb, d, hos),
inhib(fat , c), precon(ill , c), precon(ill , d) }.

The rule

hinder(X ◦ Z,A)← inhib(X,A)

is added to KC to prohibit the application of action A whenever sufficiently
many obstacles X are present in a state X ◦ Z. The definition of applicable in
KC is modified to

applicable(C ◦ Z,A,E ◦ Z)← action(C,A,E) ∧
precon(R,A) ∧ R ◦ Y ≈ C ◦ Z ∧
¬hinder(C ◦ Z,A)
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where the subgoal R ◦ Y ≈ C ◦ Z is used to check whether the preconditions R
of action A are satisfied in state C ◦Z. As the equality predicate ≈ is now used
explicitly as a subgoal, the axiom of reflexivity

X ≈ X

must be added to KC , effectively forcing the AC1-unification of the left-hand
and the right-hand side of the subgoal R ◦ Y ≈ C ◦ Z.

Let KAA and KAC be the modified sets of clauses for a given ACPP (I,G,A).
The ACPP can now be presented in the fluent calculus by the question of whether

KAA ∪ KAC ∪ KAC1 |= (∃P ) causes(I−I , P,G−I),

and SLDENF-resolution can be applied to compute an answer substitution for P ,
if existing [13]. SLDENF-resolution is sound [17], but it is only shown to be
complete if the completion of KAA ∪ KAC ∪ KAC1 is satisfiable and SLDENF-
derivations neither flounder nor are infinite [13].

Lemma 3. The completion of KAA ∪ KAC ∪ KAC1 is satisfiable.

Proof. By construction of a model for the completion KAA ∪ KAC ∪ KAC1.

Regarding the question of whether SLDENF-derivations flounder or are infi-
nite we observe that the definition of causes is recursive in the second argument,
which is a list. If the length of this list is known in advance and the first argument
of causes is a ground fluent term (which holds by the definition of a planning
problem), then SLDENF-derivations neither flounder nor are infinite.

Proposition 4. Let s be a ground fluent term and a the name of an action.
Then, each SLDENF-derivation of ←hinder(s, a) is finite.

Proof. Follows immediately from the definition of hinder and inhib.

Proposition 5. No SLDENF-derivation of ← causes(I−I , [A1, . . . , An],G−I)
flounders or is infinite.

Proof. By induction on n.

Based on this result we must refine the fluent calculus representation of an
ACPP to the question of whether

KAA ∪ KAC ∪ KAC1 |= (∃A1, . . . , An) causes(I−I , [A1, . . . , An],G−I).

and iteratively increase n in the search for a solution of the planning problem.
Finally, we show that hinder prevents actions from being applicable:

Proposition 6. There are enough obstacles in a state S to hinder an advanced
action a if and only if there is an SLDENF-resolution proof of ←hinder(S−I , a).

Proof. Follows from the definitions of hinder and inhib.
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4.3 Petri Nets versus Fluent Calculus Representations

Throughout this subsection, let Q be the ACPP (I,G,A), FCAQ and NAQ be
its representations in the advanced fluent calculus and the advanced Petri nets,
respectively, and p be the plan [a1, . . . , an].

Theorem 7. The following statements are equivalent for a plan p:

1. p is a solution for Q.
2. p is generated by SLDENF-resolution for FCAQ.

3. p is a firing sequence from I to G in NAQ .

Proof. The theorem is obtained if we can prove that 1. implies 2., 2. implies 3.,
and 3. implies 1. These implications can be shown by inductions on the length
of the plan p, on the length of the SLDENF-resolution refutation, and on the
length of the firing sequence, respectively.

5 Discussion

In this paper we have shown that there is a close correspondence between Petri
nets and the fluent calculus for conjunctive planning problems. This correspon-
dence is preserved if we extended Petri nets and the fluent calculus by test and
inhibitory arcs. The correspondence can be even further extended to planning
problems with fluents containing real values as investigated in [15]. In [2], it was
shown that Petri nets can be combined with Bayes nets via real-valued fluents,
and, hence, it should now be possible to combine the fluent calculus and Bayes
nets. However, this needs to be rigourously investigated in the near future.

Whereas in this paper we were computing answer substitutions by SLDE-
and SLDENF-resolution in the fluent calculus, we also like to invesigate the
corresponding fixpoint characterization of the fluent calculus. This is the obvious
next step in order to combine the human reasoning approach mentioned in the
introduction with reasoning about actions and causality in the fluent calculus.
Finally, the ultimate goal is a connectionist realization of the combined approach
within the core method [11,1].

Acknowledgements We would like to thank Bertram Fronhöfer and Christoph
Wernhard for many fruitful discussions and the anonymous referees for there
comments.
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Generic CDCL – A Formalization of Modern
Propositional Satisfiability Solvers
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Abstract. Modern propositional satisfiability (or SAT) solvers are very
powerful due to recent developments on the underlying data structures,
the used heuristics to guide the search, the deduction techniques to in-
fer knowledge, and the formula simplification techniques that are used
during pre- and inprocessing. However, when all these techniques are
put together, the soundness of the combined algorithm is not guaranteed
any more. In this paper we present a small set of rules that allows to
model modern SAT solvers in terms of a state transition system. With
these rules all techniques which are applied in modern SAT solvers can
be adequately modeled. Finally, we compare Generic CDCL with related
systems.

1 Introduction

Many practical problems of computer science are in the complexity class NP.
There are many well studied formalisms that can handle problems of this class,
among them are constraint satisfaction [20], answer set programming [7], or
satisfiability checking [3]. Although the two former formalisms admit a richer
language, the latter approach is still very competitive even if the expressivity of
its language is comparatively low.

The propositional satisfiability problem (SAT) consists of a propositional for-
mula and asks whether there is a satisfying assignment for the Boolean variables
occurring in the formula. From a complexity theory point of view SAT is NP-
complete [4] and, thus, intractable. Still, there are many industrial and academic
applications that can be solved nicely with modern SAT solvers. For instance a
SAT-based railway scheduling software outperformed the native version [9]. Like-
wise, haplotype matching [13] can be solved nicely with modern SAT solvers.

The success of the SAT approach lies in the strength of today’s SAT solvers.
SAT solvers do not operate on testing all possible variable assignments, but
on constructing an assignment by successively interleaving two processes, viz.,
guessing and propagating the assignment of literals. The main inference rule is
unit propagation, an efficient form of resolution. Combined with a decision rule
it is the core of the basic algorithm known as the DPLL algorithm [5]. In the
case that a contradiction is found in the formula with respect to the current
variable assignment, advanced SAT solvers backtrack and learn a conflict clause



which prevents the current and similar conflicts. With the addition of so-called
learned clauses the basic algorithm is known as CDCL algorithm [16].

Modern systematic SAT solvers are highly tuned and complex proof pro-
cedures employing many advanced techniques like clause learning [16], non-
chronological backtracking, restarts [8], clause removal [2, 6], decision heuris-
tics [2,17], and formula simplification techniques [12]. Specialized, cache-conscious
data structures [10] further improve the performance. This way, today’s solvers
like Riss,1 MiniSAT or Lingeling can handle formulas with millions of variables
and millions of clauses.

However, the success of modern solvers carries a price tag: increased code
complexity. Successful SAT solvers like the above mentioned ones consist of mul-
tiple thousand lines of code and are written in programming languages with
side effects like C or C++. Due to the code complexity, the behavior of SAT
solvers is hard to understand and state-of-the-art SAT solver internals are hard
to teach. Moreover, finding additional techniques and integrating them into a
SAT solver is getting more complex, as we have to consider the interplay with
all the remaining techniques. Consequently, abstracting from specific algorithms,
data structures, and heuristics is extremely important in order to discover and
prove properties of a modern SAT solver as well as to understand the principles
of SAT solving.

This problem was tackled by different formalizations, notably Linearized
DPLL [1], Rule-based SAT Solver Descriptions [15], and Abstract
DPLL [18]. However, these systems do not appropriately model modern SAT
solvers anymore. In particular, preprocessing and applying preprocessing tech-
niques interleaved with search, known as inprocessing, became a crucial part in
SAT solving. Applying formula simplification techniques also during search is an
attractive idea since it allows to use valuable formula simplifications while taking
learned clauses into account. For example, the SAT solver Lingeling benefits
considerably from this approach.

The contribution of this paper is the formalism Generic CDCL that models
the computation of modern SAT solvers. Equipped with a small set of simple
state transition rules, we can model all well-established techniques like prepro-
cessing, inprocessing, restarts, clause sharing, as well as clause learning and for-
getting. This formalism allows us to reason about the behavior of SAT solvers
independently of the specific implementation. Additionally, the framework is a
first step to explain how modern SAT solvers are working in a compact and easy
way. Besides the presentation of Generic CDCL, the main result of this paper is
the proof that Generic CDCL and, consequently, all its instances are sound.

The paper is structured as follows: In Section 2 we describe basic concepts of
satisfiability testing. We present Generic CDCL in Section 3, where we also prove
that Generic CDCL correctly solves the satisfiability problems. Afterwards, we
compare Generic CDCL with related formalism in Section 4 and we conclude
the paper in Section 5.

1 The SAT solver Riss is freely available at tools.computational-logic.org.
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2 Preliminaries

2.1 The Satisfiability Problem

We assume a fixed infinite set V of Boolean variables. A literal is a variable v
(positive literal) or a negated variable v (negative literal). The complement x of
a positive (negative, resp.) literal x is the negative (positive, resp.) literal with
the same variable as x. The complement of a set S of literals, denoted with S,
is defined as S = {x | x ∈ S}. Finite sets of clauses are called formulas, where
a clause is a finite set of literals. Sometimes, we write a clause {x1, . . . , xn} also
as the disjunction (x1 ∨ . . .∨ xn) and a formula {C1, . . . , Cn} as the conjunction
(C1∧ . . .∧Cn). The empty clause is denoted by ⊥, the empty formula by >. The
formula obtained from F by replacing all occurrences of the variable v by the
variable w is denoted by F [v 7→ w]. The set of all variables occurring in a formula
F (in positive or negative literals) is denoted by vars(F ); the set of all literals
occurring in F by lits(F ). For instance, if x, y ∈ V, then F = {{x, y}, {y}} is
a formula, its alternative representation using logical connectives is (x ∨ y) ∧ y,
vars(F ) = {x, y}, and lits(F ) = {x, y}.

The semantics of formulas is based on the notion of an interpretation. An
interpretation I is a set of literals which does not contain a complementary pair
x, x of literals. An interpretation I is total iff for each v ∈ V either v ∈ I or v ∈ I.
The satisfaction relation |= is defined as follows: Let I be an interpretation, then
I |= >, I 6|= ⊥, I |= (x1 ∨ . . . ∨ xn) iff I |= xi for some i ∈ {1, . . . , n}, and
I |= (C1 ∧ . . . ∧ Cn) iff I |= Ci for all i ∈ {1, . . . , n}. Interpretation I is a model
for the formula F iff I |= F . In the case that a formula F has a model, then F
is satisfiable, otherwise it is unsatisfiable.

We relate formulas by three relations: the entailment, the equivalence and
the equisatisfiability relation: Formula F entails formula F ′ iff every total model
of F is a model of F ′. Two formulas F and F ′ are equivalent, in symbols F ≡ F ′,
iff F entails F ′ and F ′ entails F . Two formulas F and F ′ are equisatisfiable, in
symbols F ≡sat F

′, iff either both are satisfiable or both are unsatisfiable.
For instance, the interpretation I = {x, ¬z} is a model of the formula F1 =

(x ∨ y) ∧ (x ∨ z) and, therefore, F is satisfiable. The formula F2 = x ∧ x has
no model and, therefore, is unsatisfiable. The formula F3 = x ∧ z is satisfiable
and, therefore, the formulas F1 and F3 are equisatisfiable, but the formulas F1

and F2 are not equisatisfiable. In fact, F3 |= F1 since every total model I of the
formula F3 must contain x and z and, hence, the two clauses of F1 are satisfied
by I. Finally, we find for all clauses C and formulas F that C ∨> ≡ >∨C ≡ >,
C ∨ ⊥ ≡ ⊥ ∨ C ≡ C, F ∧ > ≡ > ∧ F ≡ F , and F ∧ ⊥ ≡ ⊥ ∧ F ≡ ⊥.

Let x be a literal, C = (x ∨ C ′) and D = (x ∨D′) be two clauses. Then the
clause (C ′ ∨ D′) is the resolvent of the clauses C and D upon the literal x. A
linear resolution derivation from the clause C to the clause D in the formula F
is a finite sequence of clauses (Ci | 1 ≤ i ≤ n) such that C1 = C, Cn = D and
Ci is a resolvent of the clause Ci−1 and some clause in the formula F for all
i ∈ {2, . . . , n− 1}; one should observe that F entails D and that the addition of
entailed clauses to a formula preserves equivalence.
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2.2 Variable Assignments and the Reduct Operator

Let J be a finite sequence of literals. In J each literal may be marked as a
decision literal by placing a dot on top like in ẋ; if a literal x is not marked, then
it is a propagation literal. Let J be a sequence of literals of length n. We say that
literal x ∈ J iff there is a k ∈ {1, . . . , n} such that x = xk. Let J1 = (x1, . . . , xn)
and J2 = (y1, . . . , ym) be two sequences of literals; their concatenation J1J2 is
the sequence (x1, . . . , xn, y1, . . . , ym). If a finite sequence J of literals does not
contain a complementary pair of literals, then J represents an interpretation. As
this condition is always met in this paper, we identify sequences of literals with
interpretations whenever appropriate.

The reduct of a formula F w.r.t. an interpretation J , in symbols F |J , is
defined as F |J := {C|J | C ∈ F and for every literal x ∈ C we find that x 6∈ J},
where C|J = C \ {x | x ∈ J}. Intuitively, the reduct operator expresses the state
of a SAT solver, where the formula F is the working formula and J is the working
assignment. For instance, let F = {{x, y}, {z}}, then F |x = {{y}, {z}}, F |z =
{{x, y},⊥} and F |y z = >, where the interpretations are written as sequences
of literals. One should observe that the reduct operator does not distinguish
between propagation and decision literals.

Lemma 1 below summarizes the properties of the reduct operator: (i) The
reduct is monotone. (ii) A formula F is satisfiable iff there exists an interpre-
tation J such that the reduct of a formula w.r.t. J is the empty formula. (iii)
If the reduct of a formula F w.r.t. the interpretation {x} is unsatisfiable, and
the formula F entails the literal x, then the formula F is unsatisfiable. (iv) The
reduct operator is a semantic operator in the sense that it cannot distinguish
equivalent formulas.

Lemma 1 (Reduct Operator). Let F, F ′ be formulas and x a literal.
(i) F |J ⊆ (F ∪ F ′)|J for every interpretation J .
(ii) F is satisfiable iff there exists a J such that F |J = >.
(iii) If F |x is unsatisfiable and F |= x, then F is unsatisfiable.
(iv) If F ≡ F ′, then F |J ≡ F ′|J for every interpretation J .

Proof. See [19, pp.10–12]. ut

3 Generic CDCL

Modern SAT solvers are based on the linearized DPLL [5] algorithm and consists
of the following components: termination criteria, a decision component that
picks the branching literals, an inference component that adds propagation lit-
erals to the working sequence of literals, a backtracking component that rolls
back wrong decisions and a formula management component that simplifies the
working formula. We maintain two data structures during the execution of mod-
ern SAT solvers: the working formula, and the working set of literals. Together
they define the state. The components are modelled as a transition relation over
the set of states; the union of the rules in Fig. 1 is then the transition relation
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SAT-rule: F � J ;SAT SAT iff F |J = >.

UNSAT-rule: F � J ;UNSAT UNSAT iff
⊥ ∈ F |J and J contains only propagation literals.

DEC-rule: F � J ;DEC F � J ẋ iff

x ∈ vars(F ) ∪ vars(F ) and {x, x} ∩ J = ∅.
INF-rule: F � J ;INF F � J x iff

F |J ≡sat F |J x and {x, x} ∩ J = ∅.
LEARN-rule: F � J ;LEARN F ∪ {C} � J iff F |= C.

FORGET-rule: F � J ;FORGET F \ {C} � J iff F \ {C} |= C.

BACK-rule: F � J J ′ ;BACK F � J .

INP-rule: F � ε ;INP F ′ � ε iff F ≡sat F
′.

Fig. 1: Transition relations of Generic CDCL. These relations apply to all for-
mulas F and F ′, clauses C, literals x and lists of literals J and J ′. ε denotes the
empty sequence of literals.

of Generic CDCL: Formally, we model the computation of modern SAT solvers
by means of state transition systems as follows:

Definition 2 (Generic CDCL). Generic CDCL is a state transition system
whose sets of states is

{F � J | F is a formula and J is a sequence of literals} ∪ {SAT,UNSAT},

whose initial state for the input formula F is init(F ) = F � ε, whose set of
terminal states is {SAT,UNSAT}, and whose transition relation ; is defined as:

; := {;SAT,;UNSAT,;DEC,;INF,;LEARN,;FORGET,;BACK,;INP}.

The SAT-rule terminates the computation with the output SAT, if the reduct of
the working formula w.r.t. the working set of literals is the empty formula. This
condition can be decided in linear time w.r.t. the size of the working formula F .
By Lemma 1 (ii) the working formula is then satisfiable.

The UNSAT-rule terminates the computation with the output UNSAT, if no
model of the working formula exists. This is the case when a conflict occurs in
the top level, i.e.⊥ ∈ F |J and the sequence J of literals contains only propagation
literals. These conditions can be decided in polynomial time.

The DEC-rule extends the working sequence of literals by an unassigned literal
ẋ as a decision literal.
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The INF-rule extends the working list of literals by a propagation literal x, if
the reducts of the working formula w.r.t. the working sequence of literals and its
extension are equisatisfiable.

The BACK-rule models backtracking, as well as backjumping and restarts, by
deleting outermost right literals in the working sequence of literals.

The LEARN-rule adds a clause C to the working formula, if it is entailed by
the working formula F . Deciding whether F |= C holds, is coNP-complete.
Similarly to the INF-rule, SAT solvers avoid this check by using techniques for
creating the clause C that ensure this property, as for example resolution.

The FORGET-rule deletes a clause C of the working formula F , if F \ {C} |= C.
The question whether F \ {C} |= C holds is coNP-complete. Typically, we use
tractable algorithms to identify redundant clauses. For instance, clauses that
were introduced by the LEARN-rule but have turned out to be useless and did
not participate in the elimination of other clauses in the formula can be removed.
For more details on the deletion of clauses see [12].

The INP-rule models formula simplifications that are used in pre- and inpro-
cessing. It replaces the working formula with an equisatisfiable formula when
the working sequence of literals is empty.

Let
∗; be the reflexive and transitive closure of ;. Let x

0; x for all states x,
and x

n; z for all natural numbers n ∈ N if and only if there exists a state y such

that x
n−1; y ; z. In the next subsection we investigate the question whether

Generic CDCL correctly solves the SAT problem. Formally, we define Generic
CDCL to be sound iff for all formulas F0 we have that init(F0)

∗; SAT implies

that F0 is satisfiable and init(F0)
∗; UNSAT implies that F0 is unsatisfiable.

3.1 Generic CDCL is Sound

Before proceeding to the soundness proof of Generic CDCL, it will be necessary
to study two invariants of Generic CDCL that are presented in the proposition
below: (i) states that the rules of Generic CDCL do not change the satisfiability
of the working formula, and (ii) states that whenever the working sequence of
literals is of the form J1 xJ2, where x is a propagation literal, the reducts of the
working formula w.r.t. J1 and J1 x are equisatisfiable.

Proposition 3 (Invariants). Let F0, F be formulas, J be a sequence of literals,

and n ∈ N. If init(F0)
n; F � J , then

1. F0 ≡sat F , and
2. F |J1

≡sat F |J1 x, for all sequences of literals J1, J2 and propagation literals x
with J = J1 xJ2.

Proof. The claims are proven by induction on n. For the base case n = 0, 1.
follows from F0 = F and 2. holds since the J is empty. For the induction step,
assume that the claim holds for the state F�J and suppose that F�J ;R F ′�J ′

where R ∈ {DEC, INF, LEARN,FORGET,BACK, INP}:
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– DEC-rule: In this case, F ′ = F and J ′ = J ẋ for some decision literal ẋ
with {x, x} ∩ J = ∅. 1. follows since F0 ≡sat F holds by induction. 2. holds
because the appended literal is a decision literal. Formally, let J ′1, J

′
2 be literal

sequences, y be a propagation literal such that J ′ = J ′1 y J
′
2ẋ. By induction,

we conclude that F |J′
1
≡sat F |J′

1 y. Hence, F ′|J′
1
≡sat F

′|J1 y.

– BACK-rule: In this case, F ′ = F and J = J ′ J ′′. 1. follows since F0 ≡sat F by
induction. 2. holds because the literal sequence J ′ is a prefix of J . Formally,
let J ′1, J

′
2 be literal sequences and y be a propagation literal such that J ′ =

J ′1 y J
′
2. By induction, we conclude that F |J′

1
≡sat F |J′

1 y, and consequently

we know that F ′|J′
1
≡sat F

′|J′
1 y.

– LEARN-rule: In this case, F ′ = F ∪{C} where F |= C and J ′ = J . 1. follows
since F ≡ F ′ and the addition of the entailed clause C preserves equivalence
of the working formula. 2. follows from the reduct operator being a semantic
operator by Lemma 1.iv and therefore F ′|J′

1
≡sat F

′|J′
1 y holds by induction

for every literal sequences J ′1, J
′
2 and propagation literals y with J ′ = J ′1 y J

′
2.

– FORGET-rule: This case can be treated as in the LEARN-rule.
– INF-rule: In this case, F ′ = F and J ′ = J x for some propagation literal x

with {x, x} ∩ J = ∅. 1. follows since F0 ≡sat F holds by induction. 2. follows
from the definition of the INF-rule: Consider the literal sequences J ′1, J

′
2 and a

propagation literal y such that J ′ = J ′1 y J
′
2. In the case that y = x, we know

that J ′2 is the empty sequence of literals and consequently F |J′
1
≡sat F |J′

1 y

holds by the definition of the INF-rule. In the case of y 6= x, we can conclude
the claim by induction.

– INP-rule: In this case, F ′ ≡sat F and J ′ is the empty sequence. Consequently,
1. holds by the definition of the INP-rule, and 2. is satisfied as J ′′ = ε. ut

We can now show the main theorem in this paper.

Theorem 4 (Soundness). Generic CDCL is sound.

Proof. We divide the proof in two parts, first proving that the output SAT is cor-
rect, and then proving that the output UNSAT is correct. Let F0, F be formulas,
J be a sequence of literals and suppose that

init(F0)
∗; F � J ; SAT(UNSAT, resp.).

SAT By the definition of the SAT-rule, we know that F |J = >. By Lemma 1.ii,
we know that the formula F is satisfiable. From the result that the formula F is
satisfiable together with the property that the formulas F0 and F are equisatis-
fiable given in Prop. 3(1.), we conclude that the input formula F0 is satisfiable.

UNSAT By the definition of the UNSAT-rule, we know that ⊥ ∈ F |J and the
working sequence of literals J = (x1 . . . xn) contains only propagation literals.
Since a conflict occurs, F |J is unsatisfiable. From the result that the formula F |J
is unsatisfiable and the literal sequence J contains only propagation literals we
can repeatably apply Prop. 3(2.) and we obtain that the formula F is unsat-
isfiable. Since the formula F is unsatisfiable and the formulas F and F0 are
equisatisfiable by Prop. 3(1.), we conclude that F0 is unsatisfiable. ut
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3.2 Generic CDCL Subsumes Important SAT Solving Techniques

We now describe some important SAT solving techniques, and demonstrate that
Generic CDCL can adequately model these techniques.

Subsumption For a formula F , the clause C ∈ F subsumes the clause D ∈ F
iff C ⊂ D. In this case, D can be deleted because F \ {D} |= D. Consequently,
F�J ;FORGET F \{D}�J holds for every literal sequence J . Removing subsumed
clauses is done as a preprocessing step in SAT solvers and during clause learning.

Tautologies A clause C is a tautology if it contains a complementary pair of lit-
erals. Every formula F entails a tautology and the LEARN-rule in Generic CDCL
subsumes this techniques. Tautologies are eliminated during preprocessing.

Conflict-Directed Backtracking and Learning [21] is an improvement of naive
backtracking that takes the reason of the conflict into account. Consider the
state F � J ẋ J ′ and a clause C ∈ F where C|J ẋ J′ = ⊥. The clause C is the
conflict clause. If there is a linear resolution derivation from the conflict clause C
to a clause D in the formula F such that D|J is the unit clause y, the technique
rewrites the state F � J ẋ J ′ into the state F ∪ {C} � J y. Conflict-directed
backtracking and learning can be simulated by the following transition steps:
F � J ẋ J ′ ;BACK F � J ;LEARN F ∪ {D} � J ;INF F ∪ {D} � J y.

Blocked Clause Elimination [11] A clause C is blocked in the formula F if it
contains a literal x such that all resolvents of the clause C and clauses D ∈ F
upon x are tautological. Blocked clauses are removed from a formula during pre-
and inprocessing. If C is blocked in F , then F ≡sat F \ {C} and, therefore, the
INP-rule subsumes the blocked clause elimination technique.

Unit Propagation A clause that contains a single literal is a unit clause. Unit
propagation adds the propagation literal x to the literal sequence J , whenever
the reduct of the working formula w.r.t. J contains the unit clause (x). Since
F |J |= x, we know that F |J ≡sat F |J x and consequently the INF-rule subsumes
unit resolution.

Pure Literal A literal x is pure in the formula F , if x 6∈ lits(F ). For pure
literals, it holds that F ≡sat F |x and, therefore, whenever a literal x is pure in
the formula F |J for some literal sequence J , Generic CDCL can add the pure
literal to the working literal sequence: F � J ;INF F � J x.

4 Related Work

Several attempts have been made to formalize sequential SAT solvers in terms of
transition systems or proofs calculi: Abstract DPLL [18], Linearized DPLL [1],
and Rule-based SAT solver description [15]. In general, these formalization are
based on a notion of state like Generic CDCL.

However, these formalizations cannot adequately model recent SAT solvers:
For instance, Linearized DPLL does not model the SAT solver MiniSAT, because
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Linearized DPLL restricts decision literals to occur in the working formula, but
the solver MiniSAT can also select the complements of such literals. Addition-
ally, Linearized DPLL does not model formula simplification techniques such
as blocked clause elimination, or probing-based inference techniques. Similarly,
Abstract DPLL and the Rule-based SAT solver description [15] do not model
formula simplifications that changes the semantics of formulas like blocked clause
elimination. Maric highlighted the implementation of clause learning techniques
in his Rule-based SAT solver description [15], but it does not include recent devel-
opments such as clause strengthening. All these formalizations consider DPLL-
based SAT solvers, but the ancient pure literal rule is not subsumed in these
systems. In contrast, Generic CDCL subsumes all recent SAT techniques to the
best of our knowledge.

In [12] Jarvisalo et. al. developed a formal system to model clause learning,
forgetting and formula simplification techniques to understand the side-effects
of the combination of different rules. They drew our attention to the interplay
of the learned clause database with inprocessing techniques. The interplay of
clause sharing and formula simplification techniques in parallel SAT solvers was
analyzed in [14], where the state of a sequential SAT solver was modelled just as
the working formula. We believe that Generic CDCL is an important fragment
to understand sequential SAT solvers with inprocessing and their cooperation in
the parallel-portfolio setting with clause sharing.

5 Conclusion

The propositional satisfiability problem is of great practical interest and can be
efficiently answered by modern SAT solvers like Riss, Lingeling or MiniSAT. To-
day, modern SAT solvers are highly tuned proof procedures with many advaned
techniques. Therefore, it is desireable to investigate SAT solving techniques in
combination with each other and to abstract from implementations.

In this paper, we developed Generic CDCL, a formalism that models the
computation of modern SAT solvers in terms of a state transition system, where
each transition rule abstracts a component in a SAT solver. In particular, the
transition rules INF and INP model formula simplification techniques like blocked
clause elimination and inference techniques such as the pure literal rule. We
have examined invariants in Generic CDCL and have shown that Generic CDCL
is sound. In contrast to previous work on formalizations of SAT solvers, we
can model all recent techniques. The findings add to our understanding of the
interplay of inprocessing techniques with the other components of SAT solvers.

A limitation of Generic CDCL is its lack of details in the learning and in-
ference component. As future work, we plan to investigate properties such as
completeness, confluence and termination.
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Abstract. General parameters of convolutional networks (kernels) are
set in the learning process. Also in addition to the method of training
the quantity of information that is passed through the kernel influences
the quality of setting. This quantity of information depends on the size
of training sample and the concentration of receptive fields. You can
increase the concentration of the re-ceptive fields for a fixed training set
size due to the multilayer coating of arbitrary maps with fields of different
types, that will be equivalent to the use of noisy training sample. This
can increase the networks performance in the test.

Keywords: convolutional networks, training with noise, different types
of receptive fields.

1 Introduction

To date, problem of invariance is the main and yet unsolved problem of pattern
recognition: the same object may have substantially different from each other ex-
ternal characteristic (shape, colour, texture, etc.) as well as it may be differently
displayed on the retina (view from different angles), which greatly complicates
its classification. This global problem within the neural network technologies
can be solved by to create big training sets [1]. If creating such sets are difficult
then this sets are expanded by the addition of noise. [4–6]. A neural network
can be regarded as a pyramidal hierarchical graph then noise can be created by
changing communications between nodes in a graph [2, 3] or changing perceiving
properties in nodes of a graph [8]. Convolutional neural networks (CNNs) have
three perceiving properties in a node-neuron: a receptive field (RF), an activa-
tion function and a method for producing a weighted sum (simple weighted sum
or higher-order polynomial). A change of RFs is the easiest and most promising
way of the three. The same pattern can be differently perceived by changing
the RFs, that leads to the creation of noise. The influence of noise (which was
created due to changing the shape of the fields) is rinvestigated on the pattern
recognition in this article.



2 The Generation of Noise by Changing the Receptive
Fields

Training with noise in the context of gradient descent for a neural network can
be written as

∂E

∂w
+ ε = ∇, (1)

where ∂E
∂w is the gradient vector from the network’s weights, ε is the additional

noisy component corrects the gradient vector. The gradient vector after a cor-
rection can’t exactly point to the local minimum, but training with noise has
two benefits: generalization ability increases and local minimums can be better
overcome during the gradient descent. When you change perceiving properties
in the nodes of networks you have the same training with noise, where ε can be
explicitly written:

ε =
∂E

∂w
(new perception)− ∂E

∂w
(standart perception), (2)

where∂E
∂w (new perception) is the gradient vector from weights (the perceiving

properties have been already changed), ∂E
∂w (standart perception) is the gradient

vector from weights with the standart perceiving properties (RFs have square
form).

The changing of perceiving properties in the nodes of a network occur due to
changing the shape of the RFs. Each element of RF has neighbors. The neighbors
are elements located in the one or two discrete steps from current element. Thus,
the value of current element (within RF) can be replaced by the neighboring
value. If you do this operation for all elements of RF then weighted sum will be
changed, hence output of neuron will be also changed. The replacement is shown
on the Fig. 1.

Fig. 1. The replacement of neuron-pixel X by Y with the help of changing the shape
of the receptive field (the receptive field with the satellite).

The map (which is the input for the current neurons) receives another cover-
ing of RFs, but the kernels of convolution layer (which passed through themselves
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this new covering) remain the same. The quantity of information affecting the
kernels increases and the kernels can extract the best invariant features. This
process is shown in Fig. 2.

Fig. 2. Discrete perception of information with the help of convolution layer (C-Layer)
(Left). The same perception, but with the help of C-Layer with different receptive
fields. The pattern will be perceived by the first type of receptive field in the first
stroke. In the second stroke the same pattern will be perceived by the second type of
receptive field (Right).

This technology can expand the training set by the patterns which are created
depending on where (how far away from the current element) elements of RFs
take the information for a replacement. Let all elements of RFs are replaced then
additional training sets, which will be obtained by this technology, is shown in
Fig. 3.

Fig. 3. Additional sets which will be obtained by the changing of RFs.

Any convolutional layers may have their coverings, hence the change of per-
ception can be on the different layers. If CNN has three convolutional layers
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then the quantity of combinations (or “refracting prisms”) will be 23-1=7 (one
“prism” is a standard perception). The unique pattern will be obtained within
the frames of each scheme-“prism”. A strategy is also important for a marking
the particular layer using RFs. There are two opposing strategies: the RF is cho-
sen by random way and is superimposed on desired location or the same type
of RF with a specific index is superimposed on all desired locations. The second
strategy can model the primitive affine transformations if the RF simulates a
shift for all its elements.

Patterns need create with the combinations of all “refracting prisms”, with
using the both strategies, with using the RFs which are fully updated for maxi-
mum coverage of any of the three additional sets.

3 Experiment

MNIST was chosen for experiments with noise. This is due to the fact, that
the most schemes of the creating of noise have been tested in this set. The
architecture of CNN is shown in Fig. 4.

Fig. 4. The architecture of CNN for the work with MNIST set.

The simplest algorithm of gradient descent (without momentum, weights
decay and other tricks) has been used for maximum simplicity and repeatability
of the experiment. The initial value of the learning rate (η) is equal to 0.005,
after every 100 epochs new value are obtained from the old value by multiplying
by 0.3. Error function is mean-square error (MSE). The pattern is recognized if
the error on the output layer does not exceed the value of 0.001. Pools of RFs
for convolutional layers are shown in Figure 5.
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Fig. 5. Pools of RFs for convolutional layers.

The RF with arbitrary index is set in the proper position by the strategy of
markup. Geometrical interpretation of the index for shift is shown in Fig. 6.

Fig. 6. The geometric interpretation of index for the shift of element of RF.

Thus, the noise from the first additional training set (Fig. 3, set (1)) was
used. Comparative results are given in Table 1.

Table 1. The comparison between different learning algorithms

Algorithm Distortion Error Ref.

2 layer MLP (MSE) affine 1.6% [4]

SVM affine 1.4% [5]

Tangent dist. affine+thick 1.1% [4]

LeNet-5 (MSE) affine 0.8% [4]

2 layer MLP (MSE) elastic 0.9% [6]

CNN (MSE) this distortions 1.2% this paper

Best result elastic 0.23% [7]

This is a good result that has been achieved without the involvement of
additional noise from the sets (2) or (3) (Fig. 3). Research has shown that the
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change of perceiving properties in the nodes of CNN can effectively expand the
training set and reduce the error of generalization. Also, this technology is easy
compatible with the elastic distortions and dropconnects or dropouts.
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Abstract. Ontologies play a major role in life sciences, enabling a num-
ber of applications. Obtaining formalized knowledge from unstructured
data is especially relevant for biomedical domain, since the amount of
textual biomedical data has been growing exponentially. The aim of this
paper is to develop a method of creating formal definitions for biomedi-
cal concepts using textual information from scientific literature (PubMed
abstracts), encyclopedias (Wikipedia), controlled vocabularies (MeSH)
and the Web. The knowledge representation formalism of choice is De-
scription Logic as it allows for integrating the newly acquired axioms in
existing biomedical ontologies (e.g. SNOMED) as well as for automated
reasoning on top of them. The work is specifically focused on extracting
non-taxonomic relations and their instances from natural language texts.
It encompasses the analysis, description, implementation and evaluation
of the supervised relation extraction pipeline.

Keywords: knowledge representation, non-taxonomic relationships, on-
tology learning

1 Introduction

Formalization of biomedical knowledge has long been an area of active research.
Existing biomedical knowledge resources vary considerably in terms of their for-
malization principles, from databases and data collections (e.g. MEDLINE1), to
taxonomies and controlled vocabularies (e.g. MeSH2), to proper ontologies with
rich formal semantics (e.g. SNOMED3). They also vary greatly with respect to
the domains and areas they cover, size, age, ways of maintaining and integrating
new knowledge etc. Formally representing the biomedical knowledge can bridge
the gap between existing resources and enrich them as well as process the newly
generated knowledge that comes in abundance and is publicly accessible.

Research in life sciences is characterized by the exponential growth of the
published scientific materials: articles, patents, technical reports etc. MEDLINE,
one of the biggest bibliographic databases for biomedicine, currently contains

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://www.nlm.nih.gov/mesh/
3 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html



more than 23 million articles. The average amount of newly added articles com-
prises 15000 items per week. To handle such an amount of information, multiple
initiatives have been launched for the purpose of organizing biomedical knowl-
edge formally, e.g. using ontologies [3]. An ontology is a complex formal structure
that can be decomposed into a set of logical axioms that state different relations
between formal concepts. Together the axioms model the state of affairs in a
domain. With the advances in Description Logics (DL) the process of design-
ing, implementing and maintaining large-scale ontologies has been considerably
facilitated [1]. In fact, DL has become the most widely used formalism under-
lying ontologies. Several well-known biomedical ontologies, such as GALEN or
SNOMED CT [4] are based on DL. SNOMED CT has adopted the lightweight
description logic EL++ that allows for tractable reasoning.

There are several benefits of formal knowledge representation. First of all, it
enables efficient information integration; already existing knowledge about the
entity can be aggregated from multiple resources, and the new knowledge can be
easily integrated. Secondly, formal knowledge representation makes it possible
to automatize a number of crucial tasks that deal with information processing:
efficient search, validation and reasoning. Finally, formal representation can sup-
port knowledge visualization which itself can bring about further insights about
the domain, i.e., facilitate knowledge discovery.

1.1 Two Examples of Biomedical Knowledge Formalization

In this section we present two recent works in which the application of formal on-
tologies to biomedical knowledge produced interesting results that demonstrate
the usefulness and the potential of knowledge formalization in the biomedical
domain. In [4] the authors used the Foundational Model of Anatomy (FMA),
an ontology of human anatomy, where concepts are linked with the part-of re-
lation. They annotated images of penetrating injuries with anatomic concepts,
thus disambiguating the visible regions of the body, and then performed logical
reasoning over the ontology to predict the possible internal damages caused by
the injury. The project was conducted by the U.S. Defense Advanced Research
Projects agency and has life-saving importance. [5] ran an even more large-scale
and ambitious project. Its aim was to create a robot scientist a robot that con-
ducts independent research, that is, sets a hypothesis, tests it experimentally
and reasons about the acquired data by interpreting the results, all on its own.
The developed robot had a rich knowledge base on the backbone that was used
at all stages of the research process. The robot was provided with a general
biomedical database as well as with a formal model of yeast metabolism, and
it autonomously generated and validated experimentally functional genomics
hypotheses, thus becoming the first machine that made a scientific discovery
without human intervention. The two works illustrate the huge range of appli-
cations that formal knowledge resources can have in life sciences as well as their
unbounded potential. Not only do they help sustain the ever-growing collec-
tion of already published results, but they can also lead to knowledge discovery
through formal reasoning.

42 A Pipeline for Supervised Formal Definition Generation



1.2 What is Formal Definition Generation?

Formal definition generation (FDG) is a type of knowledge modeling that trans-
lates a natural language definition into a formal representation using some formal
language notation. FDG can be viewed as the automatic acquisition of complex
axioms for an ontology. Unlike the taxonomy acquisition, which seeks to identify
parent-child relations in text and is usually based on simple patterns [6], FDG
focuses on highly expressive axioms containing various logical connectives and
non-taxonomic relation instances.

Formal definition generation can be illustrated by an example: a natural
language sentence with a classic definitional structure A is a type of B that
has a specific property C is translated into a formal representation A ≡ B u
∃hasProperty.C. The formalism of choice here is Description Logic (DL).

Some definitions can be straightforwardly rewritten into a formal language:

Acenocoumarol: a coumarin that is used as an anticoagulant.

It is a definition taken from the MeSH controlled vocabulary. If we assume that
Acenocoumarol, Coumarin and Anticoagulant are valid biomedical concepts, the
definition can be encoded by means of a simple DL in the following way:

Acenocoumarol ≡ Coumarin u ∃used As.Anticoagulant

The encoding is very simple since there exists an almost perfect one-to-one cor-
respondence between the lexical items in the definition and the elements of the
formal syntax. However, this is not the case for the majority of the sentences.
FDG does not boil down to a mere re-writing of textual definitions using a dif-
ferent notation; instead, it is a complex task that requires thorough analysis and
understanding of utterances and their constituents. Below are the examples of
MeSH definitions that are far more difficult to process:

Acetolactate Synthase: a flavoprotein enzyme that catalyzes the forma-
tion of acetolactate from 2 moles of pyruvate in the biosynthesis of va-
line and the formation of acetohydroxybutyrate from pyruvate and alpha-
ketobutyrate in the biosynthesis of isoleucine.

Lissamine Green Dyes: green dyes containing ammonium and aryl sul-
fonate moieties that facilitate the visualization of tissues, if given intra-
venously.

Even definitions for which finding a formal representation appears to be trivial
may in fact contain various pitfalls. How exactly should the definition Acepro-
mazin is a phenothiazine that is used in the treatment of psychoses be formal-
ized? Should the treatment correspond to an independent concept that is linked
to emphAcepromazin by the used in relation? Or should it rather correspond to
the relation treats that takes as arguments psychosis and phenothiazine, and ul-
timately acepromazin? The answer to this question is not obvious and is heavily
dependent on the way one chooses to model the knowledge.
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2 Methodology

This section describes the pipeline for formal definition generation (FDG) from
text. The core step in FDG is non-taxonomic relation extraction: not only ex-
pressive relation instances account for the most part of definition formulas, but
they also require such tasks as concept annotation and taxonomy detection as
preprocessing steps. Hence, the FDG pipeline in essence tackles the task of re-
lation extraction. It consists of the following main steps, illustrated by Figure 1
and discussed in the subsequent sections:

– syntactic parsing of the input sentence;

– semantic annotation of the sentence with biomedical concepts;

– extraction of semantic triples from syntactic paths between the annotated
concepts;

– classification of the triples as pertaining to specific biomedical relations;

– final formula generation based on the labeled triples.

Each step is discussed in detail in the subsequent sections. Figure 1 illustrates
the pipeline using the MeSH definition of Tremor :
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Fig. 1. Formal definition generation pipeline. The definition for Tremor is used as an
example.

2.1 Parsing and Annotation of Input Sentences

Parsing and annotation can be viewed as two pre-processing steps of the pipeline.
They both rely on separate components, syntactic parsers and semantic annota-
tors respectively, enriching the initial textual input with additional information,
i.e. the syntactic dependencies and the occurrences of concept mentions in the
sentence. In the present work we use external parser and annotator, since their
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creation is itself a stand-alone research problem which lie outside the scope of
formal definition generation problem.

Given an input text and an ontology that describes the domain, concept
annotation, also called semantic indexing or concept recognition, is the task of
finding in text mentions of ontology concepts and mapping the corresponding
lexical tokens to concepts. Typically, biomedical concept annotators aim at rec-
ognizing textual occurrences of diseases, drugs, genes, body parts, species and
in principle, any other conceptual entity that exists in the input ontology.

There are multiple third-party biomedical annotators available online. As
a rule, they use specific knowledge resources, i.e. ontologies and thesauri, as
repositories of concepts they aim to find in texts. One of the most widely used
one is MetaMap [7]. It is a dictionary-based system that indexes biomedical text
with UMLS concepts [8]. We use MetaMap as the annotator of choice.

2.2 Triple Extraction

After a text string is annotated with biomedical concepts, the next step is to
group these concepts into relational instances and to form a preliminary struc-
ture of the formal definition. It is the task of the triple extraction component.
The parser takes as input a textual definition pre-annotated with biomedical
concepts as well as its syntactic parse tree and produces structures of the form
concept A – relational string – concept B, which we call unlabeled triples.
The triple extraction component runs as follows:

1) detect the parent term, if it is present
At this step we rely on the information provided by the ontology used for the
semantic annotation: if the term that appears first in the definition is not rec-
ognized by the annotator, i.e. it is not considered as concept by the ontology,
then it belongs to a relational string of some triple (Abdominal Wall example);
otherwise it is a parent concept (Cattle Diseases example).

Abdominal Wall: the outer margins of the abdomen, extending from the
osteocartilaginous thoracic cage to the pelvis.
Cattle Diseases: diseases of domestic cattle of the genus bos.

2) group coordinated concepts into conjunctive or disjunctive sets
Detecting coordination is one of the very important issues in predication ex-
traction. Coordinated concepts are organized into sets with one representative
concept. Whenever this concept is part of a triple, the rest of the concepts au-
tomatically form triples as well, using the same relational string and the same
concept as the second argument, e.g.:

Vesicular stomatitis Indiana virus: the type species of vesiculovirus caus-
ing a disease symptomatically similar to foot-and-mouth disease in cattle,
horses, and pigs.
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Foot-and-Mouth Disease — in — Cattle
Foot-and-Mouth Disease — in — Horses
Foot-and-Mouth Disease — in — Swine

Triples for coordinated concepts will further be transformed into conjunction
and disjunction of concepts in DL notation of the definition formula.

3) organize the concepts into concept pairs
This is the key step in the definition parsing as it shapes the resulting triples.
The process is heavily dependent on the syntactic structure of the sentence. One
straightforward way of linking concepts together would be to follow the depen-
dency paths across the syntactic tree and to link every concept with the nearest
dominating one (and to link the top concept with the head concept). However,
while parsing the definition, we would like to collect as much information about
the head term as possible. For this reason we link annotated concepts with the
head term whenever it is possible and does not violate the common sense. In
fact, for the majority of the triples both ways of constructing triples are possible
and comprehensive. For example, in the following definition:

Classical Lissencephalies: disorders comprising a spectrum of brain mal-
formations representing the paradigm of a diffuse neuronal migration
disorder,

if Classical Lissencephalies is a malformation that represents Diffuse neuronal
migration disorder, we can induce that it represents a disorder. Thus, by linking
concepts occurring in the definition with the main term we skip this induction
process.

4) extract relational strings
To finish the formation of unlabeled triples, we need to accompany concept
pairs with relational strings that contain the mention of the respective relation
in text. The intuitive approach is to take the strings that are located in between
the two concepts in the pair. It has two major disadvantages, though: the in-
between string might either contain more than just the relation mention and
thus cause noise during classification, or it might as well not contain the mention
altegether. To avoid such mistakes, we extract only the substring between the
current concept and the preceding one, independently of the position of the
second concept:

Hypothalamic Hormones: peptide hormones produced by neurons of var-
ious regions in the hypothalamus.
Peptide hormones — produced by — Neurons
Peptide hormones — of various regions in — Hypothalamus.

5) detect negation
The negation is detected in the relation string using simple patterns. If the string
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contains tokens like not or other than, the triple is considered to be negated.
This information is useful and should be propagated till the step of formula
generation. After the parsing is completed, the parser outputs unlabeled triples
of the form concept A — relational string — concept B, possibly accompanied
with the NEGATION mark. The number of triples for a definition depends
directly on the number of annotated concepts.

2.3 Triple Classification

The last step of the formal definition generation pipeline takes as input the
unlabeled triples generated by the parser and substitutes the relational strings
with the relation labels reducing the relation instances to the invariants of some
domain-specific relation.

Labeling the text strings with relation names is an instance of the text clas-
sification task. Relational instances, or triples, represent the training/testing
examples and form the learning corpus. Every instance is represented as a set of
features and passed to a machine learning algorithm. The learning instances are
labeled with a class — a relation name in our case. The model is then trained
using the labeled instances and is used for the classification of new instances
that do not yet have a label. We assume that a relational instance corresponds
to a precisely one relation, thus the task of relation labeling is a single-label
classification.

Thus, the most inportant step of triple classification is to train such a model
that will perform accurately on the new input definitions. The model cannot be
trained on the textual instances per se, but rather on their formal representation
as sets of features. In this work we extracted two types of features from the
relational triples: lexical and semantic features.

Lexical features correspond to relational string of the triple. We used the
so-called character ngrams as lexical features. Given a textual instance I and a
value for the parameter n, we now examine I as an ordered series of characters
instead of words. For the extraction of the character ngrams, we are using a slid-
ing window of size n, and we do not exclude space characters in order to capture
patterns across token boundaries. For example, for a string is pneumoconio-
sis caused by the character bi-grams are: pn,ne,eu,um,mo,oc,co,on,ni,io,os,si,
c,ca,au,us,se,ed,d , b,by. Each instance I (in our case the text between the two
concepts) can be represented as a feature vector, features being ngrams and the
value of each feature being 0 or 1, depending on whether a term occurs in the
instance (1) or not (0).

Ngrams are able to implicitly capture a huge variety of information about
a string. In particular, character ngrams can reflect word order, lemmas, stems
and grammatical forms of words, important morphemes, to name a few. All
this information is utilized at a cheap cost: no sophisticated linguistic analysis
is required for the ngram extraction. Obviously, a single ngram does not play
a big role in the labeling process, but several ngrams of the same string taken
together can yield a strong signal of a particular class. For example, a set of
trigrams {cau,aus,use,sed, ed, ed ,d b, by} extracted from a relational string
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caused by captures not only the stem form of the verb, but also the fact that it
is used in passive voice and is followed by a preposition by, which reflects a very
common lexical pattern for the causative relation.

Unlike lexical features, semantic features account for the argument con-
cepts of the triple. As semantic features, we used concept types of the arguments,
i.e. broad semantic categories of concepts. In order to determine the types of
triple concepts, one needs an underlying terminology where all the concepts are
combined into an ontology. Every concept can be reduced to some upper concept
of broad semantics, which will be considered as a semantic type and used as a
features. In our work we used the UMLS Semantic Network as the source of
types. The UMLS Semantic Network [9] is an upper ontology for the biomedical
domain which forms the top level of the UMLS concept hierarchy. It has 133
semantic types and 54 semantic relations. Types and relations are very broad
and are used for high-level categorization and interlinking of concepts. Types
are assigned to all the concepts of the UMLS, thus the type information is easily
accessible.

Thus, every relational instance, i.e. triple, is represented as a set of all char-
acter tri-grams extracted from the relational string, and a pair of concept types
fo the relational arguments. A model then is trained on all processed instances
and is used for the classification of unseen instances.

2.4 Formula Generation

When all the triples are extracted from the input textual definition, the last
step is to combine them into a formula. In the current version of the pipeline we
follow the formalization of biomedical knowledge used in SNOMED CT ontology
and quantify all relational instances existentially. All triples are then combined
conjunctively.

3 Evaluation and Discussion

As it has been stated at the beginning of the paper, relation extraction is at
the core of formal definition generation. Therefore, in this section we discuss the
performance of our pipeline with respect to relation extraction. In particular, we
separately evaluate the steps of triple extraction and triple classification.

3.1 Triple Extraction

As a preliminary evaluation of the parser, we have run it over a small corpus of 40
definitions and manually annotated the generated triples as correct or incorrect.
MeSH serves the source for textual definitions to be parsed. The triples were
evaluated as follows: we mark a triple as correct if the two concepts serving as
arguments of the relation are chosen correctly and the relational string is also
parsed correctly (it does not miss anything). If any of the two conditions was
violated, the triple was considered incorrect. For 40 randomly selected MeSH
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definitions annotated with 147 concepts from MeSH and from the extended
vocabulary the parser generated 110 triples. 98 triples are manually labeled as
correct, only 11 triples (10%) are incorrect. In particular, for 32 definitions out
of 40 the triples are generated correctly (80%).

3.2 Triple Classification

For the evaluation of relation classification process given the set of features we
designed (see section 2.3), we relied on the external corpus. An external corpus
is needed to exclude the errors passed from the previous steps of FDG pipeline
which would affect the classification performance. We used SemRep Gold Stan-
dard corpus, which consists of 500 MEDLINE sentences manually annotated with
relational triples. The annotation includes concepts, concept types, relational
strings and relation labels. The corpus contains 1357 instances of 26 distinct
relations. The the top occurring relations are process of, location of, part of, af-
fects, treats. The corpus was used for training and testing of the SVM classifier
using 10-fold cross-validation. The tests were run for top 5, top 10 and for all 26
relations. The resulting F-measure is 94%, 89.1%, 82.7%, respectively. It should
be noted, that the top 5 relations account for 63% of all relational instances,
which means that with our learning method we can classify the majority of
relational instances with an expremely high F-measure of over 90%.

3.3 Related Approaches

One previous approach of Formal Definition Generation is described in [10]. The
authors reformulate the task into an automatic acquisition of ontology axioms
from natural language texts. The formalism of choice is SHOIN, a very expressive
DL that is able to model negation, conjunction, disjunction, and quantitative
restrictions. The developed system LExO is based on full syntactic parsing of
input sentences. The dependency tree is transformed into DL formulas through
a chain of hand-written syntactic rules that take into account parts of speech,
sentence positions, tree positions and syntactic roles of all words. The rules cover
a broad set of syntactic structures, such as relative clauses, prepositional, noun
and verbal phrases.

Another related approach [11] belongs to the area of ontology acquisition.
Ontologies consist of terminological axioms (TBox) and assertional facts (ABox).
In this paper, we focus on acquiring a special but common TBox knowledge
— formal definitions — from texts. [11] mainly studies the ABox extraction,
whereas the enlisted TBox acquisition approaches are mainly based on syntax
transformation.

The mentioned systems have several limitations in formalizing the definitional
sentences, which stem from their rule-based nature. Two main problems are
semantically ambiguous relation mentions, e.g., of, and relation mentions with
similar semantics, but dissimilar lingistic form, e.g., Causative agent relation in
SNOMED CT can be expressed both by caused by and due to. Natural language
is versatile and complicated, and the same meaning can be expressed in multiple
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ways. Hence, it is not possible to cover all ways of expression of a relation
by hand-crafted rules. In our work we attempt to solve this issue by applying
machine learning techniques to learn the models of axioms, thus avoiding hand-
crafted patterns on the lexicon or the syntactic structure of a sentence and
instead implicitly learning probable language relation expressions.

4 Conclusion

In this work we addressed a novel problem of generating formal definitions from
textual descriptions of biomedical concepts. Formal definition generation is a
complex task. We approached it from a text mining perspective and split it into
several consecutive steps. We were particularly focused on the non-taxonomic
relation extraction as expressive relations contain the core information about
the concepts to be defined. We implemented and evaluated relation extraction
and relation classification steps, integrating state-of-the-art domain resources
and external tools, i.e. semantic annotators, achieving high-performance and
and setting the scene for further research of the FDG problem. Formal definition
generation pipeline can be used as a standalone tool for concept formalization,
and it can also be integrated into ontology learning tools as a semi-automatic
tool for the assistance to domain experts.
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Abstract. Statistical inference problem arises when you want to give
the best, in some sense, the answers to a limited number of observations.
When it comes to problems of statistical inference, it is assumed that it
is possible to obtain a random sample, is set consisting of the realizations
of independent and identically distributed random variables. The arti-
cle attempts to assess quality parameters of a random process normally
distributed through the application of order statistics (particularly the
selected median) with a limited sample size.

In practice it is often required to determine the quantitative attribute (vari-
ables) against noise background. Lets assume that its initially known what kind
of distribution a sign exactly possesses. There comes the task of assessing pa-
rameters that determine this distribution. If its known that the attribute under
examination is normally distributed in the entire assembly, which is typical for
mixture of signal and Gaussian noise at noise-to-signal ratio greater than unity,
it is necessary to evaluate (calculate approximately) mathematical expectation
and root-mean-square deviation, as these two parameters completely determine
normal distribution.

Usually at a researchers disposal there is only sample data, e.g. quantitative
attribute values x1, x2, ..., xn received as a result of N observations (observations
assumed to be independent). Test variable is expressed in terms of this data.

When considering x1, x2, ..., xn as independent random variablesX1, X2, ..., Xn,
we can state that to find a statistical evaluation of the unknown parameter the-
oretical distribution means to find a function of the observed random variables,
which gives an approximate value of the parameter estimated.

Most frequently in practice, for equally accurate measurements, parameters
of random process distribution are evaluated by general average, which is rea-
sonable for a large number of values of random variables observed. However for
a small number of measurements, with high degree of unequal accuracy, as is
known from mathematical statistics, sample median estimate is more effective
than sample average.

Let physical process be described as a function of time X(t). On the signal
parameter tester signal X = X(t) + n(t) is applied where X(t) - measuring
signal, n(t) - external influence (noise). Signal parameters are evaluated at a
certain time interval ∆(t).
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In mathematical statistics we know integrated (averaged) evaluation methods

x(∆t) = lim
n→∞

n∑
i=i

xi

n , where i = 1...n - equal for the majority of equally accurate

measurements from the entire assembly X(t) ⊂ f(x1, x2, ..., xn). However, these
techniques make evaluation of the random process parameters consistent, unbi-
ased and effective only under controlled (predictable) changes of the parameters
of random process.

When changes of random process parameters are unpredictable nonparamet-
ric method for estimation of the process parameters is interesting. Its principle
is as follows: in the measurement time interval ∆(t) several measurements of
the random process parameter xj = x + xj (j = 1...k) are made. Sensor out-
put signals contain nj measurement random errors caused by external influences
(noise) which properties are characterized by probability densities (fj(x)) Re-
sults of measurements (random variables xj) form set of variate values

x1, x2, ..., xk (1)

so that x1 < x2 < ... < xk. In case of odd number of measurements (K = 2k+1)
mean proportional of set of variate values (1.4.2) is taken as valuation of Z
parameter of the process measured.

Z = X(k + 1) (2)

For sample size K = 2k + 1 = 3 suggested measurement algorithm can
be implemented on (max and min) transformations. Then mathematical model
and algorithm of measurement can be represented as Z = med(x1, x2, x3) =
max{min(x1, x2),min(x1, x3),min(x2, x3}

For symmetrically distributed measurement errors estimate (2) is unbiased.
Obviously, the error of estimate (2) is equal to the errors median nj

e = Z − x = n(k + 1) (3)

For practice, a case is important when the distribution of measurement errors
on the observation interval is different, the differences characteristics are not
known beforehand and cannot be used for optimal algorithms measurements
apply. This situation occurs while the rapid changes in the measured parameter
of physical process on the observation interval, for example, rapid changes in the
amplitude of the analog signal, the frequency alteration and phase of harmonic
oscillations - the information carriers in a rapidly changing interference intensity
on the observation interval and a number of other situations.

Lets compare by statistical efficiency and estimation accuracy of the physical
parameter process on sample median with a simple averaging for the case of
unequal dimensions.

For practice, a case is interesting when the sample size for the measurement
interval K = 3, the measurement errors are normally distributed with zero mean
and variances σ2

1 , σ
2
2 , σ

2
3 and it is unknown, what specific measurement corre-

sponds to a certain level of error.

54 Properties of Majority Transformations



According to [1], the probability density estimation errors algorithm sample
median:

f2(x) =

3∑

i=1

fi(x){Fj(x)[1− Fb(x)] + Fb(x)[1− Fj(x)]}

(i, j, e = 1, 2, 3; i 6= j 6= e) (4)

At a normal distribution inaccuracy, the formula looks like this:

Fi(x) = 0, 5

[
1 + erf

(
x√
2σi

)]
, where erf(y) =

2√
π

y∫

0

e−t
2

dt.

Error variance σ2
2 for the sample median, the corresponding distribution (5)

turns out to be [1]

σ2
(2) = σ2

1

{
λ21 + λ22

2
− 1

π

[
arctan

1

A
+
A2 + λ21λ

2
2

A(1 +A2)

]
− λ21

π

[
arctan

λ21
A

+

+
λ21(A2 + λ22)

A(A2 + λ41)

]
− λ22

π

[
arctan

λ22
A

+
λ22(A+ λ21)

A(A2 + λ42)

]}
(5)

From (6) follows that if the error variance of any two measurements are
limited and the errors of the third dimension are infinitely large variance, and
the measurement results practically unreliable, error variance is found to be
σ2
2 = 1

2 (σ2
1 + σ2

2).
This means that the assessment on sample median virtually eliminated false

data.
The other situation is observed at an average measurement results. The cal-

culation is defined as:

σ2 =
1

9
(σ2

1 + σ2
2 + σ2

3) (6)

That is: an unlimited increase of dispersion errors in one of the measurements
leads to unlimited increase of error variance estimates.

At symmetric distribution laws Fi(x) of errors and when they do not contain
systematic components, the probability P (∆) in the case of unequal probability
measurement is defined as:

P (∆) = 1− 2



∆∫

0

{f1(x)(F2(x)[1− F3(x)] + F3(x)[1− F2(x)]) + f2(x)(F1(x)[1−

−F3(x)] + F3(x)[1− F1(x)]) + F3(x)(F1(x)[1− F2(x)] + F2(x)[1− F1(x)])}dx
]

As a result of integration, we obtain the following:

P (∆) = F1(∆)F2(∆)+F1(∆)F3(∆)+F2(∆)F3(∆)−2F1(∆)F2(∆)F3(∆)−1

2
(7)
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In case of a normal error distribution at σ = σ2 = σ3 and σ3 6= σ probability
P (∆) is:

P (∆) = 1− 1

2
Φ

(
∆√
2σδ

)[
1− Φ2

(
∆√
2σ

)]
− Φ

(
∆√
2σ

)
, (8)

where δ = σ3

σ .
when unequal measurements, the sample median has the best performance in

terms of quality considered criterion than the sample mean an order of magnitude
or more. This demonstrates the feasibility of applying the algorithm sample
median for measuring the parameters of stochastic processes on the background
noise and the impact of external influences, both on a physical process, and the
measuring device. Practical confirmation the latest are researches for example,
in [2,3,4].
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Abstract. This article describes the implementation of the Hidden Markov 

Models for identification of exploitation conditions of the automobile tire by 

means of analyzing tire noise while car driving.  This requires the development 

of special recognition algorithms of tire noise and cleaning of the signal from 

the background noise, it can be done by means of extraction of the clean signal 

from the noise by adaptive filters and by pattern recognition methods, typically 

used in speech recognition, to recognize a tire noise corresponding to a particu-

lar operating condition. In this way, we can diagnose the condition of a tire 

while car driving, which will reduce overloaded tire wear, due to improper use 

to a minimum and help prevent accidents as a result of tire failure. 

Keywords: Hidden Markov models, Adaptive filters, tire noise, pattern recog-

nition, feature extraction 

1  Introduction 

The problem of the road transport accidents, caused by the failure of automo-

bile tire, is one of the most important ones for traffic safety. A key reason for 

the failure of automobile tire is its increased wear as the result of improper 

use. It may be caused by many factors: the collapse of the incorrect angles of 

convergence, high or low tire pressure, overheating, etc. It is impossible to 

control all the factors, influencing the dynamics of tires while driving, and, 

therefore, there is a need for a comprehensive new indicator. We think that 

this indicator is the sound of tires. There is a lot of research of tire dynamics 

in the field of automobile safety. In general, models of tire/road noise can be 

divided into four major types. The first type includes statistical models. A 

popular example of this approach is introduced in the article by Sandberg, U. 

and Descornet, G. [1]. The second type is composed of physical models. The 



examples of such a modeling approach are analysed in the book by Kropp, W. 

[2]. The third type of models for tire/road noise is hybrid theoretical models. 

The examples of hybrid theoretical models are described by De Roo, F., Ger-

retsen, E. and Hamet, J.F., Klein, P. [3, 4]. Finally, statistical models can be 

extended with pre or post processing, based on well-known physical relations, 

often derived from theoretical models. The examples of hybrid statistical 

models are introduced by Beckenbauer, T. and Kuijpers A. [5]. We think the 

disadvantage of these models is that they only describe the noise generation 

mechanisms of the tire, independently of the condition of the tire. In contrast, 

we attempt to model dependencies between tire sounds and tire conditions, 

based on the hypothesis that the operational status of the tire is reflected in its 

noise characteristics. We must develop dedicated recognition algorithms of 

tire noise and also algorithms of clearing up the signal of the background 

noise. It can be done by means of extraction of the clean signal from the noise 

by adaptive filters and pattern recognition to classify a tire noise as corre-

sponding to a particular operating condition. 

2  Data Preparation 

2.1 Adaptive Filtering 

First, it is necessary to clear the tire signal from the background noise. It can 

be done by using adaptive filters. In our research we use adaptive filter, based 

on the least mean square algorithm [6], which is realized in the Matlab Sim-

ulink (see Fig.1). 

The acoustic signal  ( ), which contains the tire signal  ( ) and noise  ( ) is 

recorded by the first microphone, which is installed near the tire. The pattern 

of noise   ( ) is recorded by the second microphone, which is located near the 

engine of the automobile. There is a correlation between  ( ) and   ( ). The 

output of the adaptive filter will contain the measure of the noise   ̂ ( ). The 

error of the filter will contain a clear tire acoustic signal   ̂( ). The spectro-

gram of the clear tire signals which we received as the results of the experi-

ments (the experiments are described in Section 4) is shown in Fig 2. 
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Fig. 1. The scheme of adaptive filter from Matlab Simulink 

 

Fig. 2. The tire signals spectrogram 

The frequency  range of  the clean acoustic signals of the tire is between 400-

5000 Hz. 

2.2 Feature Extraction 

The next step is the feature extraction. The purpose of this step is to parame-

terize the raw tire signal waveforms into sequences of feature vectors. Here 

we use both FFT-based and LPC-based analysis with the purpose to identify 

which approach is better for the tire noise coding. The feature techniques are 

based on the widely known methods  MFCC and LPCC [7] which are often 

used for speech recognition.  We process the signal with the frame size 25 

msec and frame period 10 msec (Fig.3). 
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Fig. 3. Framing of the waveforms of the tire acoustic signal  

The tire noise feature vectors were parameterized as follows: if the target pa-

rameters are MFCC, we use     as the energy component. We use a Hamming 

window in FFT. The filterbank has 26 channels.  In output we receive 12+1 

(   ) coefficients. The performance of the tire noise recognition system can be 

enhanced by adding time derivatives (delta and acceleration coefficients) to 

the basic static parameters [7].  If the target parameters are  LPCC, we use 

linear prediction of the 14th order. The filterbank size is 22 channels and  in 

output we receive 12 coefficients. Then we add delta and acceleration. After 

feature extraction procedure we have  39 dimensional  MFCC vectors or if we 

use the LPCC method - 36 dimensional vector. 

3  HMM Training and Recognition 

3.1  Topology of the HMM  

We use the left-right HMM with seven hidden states (see Fig.4) for identifica-

tion of the tires exploitation condition. The first and the last states (   and   ) 

are not emitted as  we need these nodes to create composed HMM (see Fig.5). 
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Fig. 4. The left-right HMM for identification of the tire exploitation condition  

Here    – number of hidden states of the model ( =7);          – the ma-

trix of the transition probabilities: 

      [     
  

  
   ]                                       (1) 

   - hidden state of the HMM (       ) at the moment  ;    – next state of 

HMM;   – actual state of HMM;    (  ) – observation  probability; 

        – feature vectors of the tire noise. 

 

Fig. 5. Composed HMM;         –exploitation conditions of the tire 

3.2 HMM Training  

For HMM training we use the same method as for speech recognition [7]. We 

record a training database of the tire noise which relate to every exploitation 

condition of the tire. It is necessary to make 3-5 recordings of the tire noise 
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10-15 seconds long for every exploitation condition with the purpose to create 

the robust recognition system. Then for each exploitation condition of the tire 

        we initialize one HMM with seven hidden states.  

Using maximum likelihood we estimate the matrix of transitions between the 

states in the hidden part of the model. After that we estimate the mean  ̂  and 

the matrix of covariance  ̂  by means of these formulas: 

 ̂  
 

 
   

 
                                                       (2) 

 ̂  
 

 
 (     )

 
   (     )

                                  (3) 

where T – is a number of the feature vectors;  

Then we can calculate the observation probability of the feature vectors of the 

tire noise: 

  (  )  
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(   ̂ )                               (4) 

Where n – is a dimensionality of the feature vectors. 

It is necessary to estimate corresponding probability for each state, and to use 

the Viterbi algorithm [7] for reassigning the observation vectors for each state. 

We re-estimate model parameters in this way until we stop getting their im-

provements.  

The next step is to create      Gaussian mixtures [9]. It is necessary to 

create a robust system of the tire exploitation condition recognition.  

We use the Baum – Welch [8] algorithm to define     
 ( ) – the probability of 

observation vector being in the particular state. Here   is the number of train-

ing data          After that, we re-estimate the parameters of the model. 

The observation probability    (  ) is: 
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   )                                    (5) 
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Re-estimation of the mean and covariance matrix is: 
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where     – is the number of the observation vectors.  
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The weights of the Gaussian mixture components are: 

    
     

   
   ( ) 

   

      
 ( )

  
   

  
   

 
   

                                                 (9) 

We re-estimate the parameters of the model until   (  ) stop getting im-

provements of the model parameters.  

3.3 Recognition 

We use the Viterbi decoding [7] for the tire noise recognition (Fig.6).  This 

algorithm could be used to find the maximum likelihood state sequence of 

HMM and identify the tire exploitation condition. Let    ( ) represent the 

maximum likelihood of the observing tire noise vectors    to    in state j at 

time t.   This likelihood can be computed efficiently using the following re-

cursion: 

  ( )           ( )         (  )                                  (10) 

where 

  ( )                                    (11) 

  ( )       (  )                              (12) 

The maximum likelihood for observing sequence of vectors    to     given 

the HMM model: 

  ( )         ( )                                        (13) 

As for the re-estimation case, the direct computation of likelihoods leads to 

underflow, so it will be better to compute log likelihood: 

  ( )           ( )      (   )      (  (  )                  (14) 

This algorithm can be visualized as searching the best path through a matrix, 

where the vertical dimension represents the states of the HMM and the hori-

zontal dimension represents the frames of the tire noise. 
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Fig. 6. – Scheme of the Viterbi decoding 

Each large dot in the picture represents the log probability of observing that 

frame at that time and each arc between dots corresponds to the log transition 

probability. The log probability of any path is computed simply by summing 

the log transition probabilities and the log output probabilities along that path. 

The paths grow from left-to-right, column-by-column. At time t, each partial 

path     ( ) is known for all states  , hence, equation 14 can be used to com-

pute   ( ),thereby, extending the partial paths by one time frame. 

4  Experiments and Results 

4.1 Experiments 

We carried out field tests with the purpose to record the tire noise while car 

driving with different exploitation conditions of the tire. Our experiment is 

based on the standards ISO 10844 [10] and ISO 13325:2003 [11], which de-

termine the conditions for the tire noise measurement, but we included the 

following changes: 

 The noise of the tire was measured with the engine working  

  Microphones were installed near the front right wheel (Fig.7) with the  

purpose to provide adaptive filtering of the background noise 
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Fig. 7.   – Scheme of the microphones’ positions, during field tests: a) Upside view b). Front 

view 

We   recorded the tire noise with three different speeds of the automobile 20, 

40 и 60 km per hour and three different pressure levels: 1.9, 2.1 and 2.3 at-

mospheres. The automobile used for field tests was Mitsubishi L200 (year of 

construction: 2011), with new tires 265/75R16. 

4.2  Evaluation 

We made three different experiments. For each experiment we used 405 rec-

ords of the tire noise, the total duration of 1 hour 41 minute 15 seconds for 

HMM training. 

Table 1.  The experiment results 

Features HMM (1 

Gaussian) 

HMM (8  

Gaussian 

 mixtures) 

HMM (16 

Gaussian 

mixtures) 

The results of the tire pressure identification 

LPC/LPCEPSTRA 78% 87.5% 88.2% 

MFCC 68% 77.4% 78.2% 

The results of the automobile’s speed identification 

LPC/LPCEPSTRA 81.2% 94.3% 95.7% 

MFCC 78.6% 89.4% 91.8% 

The results of the identification of the tire  speed and pressure 

LPC/LPCEPSTRA 61.4% 74.7% 75% 

MFCC 58.6% 59.4% 61.9% 

To evaluate the efficiency of the system we used 50 records,  a total duration 

of 12 minutes  30 seconds. As we can see in table 1 the accuracy of our meth-

od for the tire pressure is 88,2%;  for the automobile speed - 95,7%; and for 

both the speed and tire pressure -  75%.  
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5 Conclusions 

We have found the correlation between the tire noise and the tire exploitations 

characteristics. The cleaning mechanism, based on adaptive filters, and the 

recognition mechanism, based on the HMM have shown prospective results. 

We found out that the performance of the recognition system depends on ex-

ploitation parameters. They show better results for the automobile speed than 

for the tire pressure identification. Moreover, we have also discovered, that 

the performance of the recognition system runs low when more than one pa-

rameter are identified. 
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Abstract. In the work an index based on B+ tree and oriented to stor-
age of tree which are coded by nested intervals method with usage of
system of residual classes is described.

Keywords: nested intervals, residue classes, hierarchical data.

1 Introduction

A hierarchy in relational databases (RDB) in present time is implemented inef-
fectively. Existed methods have definite drawbacks and intent as usual on either
quick data reading truckle to record or vice versa.

There are a few possible ways of an effectiveness increasing of a tree-type
structures storage: an improvement of existed methods of a hierarchy storage,
a development and a research of new methods or refusal of relational databases
using in favour of NoSQL databases: graph, document-centric and other types.

All methods of a hierarchy structures presentation in RDB can be grouped
into two main categories:

1. Methods of trees encoding.
2. Hierarchical / recursive SQL extensions.

We should note methods of hierarchy presentations, which are based on com-
bining of several methods, for example: method, combining materialized path
and adjacency list [1].

Till recently there were two main methods of hierarchy storage (graph) in
group of trees encoding methods: nested sets [2] and materialized path [5].

In reference [1] Vadim Tropashko has suggested a modification of material-
ized path: a method of nested intervals for storage of tree-type structures. The
offered method, based on conception of the materialized path in graphs and the
continued fractions theory, eliminates a problem of a data redundancy in the
materialized path.

Main problems of the method are following: a necessity of calculation with a
great numbers, a significant complexity of an execution of partial operations in
particular trees rearrangement during transference of subtrees.



To eliminate problems concerned with nested intervals authors [3] offered to
encode nested intervals with using of systems of residual classes (SRC).

Using of SRC makes a number multiprocessing possible, relieves from the
necessity to work with great numbers and bignums, but imposes some constraints
on its using:

– a possibility to present only restricted amount of numbers;
– an absence of effective algorithms for comparison of numbers in SRC.

For effective presentation of trees in databases it is necessary to solve follow-
ing problems:

– an elimination of working with great numbers and bignums, which are ap-
pearing by using of the nested intervals method;
The problem solving is posed in [3]. A consequence of this method using
is problem of increasing of number storage redundancy. This problem is
following from nature of number, which is presented in SRC.

– high complexity of operations execution to rearrange tree;
The problem can be partly solved by using of residue numbers. Interdepen-
dency between residues of numbers, which are expressed in SRC, that allows
to execute arithmetics with residues simultaneously. For realization of an
opportunity of parallel calculations with number residues of nested inter-
vals expressed in SRC, without taking interdependency into consideration,
numbers should be in particular order: a parent node should be described
necessarily before a descendant node. An alternation of sibling nodes doesnt
matter.

– an absence of indexing methods for numbers expressed in SRC;
At the moment there are no any indexing methods for numbers expressed in
SRC. An indexation of numbers expressed in SRC by using traditional algo-
rithms is unfeasible because numbers expressed in SRC dont seem possible
to arrange in series as in a decimal as in a SRC representation. This feature
issues from the nature of number expressed in SRC.

– a significant performance penalty at storage of big trees in DB (more than
1 mln records);
The problem is mainly conditioned by increasing of a key length during
derivation of big trees and by a big quantity of calculations needed to an
execution of tree derivation operations.

Offered in the work approach to the index derivation and processing allows
to solve problems described above.

There is provided a structure of index based on the B+ tree and oriented on
index multiprocessing in not relational DB.

2 Structure of the Index

2.1 Encoding of the Tree by the Method of Nested Intervals

The method of nested intervals is an expansion of nested sets model, using of
continued fractions.
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Lets present a tree:

Fig. 1. An examle of tree

Encode the node 1.3.2 using of continued fractions 1:

1.3.2 = 1 +
1

3 + 1
2+ 1

x

=
9x+ 4

7x+ 3
; (1)

A result 1 is an nested interval:

(
9

7
,
4

3
) (2)

An interval (2) determines a range, where all descendant nodes will be en-
coded, and consists of two parts: 9/7 directly a node code, 4/3 the parents node
code. For unique identification of the node it is enough to use only a node code,
and to calculate the parents node code only if necessary.

2.2 Systems of Residual Classes in the Index

A presentation of number in the SRC is based on a notion of deduction and the
Chinese remainder theorem. The SRC is determined of set of coprime modules
which are called a basis. In the SRC [4] numbers are represented in following
way:

A(α1, α2, ..., αn); (3)

αi = A− [
A

pi
]pi, (∀i ∈ [1, n]), (4)

P =
n∏

i=1

pi (5)

Where p1, p2, ..., pn - system modules, P - volume of system range. Assume
p1 = 2, p2 = 3, p3 = 5, P = 30.
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Consider, how the node code is encoding in the SRC:
Encode a node 1.3.2 by using of formulas (3) and (4):

1.3.2 = (
9

7
,
4

3
) (6)

We will use only the node code:

α11 = 17 = (α1, α2, α3). (7)

α1 = 9− [
9

2
] ∗ 2 = 1, (8)

α2 = 9− [
9

3
] ∗ 3 = 0, (9)

α3 = 9− [
9

5
] ∗ 5 = 4, (10)

α12 = 7 = (1, 1, 2). (11)

It is following from the nature of the SRC that a number expression in the
SRC imposes constraints on a number length.

A maximum quantity of numbers, which could be stored in a number ex-
pressed in the SRC, is always less than a quantity of numbers, which could be
stored in the same quantity of bits as a decimal number.

So a maximum whole unsigned number, which can be stored in 4 bytes,
equals:

Nmax = 232 = 4294967296 (12)

It is known that modules of the system of residual classes p1, p2, ..., pn should
be prime in pairs numbers. In this case there is a single non-negative decision
modulo P an equation system which describes residue numbers:

x ≡ α1(mod(p1)), x ≡ α2(mod(p2)), , x ≡ αk(mod(pk)) (13)

Obviously the more equal P and Nmax, the less of a redundancy of numbers
storage in the SRC. Hence, to find a minimum pressure of numbers record in the
SRC it is necessary to try maximally great prime in pairs residue number base.

As an example we will try optimum bases, which are maximally not exessive
for number length of 4 bytes: 255, 254, 253, 251.

P = 255 ∗ 254 ∗ 253 ∗ 251 = 4113089310 (14)

Thus storing residues should be maximally great and prime in pairs numbers,
which could be got into such quantity of bits that fits to one residue.

For an increasing of number quantity in index, which can be expressed in the
SRC, a dynamic change algorithm of residues quantity in number expressed in
the SRC.
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In the case when a situation of number repletion, which is expressed in the
SRC, appears (situation when a sum of several SRC is exceeded P ) the number
is added by additional residue and in that way the maximum quantity of stored
numbers P increases.

In the case when a large quantity of residues exists, with the purpose of stor-
age redundant decrease a converting of system bases is performed with increase
of each residue bit length .

In the case of using 2 bytes instead of one we can store (15) numbers for one
residue storage in 4 bytes.

P = 65535 ∗ 65534 = 4294770690 (15)

It follows that (15)has less data redundance in comparison with (14) and
allows to express more numbers quantity in the SRC.

2.3 Structure of the Index

The main problem of using an approach, offered in [3], is an impossibility of
index derivation by numbers expressed in the SRC with traditional methods,
because it is impossible to compare directly numbers expressed in the system
of residual classes. To compare such numbers it is required to execute certain
arithmetic conversions. As usual to compare numbers expressed in the SRC we
should convert each number to the radix numeration system for further compare.
From the point of view of productivity this approach is not effective because of
computation efforts to number conversion from the nonpositional notation to the
radix numeration system and because of necessity to work with great numbers
and bignums.

An algorithm of index derivation is offered to solve the problem concerned
with of impossibility of index derivation by numbers expressed in the SRC with
traditional methods.

Note a tree from the figure 1 as a line (16), arranging nodes in order of a
tree traversal from left to right. The traversal is realized as in a left-side tree
traversal in case of using of nested sets.

[1.1[1.1.1]1.2, 1.3[1.3.1, 1.3.2]] (16)

For illustrative purposes descendant nodes are enclosed in brackets.
Encode each node of the tree using the method of nested intervals and convert

numbers to the SRC. As a system of residual classes bases we use modules: 3, 5,
7.

To solve a problem of intervals cross-cups we use early known decision, which
is based on chain fractions properties: refusal of using index ‘1‘ as an element of
materialized path, and a root of tree equals “2.2“.

As it was said earlier for identification of tree node it is not necessary to
calculate all interval, where descendant nodes are. It is enough to calculate an
interval begin. In this case the interval begin identifies tree node by unique way
and is node code.
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Results of conversions are represented in table:

Initial Modified Node code Node code
materialized path materialized path (interval begin) in the SRC

1 2.2 5/2 (2,0,5)/(2,2,2)
1.1 2.2.2 12/5 (0,2,5)/(2,0,5)
1.1.1 2.2.2.2 29/12 (2,4,1)/(0,2,5)
1.2 2.2.3 17/7 (2,2,3)/(1,2,0)
1.3 2.2.4 22/9 (1,2,1)/(0,4,2)
1.3.1 2.2.4.2 49/20 (1,4,0)/(2,0,6)
1.3.2 2.2.4.3 71/29 (2,1,1)/(2,4,1)

Rewrite the line (16), replaced there elements of reified path by a value of
node code in the SRC:

(2, 0, 5)

(2, 2, 2)

[
(0, 2, 5)

(2, 0, 5)

[ (2, 4, 1)
(0, 2, 5)

] (2, 2, 3)
(1, 2, 0)

,
(1, 2, 1)

(0, 4, 2)

[ (1, 4, 0)
(2, 0, 6)

,
(2, 1, 1)

(2, 4, 1)

]]
(17)

Note that the tree in the line (17) is represented in sorted-out state. And the
line, which encodes the tree, may be unambiguously formed in a process of tree
processing if a transactional integrity of execution of modification operation its
tops and edges.

For illustrative purposes futher we will operate with elements of materialized
path meaning element codes in the SRC.

Rewrite the line (16), removed from materialized path data about parent
node:

1
[
1[1]2, 3[1, 2]

]
(18)

Switch from string indication of the line (18) to binary. The figure 2 clearly
shows intervals of encoded tree, which are stored in index.

Fig. 2. Nested intervals of encoded tree
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Offered index structure is the most productive when using in combination
with highly productive data warehouse. As an example we will consider realiza-
tion of this index in NoSQL DBMS MongoDB.

In binary form the index is stored as pages (documents) consecution with
contiguous information. Besides node code each index record contains this docu-
ment (or link to it) and reference to parent node. The index structure is presented
in the figure 3.

Fig. 3. Index structure

The index includes B+ tree and documents, which store data about nodes
and relations between them.

A simplified diagram of index documents is presented in the figure 4. This
scheme extends the figure 2 by adding new connections between records.

Fig. 4. A simplified diagram of index

Each record in index document store the following data: record code, link to
the right sibling node, document corresponding tree node, or link to it, and link
to parent node.

In spite of the fact that this scheme stores relations between tree nodes, search
of required node is possible only by walkthrough of all records. For elimination
of this problem it is necessary to derivate index for access of tree tops, which
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is encoded in the SRC. As index we will choose structure of type B+ tree with
sheet-like records, which references to top codes of the line corresponding to tree.

To solve the problem of comparing numbers expressed in the SRC it needs to
derivate B+ tree according to numbers expressed in the SRC as ordinary array.
Comparing of two numbers of the SRC in this case occurs as comparing of usual
areas. This scheme allows to disregard from the SRC conception by adding of
some redundance.

Sheet-like records of the tree point to corresponding records in index sheet
pages.

A simplified diagram of index is represented on the figure 5.

Fig. 5. Schematic representation of the index structure

However because of the fact that residues value in the SRC represented as
array doesnt correspond to decimal value of number expressed in the SRC, ele-
ments in sheet pages of the tree would point to elements in sheet pages of index
randomly (figure 6).

Fig. 6. Schematic representation of an accordance of records in sheet pages of the tree
to records in sheet pages of the index

Encoded numbers in the SRC and switched from line representation to binary,
we get the index structure, which is in the figure 7.
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Fig. 7. Schematic map of the index structure

Such record allows to read trees and subtrees quickly and to perform opera-
tions of recording: an addition, a removal and displacement of nodes/subtrees.

Sheet-like index pages are replaced on the disc in the form of the double-
linked list (figure 8)in the order of the tree nodes traversal. All links are using a
multilevel addressing.

Fig. 8. A consecution of pages in the index file

High-speed operations of tree manipulation in this index are possible due
to during data storage in the form of consecution of pages/documents a task
of migration of data parts (for instance, during a subtree removal) comes to
fragmentation/unification of boundary pages (which contain data partly) and
to changing of links between pages with the purpose of maintenance of tree
consecution arrangement in the index.

As result of the fact that each residue of number expressed in the SRC doesnt
depend on other residues of the same number, we get an possibility of the high-
speed converting of the subtree with using of parallel computations.

3 Experiments and Results

Testing results of presented in the article index structure in comparison with
the realization of trees storage by the method of nested intervals and with the
index of B+ tree type are shown in the table 1. As DBMS it was choosen NoSQL
DBMS MongoDB. Offered index is realized as separate module, which expands
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a functionality of MongoDB. For parallel computations the graphics processor
NVIDIA and the technology CUDA were applied.

Table 1. Results of productivity comparasing

Characteristic Offering index Nested intervals +
B+ tree

Time of node insertion 0.00005 sec 0.00007 sec

Time of node removal 0.00005 sec 0.000001 sec

Time of subtree moving 28.8 sec 25.4 sec
(10000 nodes)(CPU)

Time of subtree moving 0.0007 sec, without data A supporting of GPU in
(10000 nodes)(GPU) copying (between CPU and GPU) MongoDB is not realized

0.42 sec with data copying
(between CPU and GPU)

4 Conclusion

In the work the index structure for storage of hierarchies in DB is suggested. For
derivation of the index it is used the B+ tree, which is necessary for high-speed
finding of document locations on the disc, and array of documents which are the
index base. Also the method of index derivation on numbers expressed in the
SRC is represented.

Using of this index structure in common with methods, allowing to realize
parallel computations, permits to increase speed of working with trees.

Offered index structure can be applied in databases of NoSQL style to in-
crease of productivity of index structure processing.

This approach can be improved by adding of methods of vector residue com-
pression for decreasing of overhead expenses on storage and increasing of data
processing rate.
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Abstract. We provide a tutorial on answer set programming, a modern
approach towards true declarative programming. We first introduce the
required theoretical background in a compact, yet sufficient way and
continue to elaborate problem encodings for some well known problems.
We do so by also introducing the tools gringo and clasp, a sophisticated
state-of-the-art grounder and solver, respectively. In that way we cover
theoretical as well as practical aspects of answer set programming, such
that the interested reader will gather sufficient knowledge and experience
in order to continue discovering the field of answer set programming.

1 Introduction

Answer set programming (ASP) is a modern approach to declarative program-
ming, where a user focusses on declaratively specifying his or her problem. ASP
has its roots in deductive databases, logic programming, logic based knowledge
representation and reasoning, constraint solving, and satisfiability testing. It
can be applied in a uniform way to search problems in the classes P , NP , and
NPNP as they occur in application domains like planning, configuration, code
optimization, database integration, decision support, model checking, robotics,
system syntheses, and many more. We assume the reader to be familiar with
propositional and first-order logic as well as with logic programming [5,13,3].

2 The Interview Example

A college in the USA uses the following rules for awarding scholarships to stu-
dents: (1) Every student with a GPA of at least 3.8 is eligible. (2) Every minority
student with a GPA of at least 3.6 is eligible. (3) No student with a GPA under
3.6 is eligible. (4) The students whose eligibility is not determined by these rules
are interviewed by the scholarship committee.

These rules can be encoded in the following program:

eligible(X) ← highGPA(X)
eligible(X) ← minority(X) ∧ fairGPA(X)
¬eligible(X) ← ¬fairGPA(X)
interview(X)← ∼eligible(X)∧ ∼¬eligible(X)

(1)



where highGPA(X) and fairGPA denote that the GPA of student X is at least
3.8 and at least 3.6, respectively, ¬ and ∼ denote classical and default negation,
respectively, and we assume that all rules are universally closed. One should
observe that the last rule specifies that interview(X) holds if neither eligible(X)
nor ¬eligible(X) can be determined.

Now suppose the scholarship selection committee learns that John has a GPA
of 3.7, but his application does not give any information on whether he does or
does not belong to a minority. What happens with John? Will he be invited to
an interview? This additional information can be specified by:

fairGPA(john) ←
¬highGPA(john) ← (2)

3 Answer Sets

Propositional Programs For the moment we restrict ASP to propositional pro-
grams. Towards the end of this section we will extend it to first-order logic. The
alphabet is the usual alphabet of propositional logic extended by the connec-
tive ∼denoting default negation. The set of literals consists of all propositional
variables and their (classical) negations. A rule is an expression of the form

L1 ∨ . . .∨Lk∨ ∼Lk+1 ∨ . . .∨ ∼Ll ← Ll+1 ∧ . . .∧Lm∧ ∼Lm+1 ∧ . . .∧ ∼Ln, (3)

where all Li, 1 ≤ i ≤ n, are literals and 0 ≤ k ≤ l ≤ m ≤ n. A program is a
finite set of rules.

For a rule r of the form shown in (3) we introduce the following notation:

head(r) = {L1, . . . , Lk} ∪ {∼Lk+1, . . . ,∼Ll}
head+(r) = {L1, . . . , Lk}
head−(r) = {Lk+1, . . . , Ll}
body(r) = {Ll+1, . . . , Lm} ∪ {∼Lm+1, . . . ,∼Ln}
body+(r) = {Ll+1, . . . , Lm}
body−(r) = {Lm+1, . . . , Ln}

Rule r is said to be a constraint if head(r) = ∅, i.e., constraints are of the form

← Ll+1 ∧ . . . ∧ Lm∧ ∼Lm+1 ∧ . . .∧ ∼Ln; (4)

it is said to be classical if head−(r) = body−(r) = ∅, i.e., classical rules are of
the form

L1 ∨ . . . ∨ Lk ← Ll+1 ∧ . . . ∧ Lm. (5)

One should observe that for all classical rules r we find head(r) = head+(r) and
body(r) = body+(r). A program is said to be classical if all its rules are classical.
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Answer Sets for Classical Programs Let P be a classical program and M be
a satisfiable set of literals, i.e., a set which does not contain a complementary
pair A, ¬A of literals. M is said to be closed under P iff for every (classical)
rule r ∈ P we find that

head(r) ∩M 6= ∅ whenever body(r) ⊆M. (6)

If we identify M with an interpretation such that M(L) = true iff L ∈ M for
all literals L, then condition (6) states that whenever the body of a (classical)
rule r is true underM, then at least one literal in the head of r must be true as
well. If condition (6) is satisfied for all rules in P, then M is a model for P. M
is said to be an answer set for P iff M is minimal among the sets closed under
P (relative to set inclusion).

As an example consider the program P consisting of the following rules:

s ∨ r ←
¬b← r

(7)

One may read these rules as either the sprinkler is on (s) or it is raining (r) and
if it is raining, then the color of the sky is not blue. The sets {s, r,¬b}, {s,¬b},
{s}, {r,¬b} are closed under P, but only the latter two are minimal and, thus,
are answer sets. On the other hand, the sets ∅, {r} and {r, s} are not closed
under P. One should observe that if we add to P the constraint

← s (8)

then {s} is no longer an answer set for the extended program. This example
illustrates a general property of constraints: adding a constraint to a program
affects its collection of answer sets by eliminating the answer sets which violate
the constraints.

Reducts Let P be a program andM a satisfiable set of literals. The reduct of
P relative to M, in symbols P|M, is defined as

{head+(r)← body+(r) | r ∈ P ∧ head−(r) ⊆M∧ body−(r) ∩M = ∅}, (9)

where the literals in head+(r) and body+(r) are disjunctively and conjunctively
connected, respectively [10].

As an example consider the program P = {¬p← ∼p}. We obtain:

P|∅ = {¬p}
P|{p} = ∅
P|{¬p} = {¬p}

(10)

One should observe that the reduct of a program relative to a satisfiable set of
literals is a classical program.
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Answer Sets for Programs Let P be a program and M a satisfiable sets of
literals. M is said to be an answer set for P iff M is an answer set for P|M.
Hence, M is an answer set for P iff M is minimal and closed under P|M.

Returning to the example discussed in the previous paragraph we observe
that ∅ is not closed under P|∅ = {¬p} as ¬p 6∈ ∅, {p} is closed under P|{p} = ∅
but not minimal as ∅ ⊂ {p}, and {¬p} is minimal and closed under P{¬p} = {¬p}.
Hence, the only answer set for P = {¬p←∼p} is {¬p}. Hence, the rule ¬p←∼p
captures negation by failure: if one cannot show that p holds, then ¬p is true.

Interested readers may try to compute answer sets for the following programs:

{p← ∼q}, {p← ∼¬p}, {q ← p ∧ ∼q, p←, q ←}.

What happens if we delete q ← from the last example?

First-Order Programs Let P be a first-order program like the programs shown
in (1) and (2). Let T be a set of terms. The set of ground instances of P relative
to T , in symbols gP, is defined as follows:

{rθ | r ∈ P and θ is a ground substitution for r with respect to T } (11)

There is a bijection between the ground atoms occurring in gP and a suitable
large set of propositional variables and, hence, gP is equivalent to a propositional
program.

4 The Interview Example Revisited

Let P be the set of rules shown in (1) and (2) and let T = {john}. Then, gP
contains the following rules:

eligible(john) ← highGPA(john)
eligible(john) ← minority(john) ∧ fairGPA(john)
¬eligible(john) ← ¬fairGPA(john)
interview(john) ← ∼eligible(john)∧ ∼¬eligible(john)
fairGPA(john) ←
¬highGPA(john) ←

(12)

Now let

M = {fairGPA(john), ¬highGPA(john), interview(john)}. (13)

The reduct of gP relative to M contains the following rules:

eligible(john) ← highGPA(john)
eligible(john) ← minority(john) ∧ fairGPA(john)
¬eligible(john) ← ¬fairGPA(john)
interview(john) ←
fairGPA(john) ←
¬highGPA(john) ←

(14)
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M is minimal and closed under this reduct and, hence, is the only answer set
for gP. Reasoning with respect to this answer set tells the selection committee
that it should invite John for an interview.

Now suppose that the selection committee learns during the interview that
John belongs to a minority. Let

P ′ = P ∪ {minority(john)←}. (15)

In this case,M is no longer an answer set because the new rule is an element in
P ′|M and, consequently, M is not closed under P ′|M. It is easy to see that

M′ = {fairGPA(john), ¬highGPA(john), minority(john), eligible(john)} (16)

is the only answer set for P ′. This example demonstrates that reasoning with
respect to answer sets is non-monotonic as the addition of new knowledge may
lead to the revision of previously drawn conclusions.

5 ASP Modeling in Practice

We now want to provide an inside on the methodology of how problems are
encoded into programs that can be processed by ASP tools like gringo and clasp

[6]. The first tool, gringo, takes a program and transforms it to its propositional
equivalent - i.e. grounding the first-order program as defined in Section 3. For
the resulting program, clasp is able to compute all answer sets – which refers
to the solving process and clasp is therefore a solver.

We have chosen some well known problems taken from constraint program-
ming and SAT-solving to demonstrate step by step the modeling process and
its underlying paradigm.1 From now on, we will use the syntax for programs
accepted by gringo and explain each new construct used.2

Sudoku The famous number riddle Sudoku represents a constraint problem,
typically defined on a 9× 9 board, where numbers 1 . . . 9 are placed on each cell.
The goal is to complete a given board such that in each row, column, and square
the numbers 1 . . . 9 occur exactly once.

Now lets develop an encoding of Sudokus as programs. We do not bother
about how to solve a Sudoku at all, since we take a truly declarative approach
and simply describe the problem. Explaining the game to another person, one
would start with defining the board layout, i.e. there is a 9 × 9 grid, and the

1 We use the terms modeling, encoding or reducing a problem rather than program-
ming, because in ASP one does actually not program in terms of control structures
specifying a solving strategy.

2 We use version 3.0.4 of gringo, and 2.1.1 of clasp. One should be careful with
gringo versions ≥ 4, since the syntax is different than the one introduced in this
tutorial.
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notion of nine rows and columns as well as nine non-overlapping squares of size
3× 3. We can express these by the following facts:

number(1..9). row(0..8). column(0..8).
square(0, 0..2, 0..2). square(1, 0..2, 3..5). square(2, 0..2, 6..8).
square(3, 3..5, 0..2). square(4, 3..5, 3..5). square(5, 3..5, 6..8).
square(6, 6..8, 0..2). square(7, 6..8, 3..5). square(8, 6..8, 6..8).

(17)

Rules are separated by a dot. Facts are rules with an empty body, in which case
the implication symbol is omitted in gringo and clasp. number(1..9) is a syn-
tactical shorthand notation representing the nine facts number(1), number(2),
..., number(9). We use numbers as constants to make use of these syntactic ab-
breviations. One could of course also use alpha-numeric constants. Saving these
lines to a file sudoku.lp, we can already have a look at the resulting program
by typing the command:

gringo sudoku.lp --text

The --text option prints the grounded program in a human readable way. One
should see now that all facts are listed line by line and shorthand expressions
are fully spelled out. But there is no need for actual grounding, as we have not
used first-order variables yet. Therefore, we want to change the way the squares
are defined.

square(0, X, Y ) :- row(X), column(Y ), X < 3, Y < 3.
square(1, X, Y ) :- row(X), column(Y ), X < 3, Y > 2, Y < 6.
square(2, X, Y ) :- row(X), column(Y ), X < 3, Y > 5.
square(3, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y < 3.
square(4, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y > 2, Y < 6.
square(5, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y > 5.
square(6, X, Y ) :- row(X), column(Y ), X > 5, Y < 3.
square(7, X, Y ) :- row(X), column(Y ), X > 5, Y > 2, Y < 6.
square(8, X, Y ) :- row(X), column(Y ), X > 5, Y > 5.

(18)

Now, each square is defined via a rule, specifying the corresponding ranges of the
X and Y values, where :- is the syntactic equivalent to the implication symbol
(←) used so far. Replacing the square facts by these new rules in the sudoku.lp

file and calling gringo again, yields the same result as before. This is interesting
as we would expect grounded rules where X and Y are replaced by the constants
1 . . . 9. Instead we only find the grounded square atoms in the output as intended.
It is easy to see that with a naive grounding approach, the resulting grounded
program for these nine rules and the nine constants would already be quite large.
The gringo grounder applies highly sophisticated grounding strategies. In our
case, this even includes the full evaluation of the rule bodies. One should note
that this is only possible in our case since in (17) we used the naturals numbers
0 . . . 8 as constants for rows and columns and the comparison relations (<, >,
=, !=, >=, <=) are already predefined for natural numbers. We are not going
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into details of grounding strategies here; the interesting reader might want to
look in [8] for details.

So far we have just encoded the basic Sudoku board. Explaining the game
further, one would continue with providing the rules of the game, viz. that (a)
in each of the 81 cells exactly one number in {1 . . . 9} can be placed, and (b) in
each row, column and square a number is allowed to occur only once. Regarding
(a), we introduce the rules

cell(X,Y, 1) :- row(X), column(Y ),
not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4), not cell(X,Y, 5),
not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 2) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 3), not cell(X,Y, 4), not cell(X,Y, 5),
not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 3) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 4), not cell(X,Y, 5),
not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 4) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 5),
not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 5) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 6) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 7), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 7) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 8) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 9).

cell(X,Y, 9) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7), not cell(X,Y, 8).

each expressing that we can assert a number, e.g. 1, to the cell at position (X,Y )
if we can ensure that none of the remaining numbers 2 . . . 9 is already asserted
to (X,Y ). We do so by using default negation not, the syntactic symbol for ∼
as used in gringo and clasp.

Now lets have a closer look on the semantics of these rules, as they have a
very special character and role in programs. Assume we only have the first rule,
then applying the rule yields a new fact stating that on position (X,Y ) number
1 is placed, if X is a row and Y is a column and none of the remaining numbers
2 . . . 9 is already assigned to position (X,Y ). Since we do not have further initial
knowledge telling us that there is already another number placed on cell (X,Y ),
the rule is applicable for every position (X,Y ) leading to a grid full of 1’s.
Considering all nine rules now, we are faced with some non-determinism, as
for each cell we need to guess whether we place a 1 by applying the first rule,
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or lets say a 7 by applying the seventh rule. Note that the order of rules in
a program does not play any role. In consequence, these nine rules define our
(complete) search space, namely all 981 number placements possible on a 9 × 9
board. Usually, such rules are called generating or guessing rules and represent
and essential part of program encodings - we will later discuss this in more detail.

Apparently, we need to encode the Sudoku rules in (b) in order to suppress
those guesses not representing a proper number assignment. We define the con-
straints

:- cell(X,Y 1, N), cell(X,Y 2, N), Y 1 != Y 2.
:- cell(X1, Y,N), cell(X2, Y,N), X1 != X2.
#hide.
#show cell/3.

(19)

which express that we would derive false, whenever we have the same number
twice in one row (first rule) or column (second rules), respectively. With the help
of the statements #hide and #show cell/3 clasp is instructed to print only the
predicate cell/3 and to hide the other elements of an answer set.

Furthermore, we need a notion for a number to be in a square, and conse-
quently rule out answer sets where a number does not occur in every square.

in square(S,N) :- cell(X,Y,N), square(S,X, Y ).
:- number(N), not in square(S,N), square(S, , ).

Predicate in square holds for square S and number N if we find N in a cell
(X,Y ) which belongs to square S. The second rule, i.e., the constraint, ensures
that every number occurs in every square. Note that underscores, as occurring
in the very last square predicate, represent anonymous variables which can be
used if their assignment is not important, i.e. if they are not used in another
predicate of the rule.

One might ask why square(S, , ) is actually needed? Are the first two body
literals not sufficient? One can try dropping it from the constraint and call
the grounder again. The grounder will state that the variable S is unsafe and,
therefore, the rule is unsafe. In fact, gringo requires a program to be safe, which
is the case if every rule occurring in the program is safe. A rule is safe, if every
variable occurring in the rule occurs in some of the rule’s positive body literals.
State-of-the-art grounders like gringo require programs to be safe in order to
guarantee termination.

Putting things together, we have fully encoded all rules of Sudoku. One
should observe that we have not defined anything instructing how an instance
of Sudoku needs to be solved – and we will not do so subsequently. This should
emphasize the truly declarative approach. Saving the elaborated rules again to
file sudoku.lp and calling

gringo sudoku.lp | clasp

will ground the program and pipe the output to clasp. We should get an output
similar to the following:
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clasp version 2.1.1

Reading from stdin

Solving...

Answer: 1

cell(0,1,6) cell(0,2,5) cell(0,4,3) cell(0,8,7) cell(1,0,1)

cell(1,2,7) cell(1,5,5) cell(2,2,8) cell(2,8,1) cell(3,3,2)

cell(3,5,1) cell(4,2,6) cell(4,4,8) cell(4,6,3) cell(5,3,5)

cell(5,5,3) cell(6,0,5) cell(6,6,6) cell(7,3,8) cell(7,6,4)

cell(7,8,3) cell(8,0,4) cell(8,4,7) cell(8,6,2) cell(8,7,1)

cell(0,0,2) cell(0,3,1) cell(0,5,8) cell(0,6,9) cell(0,7,4)

cell(1,1,4) cell(1,3,9) cell(1,4,2) cell(1,6,8) cell(1,7,3)

cell(1,8,6) cell(2,0,3) cell(2,1,9) cell(2,3,6) cell(2,4,4)

cell(2,5,7) cell(2,6,5) cell(2,7,2) cell(3,0,8) cell(3,1,5)

cell(3,2,3) cell(3,4,9) cell(3,6,7) cell(3,7,6) cell(3,8,4)

cell(4,0,9) cell(4,1,1) cell(4,3,7) cell(4,5,4) cell(4,7,5)

cell(4,8,2) cell(5,0,7) cell(5,1,2) cell(5,2,4) cell(5,4,6)

cell(5,6,1) cell(5,7,8) cell(5,8,9) cell(6,1,3) cell(6,2,2)

cell(6,3,4) cell(6,4,1) cell(6,5,9) cell(6,7,7) cell(6,8,8)

cell(7,0,6) cell(7,1,7) cell(7,2,1) cell(7,4,5) cell(7,5,2)

cell(7,7,9) cell(8,1,8) cell(8,2,9) cell(8,3,3) cell(8,5,6)

cell(8,8,5)

SATISFIABLE

Models : 1+

Time : 0.124s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.030ss

If clasp is called without options, it returns one answer set in case of satisfiability
and indicates with Models: 1+ that there are additional answer sets. The call

gringo sudoku.lp | clasp --number 5

requests an enumeration of up to five answer sets. Using --number 0 requests all
answer sets and should be used carefully since, like in our case, there are many
possibilities to fill an empty Sudoku board.

Our encoding so far produces fully filled Sudoku boards, which all agree on
the defined constraints and therefore represent solved Sudoku games. However,
we do not yet solve a given partially filled Sudoku board. We need to provide a
so-called problem instance. For example, we add subsequent cell facts.

cell(0, 0, 3). cell(0, 4, 8). cell(0, 6, 6). cell(0, 8, 7).
cell(1, 1, 1). cell(1, 6, 4). cell(1, 8, 9).
cell(2, 0, 8). cell(2, 1, 9). cell(2, 4, 6). cell(2, 5, 7).
cell(3, 1, 6). cell(3, 3, 1). cell(3, 4, 9). cell(3, 6, 7).
cell(4, 2, 9). cell(4, 3, 6). cell(4, 4, 5). cell(4, 8, 2).
cell(5, 2, 2). cell(5, 7, 1).
cell(6, 1, 5). cell(6, 4, 4). cell(6, 8, 3).
cell(7, 1, 4). cell(7, 3, 2). cell(7, 7, 9). cell(7, 8, 8).
cell(8, 1, 8). cell(8, 2, 6). cell(8, 4, 3). cell(8, 6, 1).
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We save the assertions to a new file suoku instance.lp and call gringo and
clasp again:

gringo sudoku.lp sudoku instance.lp | clasp --number 0

With --number 0 we also instruct clasp to enumerate all models, which in our
case should be exactly one.

Guess & Check Paradigm Let us reconsider the involved modeling steps in
the Sudoku example. We started by specifying a fixed board layout by providing
appropriate facts. The possible actions – placing exactly one number on each
cell of the board – were modeled as guessing rules. We can see that part of
an answer set program as the guessing part, where the search space for answer
sets is defined. Secondly, we encoded constraints in order to check whether a
generated solution is an answer set according to the rules of the Sudoku game.

This approach of modeling is often referred to as the guess & check or
generate-and-test paradigm (see e.g. [8]). This is also motivated by NP problems,
having a non-deterministical guessing of prospective solutions and subsequent
checking. The interested reader might look at [12], from whom the paradigm
originates.

At the end we added to our problem specification a concrete problem instance.
The problem specification allows us to add any instance of some 9 × 9 Sudoku
game. Therefore, such problem specifications are said to be uniform. We will use
this separation into problem specification following the guess and check paradigm,
and problem instance for all subsequent examples.

Graph Coloring We want to illustrate the guess & check paradigm again with
a very concise and nice example - the graph coloring problem. In detail, the
problem asks whether there is some coloring of the nodes of a given undirected
graph using n colors, such that no two nodes connected via an edge share the
same color. We restrict the example to n = 3. For encoding the problem we
need the notion of color , node, edge and the coloring of nodes. We do so and
stick to our paradigm by

color(green). color(red). color(blue).
coloring(X, green) :- node(X), not coloring(X, red), not coloring(X, blue).
coloring(X, red) :- node(X), not coloring(X, green), not coloring(X, blue).
coloring(X, blue) :- node(X), not coloring(X, green), not coloring(X, red).

:- coloring(X1, C), coloring(X2, C), edge(X1, X2).

which fully specifies the problem. We have three colors specified in the first three
facts, three guessing rules as well as a single constraint eliminating solutions
where two nodes in an edge relation have identical coloring. We encode the
color-guess analogously to the number-guess in the previous Sudoku example.

Because guessing is an essential part, the syntax offers so-called choice rules.
As defined in gringo’s syntax documentation [7], choice rules are of the form

{a1, . . . , am} :- am+1, . . . , an, not an+1, . . . , not ak.
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where 0 ≤ m ≤ n ≤ k, and each ai is an atom for 0 ≤ i ≤ k. This allows us
to derive any subset of {a1, . . . , am} (head atoms), provided that the body is
satisfied. We could encode the following for coloring nodes:

{coloring(X, green), coloring(X, red), coloring(X, blue)} :- node(X).

But since we can derive any subset for some node, this would yield nodes having
more than one color assigned, or even no color at all. Therefore, the syntax allows
an extension to put cardinality restrictions on the subset choice:

l {a1, . . . , am} u :- am+1, . . . , an, not an+1, . . . , not ak.

forcing the subset size to be within the lower bound l and upper bound u. I.e.,
we assign exactly 1 color to each node by

1 {coloring(X, green), coloring(X, red), coloring(X, blue)} 1 :- node(X). (20)

ensuring that whenever we have some node X, we are allowed to add exactly one
of the three head atoms to an answer set. We can even generalize rule (20) such
that we do not need to partially instantiate the coloring predicate in the head.
The syntax therefore offers so-called conditional literals of the form l : l1 : . . . : ln,
with 0 ≤ i ≤ n. While grounding, l is instantiated under the conditions l1 to ln.
It can be used for our purpose as follows:

1 {coloring(X,C) : color(C)} 1 :- node(X). (21)

The grounding of expression {coloring(X,C) : color(C)} expands to the one in
(20). I.e. the set is generated by instantiating the coloring atom where C must
be some color . We end up with a very compact encoding of the graph coloring
problem:

color(green). color(red). color(blue).
1 {coloring(X,C) : color(C)} 1 :- node(X).
:- coloring(X1, C), coloring(X2, C), edge(X1, X2).

For the problem instance, we provide a small graph with 4 nodes and 4 edges:

node(1..4).
edge(1, 2). edge(1, 3). edge(3, 2). edge(3, 4).

Saving the problem description to coloring.lp and the problem instance to
simple-graph.lp, we can first get again an impression on the grounder’s work:

gringo coloring.lp simple-graph.lp --text

This yields the following output besides existing facts:
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1#count{coloring(4,blue),coloring(4,red),coloring(4,green)}1.
1#count{coloring(3,blue),coloring(3,red),coloring(3,green)}1.
1#count{coloring(2,blue),coloring(2,red),coloring(2,green)}1.
1#count{coloring(1,blue),coloring(1,red),coloring(1,green)}1.
:-coloring(3,green),coloring(4,green).

:-coloring(3,red),coloring(4,red).

:-coloring(3,blue),coloring(4,blue).

:-coloring(3,green),coloring(2,green).

:-coloring(3,red),coloring(2,red).

:-coloring(3,blue),coloring(2,blue).

:-coloring(1,green),coloring(3,green).

:-coloring(1,red),coloring(3,red).

:-coloring(1,blue),coloring(3,blue).

:-coloring(1,green),coloring(2,green).

:-coloring(1,red),coloring(2,red).

:-coloring(1,blue),coloring(2,blue).

It is interesting to see that the resulting program is already partially evaluated.
For example, the edge atom in all constraints is missing, which is fine since
it was merely used for instantiation of the other two coloring atoms. Also the
choice rule was turned into four constraints, each for one of the nodes. I.e. the
constraint

1 #count{coloring(1, blue), coloring(1, red), coloring(1, green)} 1.

represents the instantiation of rule (20) for node 1, where the node predicate in
the body was instantiated with 1 and, therefore, omitted since, in this case, we
only care about the head. With this constraint we fail if the #count function
counts more than 1 occurrences of colorings for node 1 or less, respectively. We
compute all answer sets for the union of the problem description (coloring.lp)
and problem instance (simple-graph.lp) with:

gringo coloring.lp simple-graph.lp | clasp --number 0

For the provided graph, 12 colorings exist. The interested reader should try with
an encoding of a more complex graph, e.g. the Petersen graph [15,16], in order
to get an impression of clasp’s performance.

Traveling Salesman Problem Another combinatorial problem, but with an opti-
mization aspect, is the so-called traveling salesman problem (TSP). We want to
demonstrate that answer set programming can also be applied to find optimal
solutions. A salesman is requested to visit some pre-defined cities. In order to be
as efficient as possible, he wants to visit every city only once, as well as to travel
the shortest roundtrip visiting all cities starting and ending in the same city.

The problem can be separated into, (a) finding roundtrips beginning from
and ending in the same city visiting all other cities only once, and (b) computing
the length of each roundtrip in order to find the shortest. The first is known
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as the problem of finding Hamiltonian cycles in graphs, another well-known
NP -complete problem. Therefore, we are faced with the optimization aspect to
find the minimal Hamiltonian cycle in a given weighted graph, where the nodes
in the graph represent our cities and labeled edges between nodes represent
connections (e.g. highways or railways) between the cities. We encode the TSP
problem description in exactly these steps, starting with appropriate guessing
rules:

1 {cycle(X,Y ) : edge(X,Y )} 1 :- node(X). (22)

1 {cycle(X,Y ) : edge(X,Y )} 1 :- node(Y ). (23)

Apparently, for a node to be in a cycle it must have an incoming edge as well as an
outgoing edge. In the case of Hamiltonian cycles, a node in the cycle has exactly
one incoming and one outgoing edge. This is specified in the rules (22) and (23).
Again we use a cardinality restriction (exactly 1) on the head’s choice expression
{cycle(X,Y ) : edge(X,Y )}. I.e., for every node X, in the first rule we choose
exactly 1 of the instantiated cycle(X,Y ) literals, which the grounder instantiates
with some Y whenever the conditional edge(X,Y ) is fulfilled. In (22) we choose
an outgoing edge and derive that it belongs to the cycle, whereas in (23) we do
so for incoming edges. Since for every node we non-deterministically pick one
outgoing and incoming edge, we might have generated a cycle or not. To rule out
model candidates not representing cycles, we check whether every node can be
reached by every other node and exclude models where there is an unreachable
node.

reachable(Y ) :- cycle(s, Y ). (24)

reachable(Y ) :- cycle(X,Y ), reachable(X). (25)

:- node(X), not reachable(X). (26)

Rule (24) and (25) define the notion for a node being reachable from all other
nodes. It is defined recursively, i.e., a node Y is reachable if it is a direct neighbor
of the starting node s (recursion base case). Furthermore, we conclude that node
Y is reachable if for another reachable node X we find (X,Y ) is in the cycle. We
simply define the constraint (26) to fail whenever we have a node X for which
we can not demonstrate its reachability. Saving (22)-(26) to hamiltonian.lp we
can compute Hamiltonian cycles for some given graph, e.g.

node(dresden). node(petersburg).
node(novosibirsk). node(stavropol).
node(moscow). edge(stavropol, novosibirsk).
edge(dresden,moscow). edge(moscow, petersburg).
edge(dresden, petersburg). edge(moscow, stavropol).
edge(dresden, stavropol). edge(moscow, novosibirsk).
edge(petersburg, novosibirsk). edge(Y,X) :- edge(X,Y ).

(27)

encodes, without edge weights, the graph depicted in Figure 1. The last rule
models symmetry of the edge relation in order to only provide one direction via
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Fig. 1. Example graph representing cities and their connections.

the facts. We save (27) to map.lp and call:

gringo -c s=dresden hamiltonian.lp map.lp | clasp --number 0

With -c s=dresden the constant s in (24) is rewritten with dresden, in order
to define that we want to start from the city of Dresden. We should receive 8
answer sets, each including instantiated cycle literals representing edges of the
Hamiltonian cycle, similar as in subsequent output.

clasp version 2.1.1

Reading from stdin

Solving...

Answer: 1

cycle(dresden,stavropol) cycle(moscow,dresden)

cycle(stavropol,novosibirsk) cycle(petersburg,moscow)

cycle(novosibirsk,petersburg)

...

Answer: 8

cycle(dresden,moscow) cycle(moscow,stavropol)

cycle(petersburg,dresden) cycle(stavropol,novosibirsk)

cycle(novosibirsk,petersburg)

SATISFIABLE

Models : 8

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

The interested reader might try simple-graph.lp from the previous example:
Are there any Hamiltonian cycles?
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We can compute cycles now, however, we have not respected the optimizing
aspect of the TSP problem yet – i.e. Hamiltonian cycles with minimal overall
distance. We need additional knowledge representing the distances between the
cities, by defining the ternary predicate distance and providing the following
instances:

distance(dresden,moscow, 20). distance(dresden, petersburg, 18).
distance(dresden, stavropol, 26). distance(moscow, stavropol, 14).
distance(moscow, petersburg, 7). distance(moscow, novosibirsk, 34).
distance(novosibirsk, petersburg, 38). distance(stavropol, novosibirsk, 36).
distance(X,Y,C) :- distance(Y,X,C).

Intuitively, distance(dresden,moscow, 20) represents the fact, that the distance
between Dresden and Moscow is 20. And to keep it less complex, we express
symmetry of distances via the last rule. Since we want to minimize a cycle’s
overall length, we need to know the length of each cycle. The syntax offers some
build-in constructs for such purposes called aggregate functions. They are used
within aggregate atoms, which are atoms of the form

l #A[l1 = w1, . . . , ln = wn] u.

Each literal li has an assigned weight wi which is 1 if not given explicitly, and the
function A is applied to the weights of all literals li, 1 ≤ i ≤ n. Aggregate atoms
can be used as constraints, or on the right hand-side of some variable assignment.
For example, we use #sum in order to assign the sum of all distances between
cities in some hamiltonian cycle.

circumference(N) :- N = #sum [cycle(X,Y ) : distance(X,Y,C) = C]. (28)

Lets disassemble rule (28). We know conditional literals already from choice rules
like the one in (22), i.e. the expression cycle(X,Y ) : distance(X,Y,C) will be
evaluated while grounding and yields instantiated cycle(X,Y ) atoms whenever
there is a corresponding distance(X,Y,C). The only difference now, is that we
take the distance value C and use it as the weight. For cycle(dresden, stavropol)
and cycle(mosow, dresden), we obtain the grounded rule

circumference(46) :- 46 = #sum[cycle(dresden, stavropol) = 26,
cycle(moscow, dresden) = 20].

It should be clear to see now how #sum yields the sum 46, which is assigned
to variable N and therefore the new fact circumference(46) is introduced. We
can save the distance facts and rule (28) to distances.lp and again request all
answer sets via:

gringo -c s=dresden hamiltonian.lp map.lp distances.lp | clasp --number 0

One should see that each answer set now also includes circumference denoting
the cycle’s overall length. We now only need to instruct clasp to provide only
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the answer set having minimal circumference value. We do so using an objective
optimization function, in our case #minimize.

#minimize [circumference(N) = N ]. (29)

It operates on the same input as aggregate functions, but it does actually not
represent a constraint nor a rule. It simply instructs clasp to print answer sets
with optimal value, in our case the hamiltonian cycle with overall length 121.

clasp version 2.1.1

Reading from stdin

Solving...

Answer: 1

cycle(novosibirsk,stavropol) cycle(petersburg,novosibirsk)

cycle(moscow,petersburg) cycle(stavropol,dresden)

cycle(dresden,moscow) circumference(127)

Optimization: 127

Answer: 2

cycle(novosibirsk,stavropol) cycle(petersburg,novosibirsk)

cycle(moscow,dresden) cycle(stavropol,moscow)

cycle(dresden,petersburg) circumference(126)

Optimization: 126

Answer: 3

cycle(novosibirsk,stavropol) cycle(petersburg,moscow)

cycle(moscow,novosibirsk) cycle(stavropol,dresden)

cycle(dresden,petersburg) circumference(121)

Optimization: 121

OPTIMUM FOUND

Models : 1

Enumerated: 3

Optimum : yes

Optimization: 121

Time : 0.021s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

We suggest to have a look at clasp’s optimization features documented in [7,8],
which is quite involved since there are many command options instructing clasp

on how to deal with optimal solutions. It is also worth to have a look at all other
aggregate functions, namely #count, #avg, #min and #max.

We provide some more problems, which we suggest the interested reader to
model and encode in a similar fashion as we have done in the previous examples.
The planning problems Cannibals and Missionaries and Towers of Hanoi might
be slightly more involved. Moreover, one can find more problems, as for example
in [9,11,8].

The Seating Problem Workshop organizers want to arrange the seating of a
social dinner in such a way that participants share a table only together with

92 Answer Set Programming and CLASP – A Tutorial



participants they don’t know (yet), respectively participants for who it is known
that they know each other should not sit at the same table. There are n tables
with some fixed number m of chairs available. Naturally, participants can only
sit at one table and chair, however, tables do not need to be fully seated in case
there are less than m× n seats.

Cannibals and Missionaries We can also encode planning problems, like the
famous one proposed by [2]. Three missionaries and three cannibals must cross
a river using a boat which can carry at most two people, under the constraint
that, for both banks, if there are missionaries present on the bank, they cannot be
outnumbered by cannibals (if they were, the cannibals would eat the missionaries).
The boat cannot cross the river by itself with no people on board.

Towers of Hanoi Another famous and historic planning problem is the hanoi
tower problem. It consists of three rods, and a number of disks of different sizes
which can slide onto any rod. The puzzle starts with the disks in a neat stack
in ascending order of size on one rod, the smallest at the top, thus making a
conical shape.The objective of the puzzle is to move the entire stack to another
rod, obeying the following simple rules:

– Only one disk can be moved at a time.
– Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack i.e. a disk can only be moved if it is the
uppermost disk on a stack.

– No disk may be placed on top of a smaller disk.

6 Conclusion

In this tutorial, we introduced the theoretical background by means of the inter-
view example, i.e. the notion of a program, rule types, answer sets for programs,
as well as the reduct of a program. Equipped with the theory, we had a closer
practical look at some encodings of problems using the syntax of gringo in or-
der to solve the problem with the clasp solver. Both tools emerged from the
potassco project [6]. The introduced language constructs should cover the basics
as far as possible, such that the interested reader should be able to model the
three open problems from the previous section. All these problems and especially
the provided problem instances are quite small, though clasp is able to deal with
extreme large problem instances, as annual competitions demonstrate [1].

Especially for readers familiar with logic programming (e.g. in prolog), it
might have immediately become clear, that we do not have to care about the
ordering of rules in any way, which imposes the answer set approach to be
truly declarative; and, as [8] point out, is a real separation of logic and control
compared to other approaches. Also one might miss data structures as they are
known as nested terms e.g. in prolog. In answer set programs n-ary tuples and
(flat, since grounded) terms are the choice for data structures.
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Further reading We have not covered details, for example, on using arithmetics
or other language extensions, which are fully covered in [7,8]. In general we used
the syntax accepted by gringo in version 3.0, as documented in [7]. Also, entire
lectures could be dedicated to grounding and solving strategies, which is due to
the fact that modern solvers use state-of-the-art SAT techniques. In [8] these
insights are provided in detail.

We should also note, that although we used the potassco tools in this tutorial,
there are several more systems available and used in academical as well as indus-
trial applications. Just to mention, there is the dlv system introduced in [11] and
professionally maintained by DLVSYSTEM s.r.l., some spin-off company of the
university of calabria. Moreover there is the Smodels solver and corresponding
grounder Lparse, which was the very first implementation of the stable model
semantics for logic programs, developed by [14]. In fact Lparse imposes some
unofficial standard syntax, which is also accepted as input by clasp. There is
evan an answer set extension to prolog - Answer Set Prolog (AnsProlog). In their
comprehensive work, [9] use AnsProlog to introduce the ASP approach.

Among these systems, unfortunately their syntax is not standardized yet.
Therefore the syntactic structures introduced in this tutorial may not work, or
lead to other results when using other tools. However, there is an ASP standard-
ization working group elaborating a common input language definition [4]. New
versions of gringo, up from 4.0, stick to the current version of the standard.
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